mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-24 19:52:54 +01:00
602 lines
23 KiB
C++
602 lines
23 KiB
C++
//===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// The LowerSwitch transformation rewrites switch instructions with a sequence
|
|
// of branches, which allows targets to get away with not implementing the
|
|
// switch instruction until it is convenient.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Utils/LowerSwitch.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/LazyValueInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/ConstantRange.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/KnownBits.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Utils.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <iterator>
|
|
#include <limits>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "lower-switch"
|
|
|
|
namespace {
|
|
|
|
struct IntRange {
|
|
int64_t Low, High;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
namespace {
|
|
// Return true iff R is covered by Ranges.
|
|
bool IsInRanges(const IntRange &R, const std::vector<IntRange> &Ranges) {
|
|
// Note: Ranges must be sorted, non-overlapping and non-adjacent.
|
|
|
|
// Find the first range whose High field is >= R.High,
|
|
// then check if the Low field is <= R.Low. If so, we
|
|
// have a Range that covers R.
|
|
auto I = llvm::lower_bound(
|
|
Ranges, R, [](IntRange A, IntRange B) { return A.High < B.High; });
|
|
return I != Ranges.end() && I->Low <= R.Low;
|
|
}
|
|
|
|
struct CaseRange {
|
|
ConstantInt *Low;
|
|
ConstantInt *High;
|
|
BasicBlock *BB;
|
|
|
|
CaseRange(ConstantInt *low, ConstantInt *high, BasicBlock *bb)
|
|
: Low(low), High(high), BB(bb) {}
|
|
};
|
|
|
|
using CaseVector = std::vector<CaseRange>;
|
|
using CaseItr = std::vector<CaseRange>::iterator;
|
|
|
|
/// The comparison function for sorting the switch case values in the vector.
|
|
/// WARNING: Case ranges should be disjoint!
|
|
struct CaseCmp {
|
|
bool operator()(const CaseRange &C1, const CaseRange &C2) {
|
|
const ConstantInt *CI1 = cast<const ConstantInt>(C1.Low);
|
|
const ConstantInt *CI2 = cast<const ConstantInt>(C2.High);
|
|
return CI1->getValue().slt(CI2->getValue());
|
|
}
|
|
};
|
|
|
|
/// Used for debugging purposes.
|
|
LLVM_ATTRIBUTE_USED
|
|
raw_ostream &operator<<(raw_ostream &O, const CaseVector &C) {
|
|
O << "[";
|
|
|
|
for (CaseVector::const_iterator B = C.begin(), E = C.end(); B != E;) {
|
|
O << "[" << B->Low->getValue() << ", " << B->High->getValue() << "]";
|
|
if (++B != E)
|
|
O << ", ";
|
|
}
|
|
|
|
return O << "]";
|
|
}
|
|
|
|
/// Update the first occurrence of the "switch statement" BB in the PHI
|
|
/// node with the "new" BB. The other occurrences will:
|
|
///
|
|
/// 1) Be updated by subsequent calls to this function. Switch statements may
|
|
/// have more than one outcoming edge into the same BB if they all have the same
|
|
/// value. When the switch statement is converted these incoming edges are now
|
|
/// coming from multiple BBs.
|
|
/// 2) Removed if subsequent incoming values now share the same case, i.e.,
|
|
/// multiple outcome edges are condensed into one. This is necessary to keep the
|
|
/// number of phi values equal to the number of branches to SuccBB.
|
|
void FixPhis(
|
|
BasicBlock *SuccBB, BasicBlock *OrigBB, BasicBlock *NewBB,
|
|
const unsigned NumMergedCases = std::numeric_limits<unsigned>::max()) {
|
|
for (BasicBlock::iterator I = SuccBB->begin(),
|
|
IE = SuccBB->getFirstNonPHI()->getIterator();
|
|
I != IE; ++I) {
|
|
PHINode *PN = cast<PHINode>(I);
|
|
|
|
// Only update the first occurrence.
