1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 18:54:02 +01:00
llvm-mirror/test/CodeGen/AMDGPU/multi-divergent-exit-region.ll
Ruiling Song 09d83ebb79 [AMDGPU] Don't handle export done when unify exit nodes
This patch aims to revert the changes introduced by D70781 D71192 D76364

D70781 was introduced to fix hardware hang where we do not insert exp-
null-done for a kill inside infinit loop. At that time we have not added
exp-null-done for kill early termination, but I believe as for now, we will
always add the exp-null-done for early termination case in LaterBranchLowering.

D71192 was introduced to handle the only_kill case, which is also been
handled by the kill early termination work.

D76364 was used to fix a regression by D71192, where we cleared the done
bit of the export in the existing program and not let the normal return
block branching to the new unified return block.

With this change, we just trust frontends have setup exp-done correctly
which is true for all existing frontends. The backend only inserts
exp-null-done for the kill cases which is handled in SILateBranchLowering.cpp.

Reviewed by: critson

Differential Revision: https://reviews.llvm.org/D105610
2021-07-14 14:54:37 +08:00

757 lines
28 KiB
LLVM

; RUN: opt -mtriple=amdgcn-- -S -amdgpu-unify-divergent-exit-nodes -verify -structurizecfg -verify -si-annotate-control-flow -simplifycfg-require-and-preserve-domtree=1 %s | FileCheck -check-prefix=IR %s
; RUN: llc -march=amdgcn -verify-machineinstrs -simplifycfg-require-and-preserve-domtree=1 < %s | FileCheck -check-prefix=GCN %s
; Add an extra verifier runs. There were some cases where invalid IR
; was produced but happened to be fixed by the later passes.
; Make sure divergent control flow with multiple exits from a region
; is properly handled. UnifyFunctionExitNodes should be run before
; StructurizeCFG.
; IR-LABEL: @multi_divergent_region_exit_ret_ret(
; IR: %0 = call { i1, i64 } @llvm.amdgcn.if.i64(i1 %Pivot.inv)
; IR: %1 = extractvalue { i1, i64 } %0, 0
; IR: %2 = extractvalue { i1, i64 } %0, 1
; IR: br i1 %1, label %LeafBlock1, label %Flow
; IR: Flow:
; IR: %3 = phi i1 [ true, %LeafBlock1 ], [ false, %entry ]
; IR: %4 = phi i1 [ %SwitchLeaf2.inv, %LeafBlock1 ], [ false, %entry ]
; IR: %5 = call { i1, i64 } @llvm.amdgcn.else.i64.i64(i64 %2)
; IR: %6 = extractvalue { i1, i64 } %5, 0
; IR: %7 = extractvalue { i1, i64 } %5, 1
; IR: br i1 %6, label %LeafBlock, label %Flow1
; IR: LeafBlock:
; IR: br label %Flow1
; IR: LeafBlock1:
; IR: br label %Flow{{$}}
; IR: Flow2:
; IR: %8 = phi i1 [ false, %exit1 ], [ %12, %Flow1 ]
; IR: call void @llvm.amdgcn.end.cf.i64(i64 %16)
; IR: %9 = call { i1, i64 } @llvm.amdgcn.if.i64(i1 %8)
; IR: %10 = extractvalue { i1, i64 } %9, 0
; IR: %11 = extractvalue { i1, i64 } %9, 1
; IR: br i1 %10, label %exit0, label %UnifiedReturnBlock
; IR: exit0:
; IR: store volatile i32 9, i32 addrspace(1)* undef
; IR: br label %UnifiedReturnBlock
; IR: Flow1:
; IR: %12 = phi i1 [ %SwitchLeaf, %LeafBlock ], [ %3, %Flow ]
; IR: %13 = phi i1 [ %SwitchLeaf.inv, %LeafBlock ], [ %4, %Flow ]
; IR: call void @llvm.amdgcn.end.cf.i64(i64 %7)
; IR: %14 = call { i1, i64 } @llvm.amdgcn.if.i64(i1 %13)
; IR: %15 = extractvalue { i1, i64 } %14, 0
; IR: %16 = extractvalue { i1, i64 } %14, 1
; IR: br i1 %15, label %exit1, label %Flow2
; IR: exit1:
; IR: store volatile i32 17, i32 addrspace(3)* undef
; IR: br label %Flow2
; IR: UnifiedReturnBlock:
; IR: call void @llvm.amdgcn.end.cf.i64(i64 %11)
; IR: ret void
; GCN-LABEL: {{^}}multi_divergent_region_exit_ret_ret:
; GCN-DAG: s_mov_b64 [[EXIT1:s\[[0-9]+:[0-9]+\]]], 0
; GCN-DAG: v_cmp_lt_i32_e32 vcc, 1,
; GCN-DAG: s_mov_b64 [[EXIT0:s\[[0-9]+:[0-9]+\]]], 0
; GCN-DAG: s_and_saveexec_b64
; GCN-DAG: s_xor_b64
; GCN: ; %LeafBlock1
; GCN-NEXT: s_mov_b64 [[EXIT0]], exec
; GCN-NEXT: v_cmp_ne_u32_e32 vcc, 2,
; GCN-NEXT: s_and_b64 [[EXIT1]], vcc, exec
; GCN: ; %Flow
; GCN-NEXT: s_or_saveexec_b64
; GCN-NEXT: s_xor_b64
; FIXME: Why is this compare essentially repeated?
