1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 19:23:23 +01:00
llvm-mirror/test/CodeGen/X86/srem-seteq.ll
Craig Topper 38d740499a [X86] Override BuildSDIVPow2 for X86.
As noted in PR43197, we can use test+add+cmov+sra to implement
signed division by a power of 2.

This is based off the similar version in AArch64, but I've
adjusted it to use target independent nodes where AArch64 uses
target specific CMP and CSEL nodes. I've also blocked INT_MIN
as the transform isn't valid for that.

I've limited this to i32 and i64 on 64-bit targets for now and only
when CMOV is supported. i8 and i16 need further investigation to be
sure they get promoted to i32 well.

I adjusted a few tests to enable cmov to demonstrate the new
codegen. I also changed twoaddr-coalesce-3.ll to 32-bit mode
without cmov to avoid perturbing the scenario that is being
set up there.

Differential Revision: https://reviews.llvm.org/D67087

llvm-svn: 371104
2019-09-05 18:15:07 +00:00

389 lines
12 KiB
LLVM

; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
; RUN: llc -mtriple=i686-unknown-linux-gnu -mattr=+cmov < %s | FileCheck %s --check-prefixes=CHECK,X86
; RUN: llc -mtriple=x86_64-unknown-linux-gnu < %s | FileCheck %s --check-prefixes=CHECK,X64
;------------------------------------------------------------------------------;
; Odd divisors
;------------------------------------------------------------------------------;
define i32 @test_srem_odd(i32 %X) nounwind {
; X86-LABEL: test_srem_odd:
; X86: # %bb.0:
; X86-NEXT: imull $-858993459, {{[0-9]+}}(%esp), %ecx # imm = 0xCCCCCCCD
; X86-NEXT: addl $429496729, %ecx # imm = 0x19999999
; X86-NEXT: xorl %eax, %eax
; X86-NEXT: cmpl $858993459, %ecx # imm = 0x33333333
; X86-NEXT: setb %al
; X86-NEXT: retl
;
; X64-LABEL: test_srem_odd:
; X64: # %bb.0:
; X64-NEXT: imull $-858993459, %edi, %ecx # imm = 0xCCCCCCCD
; X64-NEXT: addl $429496729, %ecx # imm = 0x19999999
; X64-NEXT: xorl %eax, %eax
; X64-NEXT: cmpl $858993459, %ecx # imm = 0x33333333
; X64-NEXT: setb %al
; X64-NEXT: retq
%srem = srem i32 %X, 5
%cmp = icmp eq i32 %srem, 0
%ret = zext i1 %cmp to i32
ret i32 %ret
}
define i32 @test_srem_odd_25(i32 %X) nounwind {
; X86-LABEL: test_srem_odd_25:
; X86: # %bb.0:
; X86-NEXT: imull $-1030792151, {{[0-9]+}}(%esp), %ecx # imm = 0xC28F5C29
; X86-NEXT: addl $85899345, %ecx # imm = 0x51EB851
; X86-NEXT: xorl %eax, %eax
; X86-NEXT: cmpl $171798691, %ecx # imm = 0xA3D70A3
; X86-NEXT: setb %al
; X86-NEXT: retl
;
; X64-LABEL: test_srem_odd_25:
; X64: # %bb.0:
; X64-NEXT: imull $-1030792151, %edi, %ecx # imm = 0xC28F5C29
; X64-NEXT: addl $85899345, %ecx # imm = 0x51EB851
; X64-NEXT: xorl %eax, %eax
; X64-NEXT: cmpl $171798691, %ecx # imm = 0xA3D70A3
; X64-NEXT: setb %al
; X64-NEXT: retq
%srem = srem i32 %X, 25
%cmp = icmp eq i32 %srem, 0
%ret = zext i1 %cmp to i32
ret i32 %ret
}
; This is like test_srem_odd, except the divisor has bit 30 set.
define i32 @test_srem_odd_bit30(i32 %X) nounwind {
; X86-LABEL: test_srem_odd_bit30:
; X86: # %bb.0:
; X86-NEXT: imull $1789569707, {{[0-9]+}}(%esp), %ecx # imm = 0x6AAAAAAB
; X86-NEXT: incl %ecx
; X86-NEXT: xorl %eax, %eax
; X86-NEXT: cmpl $3, %ecx