|
|
unsigned Idx = 0, E = PN->getNumIncomingValues();
|
|
unsigned LocalNumMergedCases = NumMergedCases;
|
|
for (; Idx != E; ++Idx) {
|
|
if (PN->getIncomingBlock(Idx) == OrigBB) {
|
|
PN->setIncomingBlock(Idx, NewBB);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Remove additional occurrences coming from condensed cases and keep the
|
|
// number of incoming values equal to the number of branches to SuccBB.
|
|
SmallVector<unsigned, 8> Indices;
|
|
for (++Idx; LocalNumMergedCases > 0 && Idx < E; ++Idx)
|
|
if (PN->getIncomingBlock(Idx) == OrigBB) {
|
|
Indices.push_back(Idx);
|
|
LocalNumMergedCases--;
|
|
}
|
|
// Remove incoming values in the reverse order to prevent invalidating
|
|
// *successive* index.
|
|
for (unsigned III : llvm::reverse(Indices))
|
|
PN->removeIncomingValue(III);
|
|
}
|
|
}
|
|
|
|
/// Create a new leaf block for the binary lookup tree. It checks if the
|
|
/// switch's value == the case's value. If not, then it jumps to the default
|
|
/// branch. At this point in the tree, the value can't be another valid case
|
|
/// value, so the jump to the "default" branch is warranted.
|
|
BasicBlock *NewLeafBlock(CaseRange &Leaf, Value *Val, ConstantInt *LowerBound,
|
|
ConstantInt *UpperBound, BasicBlock *OrigBlock,
|
|
BasicBlock *Default) {
|
|
Function *F = OrigBlock->getParent();
|
|
BasicBlock *NewLeaf = BasicBlock::Create(Val->getContext(), "LeafBlock");
|
|
F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewLeaf);
|
|
|
|
// Emit comparison
|
|
ICmpInst *Comp = nullptr;
|
|
if (Leaf.Low == Leaf.High) {
|
|
// Make the seteq instruction...
|
|
Comp =
|
|
new ICmpInst(*NewLeaf, ICmpInst::ICMP_EQ, Val, Leaf.Low, "SwitchLeaf");
|
|
} else {
|
|
// Make range comparison
|
|
if (Leaf.Low == LowerBound) {
|
|
// Val >= Min && Val <= Hi --> Val <= Hi
|
|
Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High,
|
|
"SwitchLeaf");
|
|
} else if (Leaf.High == UpperBound) {
|
|
// Val <= Max && Val >= Lo --> Val >= Lo
|
|
Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SGE, Val, Leaf.Low,
|
|
"SwitchLeaf");
|
|
} else if (Leaf.Low->isZero()) {
|
|
// Val >= 0 && Val <= Hi --> Val <=u Hi
|
|
Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High,
|
|
"SwitchLeaf");
|
|
} else {
|
|
// Emit V-Lo <=u Hi-Lo
|
|
Constant *NegLo = ConstantExpr::getNeg(Leaf.Low);
|
|
Instruction *Add = BinaryOperator::CreateAdd(
|
|
Val, NegLo, Val->getName() + ".off", NewLeaf);
|
|
Constant *UpperBound = ConstantExpr::getAdd(NegLo, Leaf.High);
|
|
Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Add, UpperBound,
|
|
"SwitchLeaf");
|
|
}
|
|
}
|
|
|
|
// Make the conditional branch...
|
|
BasicBlock *Succ = Leaf.BB;
|
|
BranchInst::Create(Succ, Default, Comp, NewLeaf);
|
|
|
|
// If there were any PHI nodes in this successor, rewrite one entry
|
|
// from OrigBlock to come from NewLeaf.