; GCN: ; %LeafBlock
; GCN-DAG: v_cmp_eq_u32_e32 vcc, 1,
; GCN-DAG: v_cmp_ne_u32_e64 [[TMP1:s\[[0-9]+:[0-9]+\]]], 1,
; GCN-DAG: s_andn2_b64 [[EXIT0]], [[EXIT0]], exec
; GCN-DAG: s_andn2_b64 [[EXIT1]], [[EXIT1]], exec
; GCN-DAG: s_and_b64 [[TMP0:s\[[0-9]+:[0-9]+\]]], vcc, exec
; GCN-DAG: s_and_b64 [[TMP1]], [[TMP1]], exec
; GCN-DAG: s_or_b64 [[EXIT0]], [[EXIT0]], [[TMP0]]
; GCN-DAG: s_or_b64 [[EXIT1]], [[EXIT1]], [[TMP1]]
; GCN: ; %Flow4
; GCN-NEXT: s_or_b64 exec, exec,
; GCN-NEXT: s_and_saveexec_b64 {{s\[[0-9]+:[0-9]+\]}}, [[EXIT1]]
; GCN-NEXT: s_xor_b64
; GCN: ; %exit1
; GCN-DAG: ds_write_b32
; GCN-DAG: s_andn2_b64 [[EXIT0]], [[EXIT0]], exec
; GCN: ; %Flow5
; GCN-NEXT: s_or_b64 exec, exec,
; GCN-NEXT; s_and_saveexec_b64 {{s\[[0-9]+:[0-9]+\]}}, [[EXIT0]]
; GCN: ; %exit0
; GCN: buffer_store_dword
; GCN: ; %UnifiedReturnBlock
; GCN-NEXT: s_endpgm
define amdgpu_kernel void @multi_divergent_region_exit_ret_ret(i32 addrspace(1)* nocapture %arg0, i32 addrspace(1)* nocapture %arg1, i32 addrspace(1)* nocapture %arg2) #0 {
entry:
%tmp = tail call i32 @llvm.amdgcn.workitem.id.x() #1
%tmp1 = add i32 0, %tmp
%tmp2 = zext i32 %tmp1 to i64
%tmp3 = add i64 0, %tmp2
%tmp4 = shl i64 %tmp3, 32
%tmp5 = ashr exact i64 %tmp4, 32
%tmp6 = getelementptr inbounds i32, i32 addrspace(1)* %arg0, i64 %tmp5
%tmp7 = load i32, i32 addrspace(1)* %tmp6, align 4
%tmp8 = sext i32 %tmp7 to i64
%tmp9 = getelementptr inbounds i32, i32 addrspace(1)* %arg1, i64 %tmp8
%tmp10 = load i32, i32 addrspace(1)* %tmp9, align 4
%tmp13 = zext i32 %tmp10 to i64
%tmp14 = getelementptr inbounds i32, i32 addrspace(1)* %arg2, i64 %tmp13
%tmp16 = load i32, i32 addrspace(1)* %tmp14, align 16
%Pivot = icmp slt i32 %tmp16, 2
br i1 %Pivot, label %LeafBlock, label %LeafBlock1
LeafBlock: ; preds = %entry
%SwitchLeaf = icmp eq i32 %tmp16, 1
br i1 %SwitchLeaf, label %exit0, label %exit1
LeafBlock1: ; preds = %entry
%SwitchLeaf2 = icmp eq i32 %tmp16, 2
br i1 %SwitchLeaf2, label %exit0, label %exit1
exit0: ; preds = %LeafBlock, %LeafBlock1
store volatile i32 9, i32 addrspace(1)* undef
ret void
exit1: ; preds = %LeafBlock, %LeafBlock1
store volatile i32 17, i32 addrspace(3)* undef
ret void
}
; IR-LABEL: @multi_divergent_region_exit_unreachable_unreachable(
; IR: %0 = call { i1, i64 } @llvm.amdgcn.if.i64(i1 %Pivot.inv)
; IR: %5 = call { i1, i64 } @llvm.amdgcn.else.i64.i64(i64 %2)
; IR: %8 = phi i1 [ false, %exit1 ], [ %12, %Flow1 ]
; IR: call void @llvm.amdgcn.end.cf.i64(i64 %16)
; IR: %9 = call { i1, i64 } @llvm.amdgcn.if.i64(i1 %8)
; IR: br i1 %10, label %exit0, label %UnifiedUnreachableBlock
; IR: UnifiedUnreachableBlock:
; IR-NEXT: unreachable
; FIXME: Probably should insert an s_endpgm anyway.