; X86-NEXT: setb %al
; X86-NEXT: retl
;
; X64-LABEL: test_srem_odd_bit30:
; X64: # %bb.0:
; X64-NEXT: imull $1789569707, %edi, %ecx # imm = 0x6AAAAAAB
; X64-NEXT: incl %ecx
; X64-NEXT: xorl %eax, %eax
; X64-NEXT: cmpl $3, %ecx
; X64-NEXT: setb %al
; X64-NEXT: retq
%srem = srem i32 %X, 1073741827
%cmp = icmp eq i32 %srem, 0
%ret = zext i1 %cmp to i32
ret i32 %ret
}
; This is like test_srem_odd, except the divisor has bit 31 set.
define i32 @test_srem_odd_bit31(i32 %X) nounwind {
; X86-LABEL: test_srem_odd_bit31:
; X86: # %bb.0:
; X86-NEXT: imull $-715827883, {{[0-9]+}}(%esp), %ecx # imm = 0xD5555555
; X86-NEXT: incl %ecx
; X86-NEXT: xorl %eax, %eax
; X86-NEXT: cmpl $3, %ecx
; X86-NEXT: setb %al
; X86-NEXT: retl
;
; X64-LABEL: test_srem_odd_bit31:
; X64: # %bb.0:
; X64-NEXT: imull $-715827883, %edi, %ecx # imm = 0xD5555555
; X64-NEXT: incl %ecx
; X64-NEXT: xorl %eax, %eax
; X64-NEXT: cmpl $3, %ecx
; X64-NEXT: setb %al
; X64-NEXT: retq
%srem = srem i32 %X, 2147483651
%cmp = icmp eq i32 %srem, 0
%ret = zext i1 %cmp to i32
ret i32 %ret
}
;------------------------------------------------------------------------------;
; Even divisors
;------------------------------------------------------------------------------;
define i16 @test_srem_even(i16 %X) nounwind {
; X86-LABEL: test_srem_even:
; X86: # %bb.0:
; X86-NEXT: imull $28087, {{[0-9]+}}(%esp), %eax # imm = 0x6DB7
; X86-NEXT: addl $4680, %eax # imm = 0x1248
; X86-NEXT: rorw %ax
; X86-NEXT: movzwl %ax, %ecx
; X86-NEXT: xorl %eax, %eax
; X86-NEXT: cmpl $4680, %ecx # imm = 0x1248
; X86-NEXT: seta %al
; X86-NEXT: # kill: def $ax killed $ax killed $eax
; X86-NEXT: retl
;
; X64-LABEL: test_srem_even:
; X64: # %bb.0:
; X64-NEXT: imull $28087, %edi, %eax # imm = 0x6DB7
; X64-NEXT: addl $4680, %eax # imm = 0x1248
; X64-NEXT: rorw %ax
; X64-NEXT: movzwl %ax, %ecx
; X64-NEXT: xorl %eax, %eax
; X64-NEXT: cmpl $4680, %ecx # imm = 0x1248
; X64-NEXT: seta %al
; X64-NEXT: # kill: def $ax killed $ax killed $eax
; X64-NEXT: retq
%srem = srem i16 %X, 14
%cmp = icmp ne i16 %srem, 0
%ret = zext i1 %cmp to i16
ret i16 %ret
}
define i32 @test_srem_even_100(i32 %X) nounwind {
; X86-LABEL: test_srem_even_100:
; X86: # %bb.0:
; X86-NEXT: imull $-1030792151, {{[0-9]+}}(%esp), %ecx # imm = 0xC28F5C29
; X86-NEXT: addl $85899344, %ecx # imm = 0x51EB850
; X86-NEXT: rorl $2, %ecx
; X86-NEXT: xorl %eax, %eax
; X86-NEXT: cmpl $42949673, %ecx # imm = 0x28F5C29
; X86-NEXT: setb %al
; X86-NEXT: retl
;
; X64-LABEL: test_srem_even_100:
; X64: # %bb.0:
; X64-NEXT: imull $-1030792151, %edi, %ecx # imm = 0xC28F5C29
; X64-NEXT: addl $85899344, %ecx # imm = 0x51EB850
; X64-NEXT: rorl $2, %ecx
; X64-NEXT: xorl %eax, %eax
; X64-NEXT: cmpl $42949673, %ecx # imm = 0x28F5C29
; X64-NEXT: setb %al
; X64-NEXT: retq
%srem = srem i32 %X, 100
%cmp = icmp eq i32 %srem, 0
%ret = zext i1 %cmp to i32
ret i32 %ret
}
; This is like test_srem_even, except the divisor has bit 30 set.
define i32 @test_srem_even_bit30(i32 %X) nounwind {
; X86-LABEL: test_srem_even_bit30:
; X86: # %bb.0:
; X86-NEXT: imull $-51622203, {{[0-9]+}}(%esp), %ecx # imm = 0xFCEC4EC5
; X86-NEXT: addl $8, %ecx
; X86-NEXT: rorl $3, %ecx