|
|
for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
|
|
PHINode *PN = cast<PHINode>(I);
|
|
// Remove all but one incoming entries from the cluster
|
|
uint64_t Range = Leaf.High->getSExtValue() - Leaf.Low->getSExtValue();
|
|
for (uint64_t j = 0; j < Range; ++j) {
|
|
PN->removeIncomingValue(OrigBlock);
|
|
}
|
|
|
|
int BlockIdx = PN->getBasicBlockIndex(OrigBlock);
|
|
assert(BlockIdx != -1 && "Switch didn't go to this successor??");
|
|
PN->setIncomingBlock((unsigned)BlockIdx, NewLeaf);
|
|
}
|
|
|
|
return NewLeaf;
|
|
}
|
|
|
|
/// Convert the switch statement into a binary lookup of the case values.
|
|
/// The function recursively builds this tree. LowerBound and UpperBound are
|
|
/// used to keep track of the bounds for Val that have already been checked by
|
|
/// a block emitted by one of the previous calls to switchConvert in the call
|
|
/// stack.
|
|
BasicBlock *SwitchConvert(CaseItr Begin, CaseItr End, ConstantInt *LowerBound,
|
|
ConstantInt *UpperBound, Value *Val,
|
|
BasicBlock *Predecessor, BasicBlock *OrigBlock,
|
|
BasicBlock *Default,
|
|
const std::vector<IntRange> &UnreachableRanges) {
|
|
assert(LowerBound && UpperBound && "Bounds must be initialized");
|
|
unsigned Size = End - Begin;
|
|
|
|
if (Size == 1) {
|
|
// Check if the Case Range is perfectly squeezed in between
|
|
// already checked Upper and Lower bounds. If it is then we can avoid
|
|
// emitting the code that checks if the value actually falls in the range
|
|
// because the bounds already tell us so.
|
|
if (Begin->Low == LowerBound && Begin->High == UpperBound) {
|
|
unsigned NumMergedCases = 0;
|
|
NumMergedCases = UpperBound->getSExtValue() - LowerBound->getSExtValue();
|
|
FixPhis(Begin->BB, OrigBlock, Predecessor, NumMergedCases);
|
|
return Begin->BB;
|
|
}
|
|
return NewLeafBlock(*Begin, Val, LowerBound, UpperBound, OrigBlock,
|
|
Default);
|
|
}
|
|
|
|
unsigned Mid = Size / 2;
|
|
std::vector<CaseRange> LHS(Begin, Begin + Mid);
|
|
LLVM_DEBUG(dbgs() << "LHS: " << LHS << "\n");
|
|
std::vector<CaseRange> RHS(Begin + Mid, End);
|
|
LLVM_DEBUG(dbgs() << "RHS: " << RHS << "\n");
|
|
|
|
CaseRange &Pivot = *(Begin + Mid);
|
|
LLVM_DEBUG(dbgs() << "Pivot ==> [" << Pivot.Low->getValue() << ", "
|
|
<< Pivot.High->getValue() << "]\n");
|
|
|
|
// NewLowerBound here should never be the integer minimal value.
|
|
// This is because it is computed from a case range that is never
|
|
// the smallest, so there is always a case range that has at least
|
|
// a smaller value.
|
|
ConstantInt *NewLowerBound = Pivot.Low;
|
|
|
|
// Because NewLowerBound is never the smallest representable integer
|
|
// it is safe here to subtract one.
|
|
ConstantInt *NewUpperBound = ConstantInt::get(NewLowerBound->getContext(),
|
|
NewLowerBound->getValue() - 1);
|
|
|
|
if (!UnreachableRanges.empty()) {
|
|
// Check if the gap between LHS's highest and NewLowerBound is unreachable.