; GCN-LABEL: {{^}}multi_divergent_region_exit_unreachable_unreachable:
; GCN: ; %UnifiedUnreachableBlock
; GCN-NEXT: .Lfunc_end
define amdgpu_kernel void @multi_divergent_region_exit_unreachable_unreachable(i32 addrspace(1)* nocapture %arg0, i32 addrspace(1)* nocapture %arg1, i32 addrspace(1)* nocapture %arg2) #0 {
entry:
%tmp = tail call i32 @llvm.amdgcn.workitem.id.x() #1
%tmp1 = add i32 0, %tmp
%tmp2 = zext i32 %tmp1 to i64
%tmp3 = add i64 0, %tmp2
%tmp4 = shl i64 %tmp3, 32
%tmp5 = ashr exact i64 %tmp4, 32
%tmp6 = getelementptr inbounds i32, i32 addrspace(1)* %arg0, i64 %tmp5
%tmp7 = load i32, i32 addrspace(1)* %tmp6, align 4
%tmp8 = sext i32 %tmp7 to i64
%tmp9 = getelementptr inbounds i32, i32 addrspace(1)* %arg1, i64 %tmp8
%tmp10 = load i32, i32 addrspace(1)* %tmp9, align 4
%tmp13 = zext i32 %tmp10 to i64
%tmp14 = getelementptr inbounds i32, i32 addrspace(1)* %arg2, i64 %tmp13
%tmp16 = load i32, i32 addrspace(1)* %tmp14, align 16
%Pivot = icmp slt i32 %tmp16, 2
br i1 %Pivot, label %LeafBlock, label %LeafBlock1
LeafBlock: ; preds = %entry
%SwitchLeaf = icmp eq i32 %tmp16, 1
br i1 %SwitchLeaf, label %exit0, label %exit1
LeafBlock1: ; preds = %entry
%SwitchLeaf2 = icmp eq i32 %tmp16, 2
br i1 %SwitchLeaf2, label %exit0, label %exit1
exit0: ; preds = %LeafBlock, %LeafBlock1
store volatile i32 9, i32 addrspace(1)* undef
unreachable
exit1: ; preds = %LeafBlock, %LeafBlock1
store volatile i32 17, i32 addrspace(3)* undef
unreachable
}
; IR-LABEL: @multi_exit_region_divergent_ret_uniform_ret(
; IR: %divergent.cond0 = icmp slt i32 %tmp16, 2
; IR: llvm.amdgcn.if
; IR: br i1
; IR: {{^}}Flow:
; IR: %3 = phi i1 [ true, %LeafBlock1 ], [ false, %entry ]
; IR: %4 = phi i1 [ %uniform.cond0.inv, %LeafBlock1 ], [ false, %entry ]
; IR: %5 = call { i1, i64 } @llvm.amdgcn.else.i64.i64(i64 %2)
; IR: br i1 %6, label %LeafBlock, label %Flow1
; IR: {{^}}LeafBlock:
; IR: %divergent.cond1 = icmp eq i32 %tmp16, 1
; IR: %divergent.cond1.inv = xor i1 %divergent.cond1, true
; IR: br label %Flow1
; IR: LeafBlock1:
; IR: %uniform.cond0 = icmp eq i32 %arg3, 2
; IR: %uniform.cond0.inv = xor i1 %uniform.cond0, true
; IR: br label %Flow
; IR: Flow2:
; IR: %8 = phi i1 [ false, %exit1 ], [ %12, %Flow1 ]
; IR: call void @llvm.amdgcn.end.cf.i64(i64 %16)
; IR: %9 = call { i1, i64 } @llvm.amdgcn.if.i64(i1 %8)
; IR: br i1 %10, label %exit0, label %UnifiedReturnBlock
; IR: exit0:
; IR: store volatile i32 9, i32 addrspace(1)* undef
; IR: br label %UnifiedReturnBlock
; IR: {{^}}Flow1:
; IR: %12 = phi i1 [ %divergent.cond1, %LeafBlock ], [ %3, %Flow ]
; IR: %13 = phi i1 [ %divergent.cond1.inv, %LeafBlock ], [ %4, %Flow ]
; IR: call void @llvm.amdgcn.end.cf.i64(i64 %7)
; IR: %14 = call { i1, i64 } @llvm.amdgcn.if.i64(i1 %13)
; IR: %15 = extractvalue { i1, i64 } %14, 0
; IR: %16 = extractvalue { i1, i64 } %14, 1
; IR: br i1 %15, label %exit1, label %Flow2
; IR: exit1:
; IR: store volatile i32 17, i32 addrspace(3)* undef
; IR: br label %Flow2
; IR: UnifiedReturnBlock:
; IR: call void @llvm.amdgcn.end.cf.i64(i64 %11)
; IR: ret void
define amdgpu_kernel void @multi_exit_region_divergent_ret_uniform_ret(i32 addrspace(1)* nocapture %arg0, i32 addrspace(1)* nocapture %arg1, i32 addrspace(1)* nocapture %arg2, i32 %arg3) #0 {
entry:
%tmp = tail call i32 @llvm.amdgcn.workitem.id.x() #1
%tmp1 = add i32 0, %tmp
%tmp2 = zext i32 %tmp1 to i64