; X86-NEXT: xorl %eax, %eax
; X86-NEXT: cmpl $3, %ecx
; X86-NEXT: setb %al
; X86-NEXT: retl
;
; X64-LABEL: test_srem_even_bit30:
; X64: # %bb.0:
; X64-NEXT: imull $-51622203, %edi, %ecx # imm = 0xFCEC4EC5
; X64-NEXT: addl $8, %ecx
; X64-NEXT: rorl $3, %ecx
; X64-NEXT: xorl %eax, %eax
; X64-NEXT: cmpl $3, %ecx
; X64-NEXT: setb %al
; X64-NEXT: retq
%srem = srem i32 %X, 1073741928
%cmp = icmp eq i32 %srem, 0
%ret = zext i1 %cmp to i32
ret i32 %ret
}
; This is like test_srem_odd, except the divisor has bit 31 set.
define i32 @test_srem_even_bit31(i32 %X) nounwind {
; X86-LABEL: test_srem_even_bit31:
; X86: # %bb.0:
; X86-NEXT: imull $-989526779, {{[0-9]+}}(%esp), %ecx # imm = 0xC5050505
; X86-NEXT: addl $2, %ecx
; X86-NEXT: rorl %ecx
; X86-NEXT: xorl %eax, %eax
; X86-NEXT: cmpl $3, %ecx
; X86-NEXT: setb %al
; X86-NEXT: retl
;
; X64-LABEL: test_srem_even_bit31:
; X64: # %bb.0:
; X64-NEXT: imull $-989526779, %edi, %ecx # imm = 0xC5050505
; X64-NEXT: addl $2, %ecx
; X64-NEXT: rorl %ecx
; X64-NEXT: xorl %eax, %eax
; X64-NEXT: cmpl $3, %ecx
; X64-NEXT: setb %al
; X64-NEXT: retq
%srem = srem i32 %X, 2147483750
%cmp = icmp eq i32 %srem, 0
%ret = zext i1 %cmp to i32
ret i32 %ret
}
;------------------------------------------------------------------------------;
; Special case
;------------------------------------------------------------------------------;
; 'NE' predicate is fine too.
define i32 @test_srem_odd_setne(i32 %X) nounwind {
; X86-LABEL: test_srem_odd_setne:
; X86: # %bb.0:
; X86-NEXT: imull $-858993459, {{[0-9]+}}(%esp), %ecx # imm = 0xCCCCCCCD
; X86-NEXT: addl $429496729, %ecx # imm = 0x19999999
; X86-NEXT: xorl %eax, %eax
; X86-NEXT: cmpl $858993458, %ecx # imm = 0x33333332
; X86-NEXT: seta %al
; X86-NEXT: retl
;
; X64-LABEL: test_srem_odd_setne:
; X64: # %bb.0:
; X64-NEXT: imull $-858993459, %edi, %ecx # imm = 0xCCCCCCCD
; X64-NEXT: addl $429496729, %ecx # imm = 0x19999999
; X64-NEXT: xorl %eax, %eax
; X64-NEXT: cmpl $858993458, %ecx # imm = 0x33333332
; X64-NEXT: seta %al
; X64-NEXT: retq
%srem = srem i32 %X, 5
%cmp = icmp ne i32 %srem, 0
%ret = zext i1 %cmp to i32
ret i32 %ret
}
; The fold is only valid for positive divisors, negative-ones should be negated.
define i32 @test_srem_negative_odd(i32 %X) nounwind {
; X86-LABEL: test_srem_negative_odd:
; X86: # %bb.0:
; X86-NEXT: imull $-858993459, {{[0-9]+}}(%esp), %ecx # imm = 0xCCCCCCCD
; X86-NEXT: addl $429496729, %ecx # imm = 0x19999999
; X86-NEXT: xorl %eax, %eax
; X86-NEXT: cmpl $858993458, %ecx # imm = 0x33333332
; X86-NEXT: seta %al
; X86-NEXT: retl
;
; X64-LABEL: test_srem_negative_odd:
; X64: # %bb.0:
; X64-NEXT: imull $-858993459, %edi, %ecx # imm = 0xCCCCCCCD
; X64-NEXT: addl $429496729, %ecx # imm = 0x19999999
; X64-NEXT: xorl %eax, %eax
; X64-NEXT: cmpl $858993458, %ecx # imm = 0x33333332
; X64-NEXT: seta %al
; X64-NEXT: retq
%srem = srem i32 %X, -5
%cmp = icmp ne i32 %srem, 0
%ret = zext i1 %cmp to i32
ret i32 %ret
}
define i32 @test_srem_negative_even(i32 %X) nounwind {
; X86-LABEL: test_srem_negative_even:
; X86: # %bb.0:
; X86-NEXT: imull $-1227133513, {{[0-9]+}}(%esp), %ecx # imm = 0xB6DB6DB7