|
|
int64_t GapLow = LHS.back().High->getSExtValue() + 1;
|
|
int64_t GapHigh = NewLowerBound->getSExtValue() - 1;
|
|
IntRange Gap = { GapLow, GapHigh };
|
|
if (GapHigh >= GapLow && IsInRanges(Gap, UnreachableRanges))
|
|
NewUpperBound = LHS.back().High;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "LHS Bounds ==> [" << LowerBound->getSExtValue() << ", "
|
|
<< NewUpperBound->getSExtValue() << "]\n"
|
|
<< "RHS Bounds ==> [" << NewLowerBound->getSExtValue()
|
|
<< ", " << UpperBound->getSExtValue() << "]\n");
|
|
|
|
// Create a new node that checks if the value is < pivot. Go to the
|
|
// left branch if it is and right branch if not.
|
|
Function* F = OrigBlock->getParent();
|
|
BasicBlock* NewNode = BasicBlock::Create(Val->getContext(), "NodeBlock");
|
|
|
|
ICmpInst* Comp = new ICmpInst(ICmpInst::ICMP_SLT,
|
|
Val, Pivot.Low, "Pivot");
|
|
|
|
BasicBlock *LBranch =
|
|
SwitchConvert(LHS.begin(), LHS.end(), LowerBound, NewUpperBound, Val,
|
|
NewNode, OrigBlock, Default, UnreachableRanges);
|
|
BasicBlock *RBranch =
|
|
SwitchConvert(RHS.begin(), RHS.end(), NewLowerBound, UpperBound, Val,
|
|
NewNode, OrigBlock, Default, UnreachableRanges);
|
|
|
|
F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewNode);
|
|
NewNode->getInstList().push_back(Comp);
|
|
|
|
BranchInst::Create(LBranch, RBranch, Comp, NewNode);
|
|
return NewNode;
|
|
}
|
|
|
|
/// Transform simple list of \p SI's cases into list of CaseRange's \p Cases.
|
|
/// \post \p Cases wouldn't contain references to \p SI's default BB.
|
|
/// \returns Number of \p SI's cases that do not reference \p SI's default BB.
|
|
unsigned Clusterify(CaseVector &Cases, SwitchInst *SI) {
|
|
unsigned NumSimpleCases = 0;
|
|
|
|
// Start with "simple" cases
|
|
for (auto Case : SI->cases()) {
|
|
if (Case.getCaseSuccessor() == SI->getDefaultDest())
|
|
continue;
|
|
Cases.push_back(CaseRange(Case.getCaseValue(), Case.getCaseValue(),
|
|
Case.getCaseSuccessor()));
|
|
++NumSimpleCases;
|
|
}
|
|
|
|
llvm::sort(Cases, CaseCmp());
|
|
|
|
// Merge case into clusters
|
|
if (Cases.size() >= 2) {
|
|
CaseItr I = Cases.begin();
|
|
for (CaseItr J = std::next(I), E = Cases.end(); J != E; ++J) {
|
|
int64_t nextValue = J->Low->getSExtValue();
|
|
int64_t currentValue = I->High->getSExtValue();
|
|
BasicBlock* nextBB = J->BB;
|
|
BasicBlock* currentBB = I->BB;
|
|
|
|
// If the two neighboring cases go to the same destination, merge them
|
|
// into a single case.
|
|
assert(nextValue > currentValue && "Cases should be strictly ascending");
|
|
if ((nextValue == currentValue + 1) && (currentBB == nextBB)) {
|
|
I->High = J->High;
|
|
// FIXME: Combine branch weights.
|
|
} else if (++I != J) {
|
|
*I = *J;
|
|
}
|
|
}
|
|
Cases.erase(std::next(I), Cases.end());
|
|
}
|
|
|
|
return NumSimpleCases;
|
|
}
|
|
|
|
/// Replace the specified switch instruction with a sequence of chained if-then
|
|
/// insts in a balanced binary search.
|
|
void ProcessSwitchInst(SwitchInst *SI,
|
|
SmallPtrSetImpl<BasicBlock *> &DeleteList,
|
|
AssumptionCache *AC, LazyValueInfo *LVI) {
|
|
BasicBlock *OrigBlock = SI->getParent();
|
|
Function *F = OrigBlock->getParent();
|
|
Value *Val = SI->getCondition(); // The value we are switching on...