%tmp3 = add i64 0, %tmp2
%tmp4 = shl i64 %tmp3, 32
%tmp5 = ashr exact i64 %tmp4, 32
%tmp6 = getelementptr inbounds i32, i32 addrspace(1)* %arg0, i64 %tmp5
%tmp7 = load i32, i32 addrspace(1)* %tmp6, align 4
%tmp8 = sext i32 %tmp7 to i64
%tmp9 = getelementptr inbounds i32, i32 addrspace(1)* %arg1, i64 %tmp8
%tmp10 = load i32, i32 addrspace(1)* %tmp9, align 4
%tmp13 = zext i32 %tmp10 to i64
%tmp14 = getelementptr inbounds i32, i32 addrspace(1)* %arg2, i64 %tmp13
%tmp16 = load i32, i32 addrspace(1)* %tmp14, align 16
%divergent.cond0 = icmp slt i32 %tmp16, 2
br i1 %divergent.cond0, label %LeafBlock, label %LeafBlock1
LeafBlock: ; preds = %entry
%divergent.cond1 = icmp eq i32 %tmp16, 1
br i1 %divergent.cond1, label %exit0, label %exit1
LeafBlock1: ; preds = %entry
%uniform.cond0 = icmp eq i32 %arg3, 2
br i1 %uniform.cond0, label %exit0, label %exit1
exit0: ; preds = %LeafBlock, %LeafBlock1
store volatile i32 9, i32 addrspace(1)* undef
ret void
exit1: ; preds = %LeafBlock, %LeafBlock1
store volatile i32 17, i32 addrspace(3)* undef
ret void
}
; IR-LABEL: @multi_exit_region_uniform_ret_divergent_ret(
; IR: %0 = call { i1, i64 } @llvm.amdgcn.if.i64(i1 %Pivot.inv)
; IR: br i1 %1, label %LeafBlock1, label %Flow
; IR: Flow:
; IR: %3 = phi i1 [ true, %LeafBlock1 ], [ false, %entry ]
; IR: %4 = phi i1 [ %SwitchLeaf2.inv, %LeafBlock1 ], [ false, %entry ]
; IR: %5 = call { i1, i64 } @llvm.amdgcn.else.i64.i64(i64 %2)
; IR: %8 = phi i1 [ false, %exit1 ], [ %12, %Flow1 ]
; IR: call void @llvm.amdgcn.end.cf.i64(i64 %16)
; IR: %9 = call { i1, i64 } @llvm.amdgcn.if.i64(i1 %8)
define amdgpu_kernel void @multi_exit_region_uniform_ret_divergent_ret(i32 addrspace(1)* nocapture %arg0, i32 addrspace(1)* nocapture %arg1, i32 addrspace(1)* nocapture %arg2, i32 %arg3) #0 {
entry:
%tmp = tail call i32 @llvm.amdgcn.workitem.id.x() #1
%tmp1 = add i32 0, %tmp
%tmp2 = zext i32 %tmp1 to i64
%tmp3 = add i64 0, %tmp2
%tmp4 = shl i64 %tmp3, 32
%tmp5 = ashr exact i64 %tmp4, 32
%tmp6 = getelementptr inbounds i32, i32 addrspace(1)* %arg0, i64 %tmp5
%tmp7 = load i32, i32 addrspace(1)* %tmp6, align 4
%tmp8 = sext i32 %tmp7 to i64
%tmp9 = getelementptr inbounds i32, i32 addrspace(1)* %arg1, i64 %tmp8
%tmp10 = load i32, i32 addrspace(1)* %tmp9, align 4
%tmp13 = zext i32 %tmp10 to i64
%tmp14 = getelementptr inbounds i32, i32 addrspace(1)* %arg2, i64 %tmp13
%tmp16 = load i32, i32 addrspace(1)* %tmp14, align 16
%Pivot = icmp slt i32 %tmp16, 2
br i1 %Pivot, label %LeafBlock, label %LeafBlock1
LeafBlock: ; preds = %entry
%SwitchLeaf = icmp eq i32 %arg3, 1
br i1 %SwitchLeaf, label %exit0, label %exit1
LeafBlock1: ; preds = %entry
%SwitchLeaf2 = icmp eq i32 %tmp16, 2
br i1 %SwitchLeaf2, label %exit0, label %exit1
exit0: ; preds = %LeafBlock, %LeafBlock1
store volatile i32 9, i32 addrspace(1)* undef
ret void
exit1: ; preds = %LeafBlock, %LeafBlock1
store volatile i32 17, i32 addrspace(3)* undef
ret void
}
; IR-LABEL: @multi_divergent_region_exit_ret_ret_return_value(
; IR: Flow2:
; IR: %8 = phi i1 [ false, %exit1 ], [ %12, %Flow1 ]
; IR: call void @llvm.amdgcn.end.cf.i64(i64 %16)
; IR: UnifiedReturnBlock:
; IR: %UnifiedRetVal = phi float [ 2.000000e+00, %Flow2 ], [ 1.000000e+00, %exit0 ]
; IR: call void @llvm.amdgcn.end.cf.i64(i64 %11)
; IR: ret float %UnifiedRetVal
define amdgpu_ps float @multi_divergent_region_exit_ret_ret_return_value(i32 %vgpr) #0 {