; X86-NEXT: addl $306783378, %ecx # imm = 0x12492492
; X86-NEXT: rorl %ecx
; X86-NEXT: xorl %eax, %eax
; X86-NEXT: cmpl $306783378, %ecx # imm = 0x12492492
; X86-NEXT: seta %al
; X86-NEXT: retl
;
; X64-LABEL: test_srem_negative_even:
; X64: # %bb.0:
; X64-NEXT: imull $-1227133513, %edi, %ecx # imm = 0xB6DB6DB7
; X64-NEXT: addl $306783378, %ecx # imm = 0x12492492
; X64-NEXT: rorl %ecx
; X64-NEXT: xorl %eax, %eax
; X64-NEXT: cmpl $306783378, %ecx # imm = 0x12492492
; X64-NEXT: seta %al
; X64-NEXT: retq
%srem = srem i32 %X, -14
%cmp = icmp ne i32 %srem, 0
%ret = zext i1 %cmp to i32
ret i32 %ret
}
;------------------------------------------------------------------------------;
; Negative tests
;------------------------------------------------------------------------------;
; We can lower remainder of division by one much better elsewhere.
define i32 @test_srem_one(i32 %X) nounwind {
; CHECK-LABEL: test_srem_one:
; CHECK: # %bb.0:
; CHECK-NEXT: movl $1, %eax
; CHECK-NEXT: ret{{[l|q]}}
%srem = srem i32 %X, 1
%cmp = icmp eq i32 %srem, 0
%ret = zext i1 %cmp to i32
ret i32 %ret
}
; We can lower remainder of division by powers of two much better elsewhere.
define i32 @test_srem_pow2(i32 %X) nounwind {
; X86-LABEL: test_srem_pow2:
; X86: # %bb.0:
; X86-NEXT: movl {{[0-9]+}}(%esp), %ecx
; X86-NEXT: leal 15(%ecx), %edx
; X86-NEXT: testl %ecx, %ecx
; X86-NEXT: cmovnsl %ecx, %edx
; X86-NEXT: andl $-16, %edx
; X86-NEXT: xorl %eax, %eax
; X86-NEXT: cmpl %edx, %ecx
; X86-NEXT: sete %al
; X86-NEXT: retl
;
; X64-LABEL: test_srem_pow2:
; X64: # %bb.0:
; X64-NEXT: # kill: def $edi killed $edi def $rdi
; X64-NEXT: leal 15(%rdi), %ecx
; X64-NEXT: testl %edi, %edi
; X64-NEXT: cmovnsl %edi, %ecx
; X64-NEXT: andl $-16, %ecx
; X64-NEXT: xorl %eax, %eax
; X64-NEXT: cmpl %ecx, %edi
; X64-NEXT: sete %al
; X64-NEXT: retq
%srem = srem i32 %X, 16
%cmp = icmp eq i32 %srem, 0
%ret = zext i1 %cmp to i32
ret i32 %ret
}
; The fold is only valid for positive divisors, and we can't negate INT_MIN.
define i32 @test_srem_int_min(i32 %X) nounwind {
; X86-LABEL: test_srem_int_min:
; X86: # %bb.0:
; X86-NEXT: movl {{[0-9]+}}(%esp), %ecx
; X86-NEXT: leal 2147483647(%ecx), %edx
; X86-NEXT: testl %ecx, %ecx
; X86-NEXT: cmovnsl %ecx, %edx
; X86-NEXT: andl $-2147483648, %edx # imm = 0x80000000
; X86-NEXT: xorl %eax, %eax
; X86-NEXT: addl %ecx, %edx
; X86-NEXT: sete %al
; X86-NEXT: retl
;
; X64-LABEL: test_srem_int_min:
; X64: # %bb.0:
; X64-NEXT: # kill: def $edi killed $edi def $rdi
; X64-NEXT: leal 2147483647(%rdi), %ecx
; X64-NEXT: testl %edi, %edi
; X64-NEXT: cmovnsl %edi, %ecx
; X64-NEXT: andl $-2147483648, %ecx # imm = 0x80000000
; X64-NEXT: xorl %eax, %eax
; X64-NEXT: addl %edi, %ecx
; X64-NEXT: sete %al
; X64-NEXT: retq
%srem = srem i32 %X, 2147483648
%cmp = icmp eq i32 %srem, 0
%ret = zext i1 %cmp to i32
ret i32 %ret
}
; We can lower remainder of division by all-ones much better elsewhere.
define i32 @test_srem_allones(i32 %X) nounwind {
; CHECK-LABEL: test_srem_allones:
; CHECK: # %bb.0:
; CHECK-NEXT: movl $1, %eax
; CHECK-NEXT: ret{{[l|q]}}
%srem = srem i32 %X, 4294967295
%cmp = icmp eq i32 %srem, 0
%ret = zext i1 %cmp to i32
ret i32 %ret
}