|
|
BasicBlock* Default = SI->getDefaultDest();
|
|
|
|
// Don't handle unreachable blocks. If there are successors with phis, this
|
|
// would leave them behind with missing predecessors.
|
|
if ((OrigBlock != &F->getEntryBlock() && pred_empty(OrigBlock)) ||
|
|
OrigBlock->getSinglePredecessor() == OrigBlock) {
|
|
DeleteList.insert(OrigBlock);
|
|
return;
|
|
}
|
|
|
|
// Prepare cases vector.
|
|
CaseVector Cases;
|
|
const unsigned NumSimpleCases = Clusterify(Cases, SI);
|
|
LLVM_DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
|
|
<< ". Total non-default cases: " << NumSimpleCases
|
|
<< "\nCase clusters: " << Cases << "\n");
|
|
|
|
// If there is only the default destination, just branch.
|
|
if (Cases.empty()) {
|
|
BranchInst::Create(Default, OrigBlock);
|
|
// Remove all the references from Default's PHIs to OrigBlock, but one.
|
|
FixPhis(Default, OrigBlock, OrigBlock);
|
|
SI->eraseFromParent();
|
|
return;
|
|
}
|
|
|
|
ConstantInt *LowerBound = nullptr;
|
|
ConstantInt *UpperBound = nullptr;
|
|
bool DefaultIsUnreachableFromSwitch = false;
|
|
|
|
if (isa<UnreachableInst>(Default->getFirstNonPHIOrDbg())) {
|
|
// Make the bounds tightly fitted around the case value range, because we
|
|
// know that the value passed to the switch must be exactly one of the case
|
|
// values.
|
|
LowerBound = Cases.front().Low;
|
|
UpperBound = Cases.back().High;
|
|
DefaultIsUnreachableFromSwitch = true;
|
|
} else {
|
|
// Constraining the range of the value being switched over helps eliminating
|
|
// unreachable BBs and minimizing the number of `add` instructions
|
|
// newLeafBlock ends up emitting. Running CorrelatedValuePropagation after
|
|
// LowerSwitch isn't as good, and also much more expensive in terms of
|
|
// compile time for the following reasons:
|
|
// 1. it processes many kinds of instructions, not just switches;
|
|
// 2. even if limited to icmp instructions only, it will have to process
|
|
// roughly C icmp's per switch, where C is the number of cases in the
|
|
// switch, while LowerSwitch only needs to call LVI once per switch.
|
|
const DataLayout &DL = F->getParent()->getDataLayout();
|
|
KnownBits Known = computeKnownBits(Val, DL, /*Depth=*/0, AC, SI);
|
|
// TODO Shouldn't this create a signed range?
|
|
ConstantRange KnownBitsRange =
|
|
ConstantRange::fromKnownBits(Known, /*IsSigned=*/false);
|
|
const ConstantRange LVIRange = LVI->getConstantRange(Val, SI);
|
|
ConstantRange ValRange = KnownBitsRange.intersectWith(LVIRange);
|
|
// We delegate removal of unreachable non-default cases to other passes. In
|
|
// the unlikely event that some of them survived, we just conservatively
|
|
// maintain the invariant that all the cases lie between the bounds. This
|
|
// may, however, still render the default case effectively unreachable.