entry:
%Pivot = icmp slt i32 %vgpr, 2
br i1 %Pivot, label %LeafBlock, label %LeafBlock1
LeafBlock: ; preds = %entry
%SwitchLeaf = icmp eq i32 %vgpr, 1
br i1 %SwitchLeaf, label %exit0, label %exit1
LeafBlock1: ; preds = %entry
%SwitchLeaf2 = icmp eq i32 %vgpr, 2
br i1 %SwitchLeaf2, label %exit0, label %exit1
exit0: ; preds = %LeafBlock, %LeafBlock1
store i32 9, i32 addrspace(1)* undef
ret float 1.0
exit1: ; preds = %LeafBlock, %LeafBlock1
store i32 17, i32 addrspace(3)* undef
ret float 2.0
}
; IR-LABEL: @uniform_branch_to_multi_divergent_region_exit_ret_ret_return_value(
; GCN-LABEL: {{^}}uniform_branch_to_multi_divergent_region_exit_ret_ret_return_value:
; GCN: s_cmp_gt_i32 s0, 1
; GCN: s_cbranch_scc0 [[FLOW:BB[0-9]+_[0-9]+]]
; GCN: v_cmp_ne_u32_e32 vcc, 7, v0
; GCN: {{^}}[[FLOW]]:
; GCN: s_or_b64 exec, exec
; GCN: v_mov_b32_e32 v0, 2.0
; GCN-NOT: s_and_b64 exec, exec
; GCN: v_mov_b32_e32 v0, 1.0
; GCN: {{^BB[0-9]+_[0-9]+}}: ; %UnifiedReturnBlock
; GCN-NEXT: s_or_b64 exec, exec
; GCN-NEXT: s_waitcnt vmcnt(0) lgkmcnt(0)
; GCN-NEXT: ; return
define amdgpu_ps float @uniform_branch_to_multi_divergent_region_exit_ret_ret_return_value(i32 inreg %sgpr, i32 %vgpr) #0 {
entry:
%uniform.cond = icmp slt i32 %sgpr, 2
br i1 %uniform.cond, label %LeafBlock, label %LeafBlock1
LeafBlock: ; preds = %entry
%divergent.cond0 = icmp eq i32 %vgpr, 3
br i1 %divergent.cond0, label %exit0, label %exit1
LeafBlock1: ; preds = %entry
%divergent.cond1 = icmp eq i32 %vgpr, 7
br i1 %divergent.cond1, label %exit0, label %exit1
exit0: ; preds = %LeafBlock, %LeafBlock1
store i32 9, i32 addrspace(1)* undef
ret float 1.0
exit1: ; preds = %LeafBlock, %LeafBlock1
store i32 17, i32 addrspace(3)* undef
ret float 2.0
}
; IR-LABEL: @multi_divergent_region_exit_ret_unreachable(
; IR: %0 = call { i1, i64 } @llvm.amdgcn.if.i64(i1 %Pivot.inv)
; IR: Flow:
; IR: %3 = phi i1 [ true, %LeafBlock1 ], [ false, %entry ]
; IR: %4 = phi i1 [ %SwitchLeaf2.inv, %LeafBlock1 ], [ false, %entry ]
; IR: %5 = call { i1, i64 } @llvm.amdgcn.else.i64.i64(i64 %2)
; IR: Flow2:
; IR: %8 = phi i1 [ false, %exit1 ], [ %12, %Flow1 ]
; IR: call void @llvm.amdgcn.end.cf.i64(i64 %16)
; IR: %9 = call { i1, i64 } @llvm.amdgcn.if.i64(i1 %8)
; IR: br i1 %10, label %exit0, label %UnifiedReturnBlock
; IR: exit0:
; IR-NEXT: store volatile i32 17, i32 addrspace(3)* undef
; IR-NEXT: br label %UnifiedReturnBlock
; IR: Flow1:
; IR: %12 = phi i1 [ %SwitchLeaf, %LeafBlock ], [ %3, %Flow ]
; IR: %13 = phi i1 [ %SwitchLeaf.inv, %LeafBlock ], [ %4, %Flow ]
; IR: call void @llvm.amdgcn.end.cf.i64(i64 %7)
; IR: %14 = call { i1, i64 } @llvm.amdgcn.if.i64(i1 %13)
; IR: %15 = extractvalue { i1, i64 } %14, 0
; IR: %16 = extractvalue { i1, i64 } %14, 1
; IR: br i1 %15, label %exit1, label %Flow2
; IR: exit1:
; IR-NEXT: store volatile i32 9, i32 addrspace(1)* undef
; IR-NEXT: call void @llvm.amdgcn.unreachable()
; IR-NEXT: br label %Flow2
; IR: UnifiedReturnBlock:
; IR-NEXT: call void @llvm.amdgcn.end.cf.i64(i64 %11)
; IR-NEXT: ret void
define amdgpu_kernel void @multi_divergent_region_exit_ret_unreachable(i32 addrspace(1)* nocapture %arg0, i32 addrspace(1)* nocapture %arg1, i32 addrspace(1)* nocapture %arg2) #0 {
entry:
%tmp = tail call i32 @llvm.amdgcn.workitem.id.x() #1
%tmp1 = add i32 0, %tmp
%tmp2 = zext i32 %tmp1 to i64
%tmp3 = add i64 0, %tmp2
%tmp4 = shl i64 %tmp3, 32
%tmp5 = ashr exact i64 %tmp4, 32
%tmp6 = getelementptr inbounds i32, i32 addrspace(1)* %arg0, i64 %tmp5
%tmp7 = load i32, i32 addrspace(1)* %tmp6, align 4
%tmp8 = sext i32 %tmp7 to i64
%tmp9 = getelementptr inbounds i32, i32 addrspace(1)* %arg1, i64 %tmp8
%tmp10 = load i32, i32 addrspace(1)* %tmp9, align 4
%tmp13 = zext i32 %tmp10 to i64
%tmp14 = getelementptr inbounds i32, i32 addrspace(1)* %arg2, i64 %tmp13
%tmp16 = load i32, i32 addrspace(1)* %tmp14, align 16
%Pivot = icmp slt i32 %tmp16, 2
br i1 %Pivot, label %LeafBlock, label %LeafBlock1
LeafBlock: ; preds = %entry
%SwitchLeaf = icmp eq i32 %tmp16, 1
br i1 %SwitchLeaf, label %exit0, label %exit1
LeafBlock1: ; preds = %entry
%SwitchLeaf2 = icmp eq i32 %tmp16, 2
br i1 %SwitchLeaf2, label %exit0, label %exit1
exit0: ; preds = %LeafBlock, %LeafBlock1
store volatile i32 17, i32 addrspace(3)* undef
ret void
exit1: ; preds = %LeafBlock, %LeafBlock1
store volatile i32 9, i32 addrspace(1)* undef
unreachable
}
; The non-uniformity of the branch to the exiting blocks requires
; looking at transitive predecessors.
; IR-LABEL: @indirect_multi_divergent_region_exit_ret_unreachable(
; IR: exit0: ; preds = %Flow2
; IR-NEXT: store volatile i32 17, i32 addrspace(3)* undef
; IR-NEXT: br label %UnifiedReturnBlock
; IR: indirect.exit1:
; IR: %load = load volatile i32, i32 addrspace(1)* undef
; IR: store volatile i32 %load, i32 addrspace(1)* undef
; IR: store volatile i32 9, i32 addrspace(1)* undef
; IR: call void @llvm.amdgcn.unreachable()
; IR-NEXT: br label %Flow2
; IR: UnifiedReturnBlock: ; preds = %exit0, %Flow2
; IR-NEXT: call void @llvm.amdgcn.end.cf.i64(i64 %11)
; IR-NEXT: ret void
define amdgpu_kernel void @indirect_multi_divergent_region_exit_ret_unreachable(i32 addrspace(1)* nocapture %arg0, i32 addrspace(1)* nocapture %arg1, i32 addrspace(1)* nocapture %arg2) #0 {
entry:
%tmp = tail call i32 @llvm.amdgcn.workitem.id.x() #1
%tmp1 = add i32 0, %tmp
%tmp2 = zext i32 %tmp1 to i64
%tmp3 = add i64 0, %tmp2
%tmp4 = shl i64 %tmp3, 32
%tmp5 = ashr exact i64 %tmp4, 32
%tmp6 = getelementptr inbounds i32, i32 addrspace(1)* %arg0, i64 %tmp5
%tmp7 = load i32, i32 addrspace(1)* %tmp6, align 4
%tmp8 = sext i32 %tmp7 to i64
%tmp9 = getelementptr inbounds i32, i32 addrspace(1)* %arg1, i64 %tmp8
%tmp10 = load i32, i32 addrspace(1)* %tmp9, align 4
%tmp13 = zext i32 %tmp10 to i64
%tmp14 = getelementptr inbounds i32, i32 addrspace(1)* %arg2, i64 %tmp13
%tmp16 = load i32, i32 addrspace(1)* %tmp14, align 16
%Pivot = icmp slt i32 %tmp16, 2
br i1 %Pivot, label %LeafBlock, label %LeafBlock1
LeafBlock: ; preds = %entry
%SwitchLeaf = icmp eq i32 %tmp16, 1
br i1 %SwitchLeaf, label %exit0, label %indirect.exit1
LeafBlock1: ; preds = %entry
%SwitchLeaf2 = icmp eq i32 %tmp16, 2
br i1 %SwitchLeaf2, label %exit0, label %indirect.exit1
exit0: ; preds = %LeafBlock, %LeafBlock1
store volatile i32 17, i32 addrspace(3)* undef
ret void
indirect.exit1:
%load = load volatile i32, i32 addrspace(1)* undef
store volatile i32 %load, i32 addrspace(1)* undef
br label %exit1
exit1: ; preds = %LeafBlock, %LeafBlock1
store volatile i32 9, i32 addrspace(1)* undef
unreachable
}
; IR-LABEL: @multi_divergent_region_exit_ret_switch(
define amdgpu_kernel void @multi_divergent_region_exit_ret_switch(i32 addrspace(1)* nocapture %arg0, i32 addrspace(1)* nocapture %arg1, i32 addrspace(1)* nocapture %arg2) #0 {