|
|
APInt Low = Cases.front().Low->getValue();
|
|
APInt High = Cases.back().High->getValue();
|
|
APInt Min = APIntOps::smin(ValRange.getSignedMin(), Low);
|
|
APInt Max = APIntOps::smax(ValRange.getSignedMax(), High);
|
|
|
|
LowerBound = ConstantInt::get(SI->getContext(), Min);
|
|
UpperBound = ConstantInt::get(SI->getContext(), Max);
|
|
DefaultIsUnreachableFromSwitch = (Min + (NumSimpleCases - 1) == Max);
|
|
}
|
|
|
|
std::vector<IntRange> UnreachableRanges;
|
|
|
|
if (DefaultIsUnreachableFromSwitch) {
|
|
DenseMap<BasicBlock *, unsigned> Popularity;
|
|
unsigned MaxPop = 0;
|
|
BasicBlock *PopSucc = nullptr;
|
|
|
|
IntRange R = {std::numeric_limits<int64_t>::min(),
|
|
std::numeric_limits<int64_t>::max()};
|
|
UnreachableRanges.push_back(R);
|
|
for (const auto &I : Cases) {
|
|
int64_t Low = I.Low->getSExtValue();
|
|
int64_t High = I.High->getSExtValue();
|
|
|
|
IntRange &LastRange = UnreachableRanges.back();
|
|
if (LastRange.Low == Low) {
|
|
// There is nothing left of the previous range.
|
|
UnreachableRanges.pop_back();
|
|
} else {
|
|
// Terminate the previous range.
|
|
assert(Low > LastRange.Low);
|
|
LastRange.High = Low - 1;
|
|
}
|
|
if (High != std::numeric_limits<int64_t>::max()) {
|
|
IntRange R = { High + 1, std::numeric_limits<int64_t>::max() };
|
|
UnreachableRanges.push_back(R);
|
|
}
|
|
|
|
// Count popularity.
|
|
int64_t N = High - Low + 1;
|
|
unsigned &Pop = Popularity[I.BB];
|
|
if ((Pop += N) > MaxPop) {
|
|
MaxPop = Pop;
|
|
PopSucc = I.BB;
|
|
}
|
|
}
|
|
#ifndef NDEBUG
|
|
/* UnreachableRanges should be sorted and the ranges non-adjacent. */
|
|
for (auto I = UnreachableRanges.begin(), E = UnreachableRanges.end();
|
|
I != E; ++I) {
|
|
assert(I->Low <= I->High);
|
|
auto Next = I + 1;
|
|
if (Next != E) {
|
|
assert(Next->Low > I->High);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// As the default block in the switch is unreachable, update the PHI nodes
|
|
// (remove all of the references to the default block) to reflect this.
|
|
const unsigned NumDefaultEdges = SI->getNumCases() + 1 - NumSimpleCases;
|
|
for (unsigned I = 0; I < NumDefaultEdges; ++I)
|
|
Default->removePredecessor(OrigBlock);
|
|
|
|
// Use the most popular block as the new default, reducing the number of
|
|
// cases.
|
|
assert(MaxPop > 0 && PopSucc);
|
|
Default = PopSucc;
|
|
Cases.erase(
|
|
llvm::remove_if(
|
|
Cases, [PopSucc](const CaseRange &R) { return R.BB == PopSucc; }),
|
|
Cases.end());
|
|
|
|
// If there are no cases left, just branch.
|
|
if (Cases.empty()) {
|
|
BranchInst::Create(Default, OrigBlock);
|
|
SI->eraseFromParent();
|
|
// As all the cases have been replaced with a single branch, only keep
|
|
// one entry in the PHI nodes.
|
|
for (unsigned I = 0 ; I < (MaxPop - 1) ; ++I)
|
|
PopSucc->removePredecessor(OrigBlock);
|
|
return;
|
|
}
|
|
|
|
// If the condition was a PHI node with the switch block as a predecessor
|
|
// removing predecessors may have caused the condition to be erased.
|
|
// Getting the condition value again here protects against that.
|
|
Val = SI->getCondition();
|
|
}
|
|
|
|
// Create a new, empty default block so that the new hierarchy of
|
|
// if-then statements go to this and the PHI nodes are happy.
|
|
BasicBlock *NewDefault = BasicBlock::Create(SI->getContext(), "NewDefault");
|
|
F->getBasicBlockList().insert(Default->getIterator(), NewDefault);
|
|
BranchInst::Create(Default, NewDefault);
|
|
|
|
BasicBlock *SwitchBlock =
|
|
SwitchConvert(Cases.begin(), Cases.end(), LowerBound, UpperBound, Val,
|
|
OrigBlock, OrigBlock, NewDefault, UnreachableRanges);
|
|
|
|
// If there are entries in any PHI nodes for the default edge, make sure
|
|
// to update them as well.