entry:
%tmp = tail call i32 @llvm.amdgcn.workitem.id.x() #1
%tmp1 = add i32 0, %tmp
%tmp2 = zext i32 %tmp1 to i64
%tmp3 = add i64 0, %tmp2
%tmp4 = shl i64 %tmp3, 32
%tmp5 = ashr exact i64 %tmp4, 32
%tmp6 = getelementptr inbounds i32, i32 addrspace(1)* %arg0, i64 %tmp5
%tmp7 = load i32, i32 addrspace(1)* %tmp6, align 4
%tmp8 = sext i32 %tmp7 to i64
%tmp9 = getelementptr inbounds i32, i32 addrspace(1)* %arg1, i64 %tmp8
%tmp10 = load i32, i32 addrspace(1)* %tmp9, align 4
%tmp13 = zext i32 %tmp10 to i64
%tmp14 = getelementptr inbounds i32, i32 addrspace(1)* %arg2, i64 %tmp13
%tmp16 = load i32, i32 addrspace(1)* %tmp14, align 16
switch i32 %tmp16, label %exit1
[ i32 1, label %LeafBlock
i32 2, label %LeafBlock1
i32 3, label %exit0 ]
LeafBlock: ; preds = %entry
%SwitchLeaf = icmp eq i32 %tmp16, 1
br i1 %SwitchLeaf, label %exit0, label %exit1
LeafBlock1: ; preds = %entry
%SwitchLeaf2 = icmp eq i32 %tmp16, 2
br i1 %SwitchLeaf2, label %exit0, label %exit1
exit0: ; preds = %LeafBlock, %LeafBlock1
store volatile i32 17, i32 addrspace(3)* undef
ret void
exit1: ; preds = %LeafBlock, %LeafBlock1
store volatile i32 9, i32 addrspace(1)* undef
unreachable
}
; IR-LABEL: @divergent_multi_ret_nest_in_uniform_triangle(
define amdgpu_kernel void @divergent_multi_ret_nest_in_uniform_triangle(i32 %arg0) #0 {
entry:
%uniform.cond0 = icmp eq i32 %arg0, 4
br i1 %uniform.cond0, label %divergent.multi.exit.region, label %uniform.ret
divergent.multi.exit.region:
%id.x = tail call i32 @llvm.amdgcn.workitem.id.x()
%divergent.cond0 = icmp eq i32 %id.x, 0
br i1 %divergent.cond0, label %divergent.ret0, label %divergent.ret1
divergent.ret0:
store volatile i32 11, i32 addrspace(3)* undef
ret void
divergent.ret1:
store volatile i32 42, i32 addrspace(3)* undef
ret void
uniform.ret:
store volatile i32 9, i32 addrspace(1)* undef
ret void
}
; IR-LABEL: @divergent_complex_multi_ret_nest_in_uniform_triangle(
define amdgpu_kernel void @divergent_complex_multi_ret_nest_in_uniform_triangle(i32 %arg0) #0 {
entry:
%uniform.cond0 = icmp eq i32 %arg0, 4
br i1 %uniform.cond0, label %divergent.multi.exit.region, label %uniform.ret
divergent.multi.exit.region:
%id.x = tail call i32 @llvm.amdgcn.workitem.id.x()
%divergent.cond0 = icmp eq i32 %id.x, 0
br i1 %divergent.cond0, label %divergent.if, label %divergent.ret1
divergent.if:
%vgpr0 = load volatile float, float addrspace(1)* undef
%divergent.cond1 = fcmp ogt float %vgpr0, 1.0
br i1 %divergent.cond1, label %divergent.then, label %divergent.endif
divergent.then:
%vgpr1 = load volatile float, float addrspace(1)* undef
%divergent.cond2 = fcmp olt float %vgpr1, 4.0
store volatile i32 33, i32 addrspace(1)* undef
br i1 %divergent.cond2, label %divergent.ret0, label %divergent.endif
divergent.endif:
store volatile i32 38, i32 addrspace(1)* undef
br label %divergent.ret0
divergent.ret0:
store volatile i32 11, i32 addrspace(3)* undef
ret void
divergent.ret1:
store volatile i32 42, i32 addrspace(3)* undef
ret void
uniform.ret:
store volatile i32 9, i32 addrspace(1)* undef
ret void
}
; IR-LABEL: @uniform_complex_multi_ret_nest_in_divergent_triangle(
; IR: Flow1: ; preds = %uniform.ret1, %uniform.multi.exit.region
; IR: %6 = phi i1 [ false, %uniform.ret1 ], [ true, %uniform.multi.exit.region ]
; IR: br i1 %6, label %uniform.if, label %Flow2