|
|
FixPhis(Default, OrigBlock, NewDefault);
|
|
|
|
// Branch to our shiny new if-then stuff...
|
|
BranchInst::Create(SwitchBlock, OrigBlock);
|
|
|
|
// We are now done with the switch instruction, delete it.
|
|
BasicBlock *OldDefault = SI->getDefaultDest();
|
|
OrigBlock->getInstList().erase(SI);
|
|
|
|
// If the Default block has no more predecessors just add it to DeleteList.
|
|
if (pred_empty(OldDefault))
|
|
DeleteList.insert(OldDefault);
|
|
}
|
|
|
|
bool LowerSwitch(Function &F, LazyValueInfo *LVI, AssumptionCache *AC) {
|
|
bool Changed = false;
|
|
SmallPtrSet<BasicBlock *, 8> DeleteList;
|
|
|
|
for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
|
|
BasicBlock *Cur =
|
|
&*I++; // Advance over block so we don't traverse new blocks
|
|
|
|
// If the block is a dead Default block that will be deleted later, don't
|
|
// waste time processing it.
|
|
if (DeleteList.count(Cur))
|
|
continue;
|
|
|
|
if (SwitchInst *SI = dyn_cast<SwitchInst>(Cur->getTerminator())) {
|
|
Changed = true;
|
|
ProcessSwitchInst(SI, DeleteList, AC, LVI);
|
|
}
|
|
}
|
|
|
|
for (BasicBlock *BB : DeleteList) {
|
|
LVI->eraseBlock(BB);
|
|
DeleteDeadBlock(BB);
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// Replace all SwitchInst instructions with chained branch instructions.
|
|
class LowerSwitchLegacyPass : public FunctionPass {
|
|
public:
|
|
// Pass identification, replacement for typeid
|
|
static char ID;
|
|
|
|
LowerSwitchLegacyPass() : FunctionPass(ID) {
|
|
initializeLowerSwitchLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override;
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<LazyValueInfoWrapperPass>();
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char LowerSwitchLegacyPass::ID = 0;
|
|
|
|
// Publicly exposed interface to pass...
|
|
char &llvm::LowerSwitchID = LowerSwitchLegacyPass::ID;
|
|
|
|
INITIALIZE_PASS_BEGIN(LowerSwitchLegacyPass, "lowerswitch",
|
|
"Lower SwitchInst's to branches", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
|
|
INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
|
|
INITIALIZE_PASS_END(LowerSwitchLegacyPass, "lowerswitch",
|
|
"Lower SwitchInst's to branches", false, false)
|
|
|
|
// createLowerSwitchPass - Interface to this file...
|
|
FunctionPass *llvm::createLowerSwitchPass() {
|
|
return new LowerSwitchLegacyPass();
|
|
}
|
|
|
|
bool LowerSwitchLegacyPass::runOnFunction(Function &F) {
|
|
LazyValueInfo *LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
|
|
auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>();
|
|
AssumptionCache *AC = ACT ? &ACT->getAssumptionCache(F) : nullptr;
|
|
return LowerSwitch(F, LVI, AC);
|
|
}
|
|
|
|
PreservedAnalyses LowerSwitchPass::run(Function &F,
|
|
FunctionAnalysisManager &AM) {
|
|
LazyValueInfo *LVI = &AM.getResult<LazyValueAnalysis>(F);
|
|
AssumptionCache *AC = AM.getCachedResult<AssumptionAnalysis>(F);
|
|
return LowerSwitch(F, LVI, AC) ? PreservedAnalyses::none()
|
|
: PreservedAnalyses::all();
|
|
}
|