; IR: Flow: ; preds = %uniform.then, %uniform.if
; IR: %7 = phi i1 [ %uniform.cond2.inv, %uniform.then ], [ %uniform.cond1.inv, %uniform.if ]
; IR: br i1 %7, label %uniform.endif, label %uniform.ret0
; IR: UnifiedReturnBlock: ; preds = %Flow3, %Flow2
; IR-NEXT: call void @llvm.amdgcn.end.cf.i64(i64 %5)
; IR-NEXT: ret void
define amdgpu_kernel void @uniform_complex_multi_ret_nest_in_divergent_triangle(i32 %arg0) #0 {
entry:
%id.x = tail call i32 @llvm.amdgcn.workitem.id.x()
%divergent.cond0 = icmp eq i32 %id.x, 0
br i1 %divergent.cond0, label %uniform.multi.exit.region, label %divergent.ret
uniform.multi.exit.region:
%uniform.cond0 = icmp eq i32 %arg0, 4
br i1 %uniform.cond0, label %uniform.if, label %uniform.ret1
uniform.if:
%sgpr0 = load volatile i32, i32 addrspace(4)* undef
%uniform.cond1 = icmp slt i32 %sgpr0, 1
br i1 %uniform.cond1, label %uniform.then, label %uniform.endif
uniform.then:
%sgpr1 = load volatile i32, i32 addrspace(4)* undef
%uniform.cond2 = icmp sge i32 %sgpr1, 4
store volatile i32 33, i32 addrspace(1)* undef
br i1 %uniform.cond2, label %uniform.ret0, label %uniform.endif
uniform.endif:
store volatile i32 38, i32 addrspace(1)* undef
br label %uniform.ret0
uniform.ret0:
store volatile i32 11, i32 addrspace(3)* undef
ret void
uniform.ret1:
store volatile i32 42, i32 addrspace(3)* undef
ret void
divergent.ret:
store volatile i32 9, i32 addrspace(1)* undef
ret void
}
; IR-LABEL: @multi_divergent_unreachable_exit(
; IR: UnifiedUnreachableBlock:
; IR-NEXT: call void @llvm.amdgcn.unreachable()
; IR-NEXT: br label %UnifiedReturnBlock
; IR: UnifiedReturnBlock:
; IR-NEXT: call void @llvm.amdgcn.end.cf.i64(i64
; IR-NEXT: ret void
define amdgpu_kernel void @multi_divergent_unreachable_exit() #0 {
bb:
%tmp = tail call i32 @llvm.amdgcn.workitem.id.x()
switch i32 %tmp, label %bb3 [
i32 2, label %bb1
i32 0, label %bb2
]
bb1: ; preds = %bb
unreachable
bb2: ; preds = %bb
unreachable
bb3: ; preds = %bb
switch i32 undef, label %bb5 [
i32 2, label %bb4
]
bb4: ; preds = %bb3
ret void
bb5: ; preds = %bb3
unreachable
}
; Test that there is an extra export inserted after the normal export,
; if the normal export is inside a uniformly reached block and there is
; an infinite loop in the pixel shader.
; IR-LABEL: @uniformly_reached_export
; IR-NEXT: .entry:
; IR: br i1 [[CND:%.*]], label %[[LOOP:.*]], label %[[EXP:.*]]
; IR: [[LOOP]]:
; IR-NEXT: br i1 false, label %DummyReturnBlock, label %[[LOOP]]
; IR: [[EXP]]:
; IR-NEXT: call void @llvm.amdgcn.exp.compr.v2f16(i32 immarg 0, i32 immarg 15, <2 x half> <half 0xH3C00, half 0xH0000>, <2 x half> <half 0xH0000, half 0xH3C00>, i1 immarg true, i1 immarg true)
; IR-NEXT: ret void
; IR: DummyReturnBlock:
; IR-NEXT: ret void
define amdgpu_ps void @uniformly_reached_export(float inreg %tmp25) {
.entry:
%tmp26 = fcmp olt float %tmp25, 0.000000e+00
br i1 %tmp26, label %loop, label %bb27
loop: ; preds = %loop, %.entry
br label %loop
bb27: ; preds = %.entry
call void @llvm.amdgcn.exp.compr.v2f16(i32 immarg 0, i32 immarg 15, <2 x half> <half 0xH3C00, half 0xH0000>, <2 x half> <half 0xH0000, half 0xH3C00>, i1 immarg true, i1 immarg true)
ret void
}
declare void @llvm.amdgcn.exp.compr.v2f16(i32 immarg, i32 immarg, <2 x half>, <2 x half>, i1 immarg, i1 immarg) #0
declare i32 @llvm.amdgcn.workitem.id.x() #1
attributes #0 = { nounwind }
attributes #1 = { nounwind readnone }