mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-26 12:43:36 +01:00
1652bab657
This patch updates InstCombine to use poison constant to represent the resulting value of (either semantically or syntactically) unreachable instrs, or a don't-care value of an unreachable store instruction. This allows more aggressive folding of unused results, as shown in llvm/test/Transforms/InstCombine/getelementptr.ll . Reviewed By: nikic Differential Revision: https://reviews.llvm.org/D104602
425 lines
13 KiB
LLVM
425 lines
13 KiB
LLVM
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
|
|
; RUN: opt -S < %s -instcombine | FileCheck %s
|
|
|
|
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64"
|
|
target triple = "x86_64-apple-macosx10.7.0"
|
|
|
|
; Check transforms involving atomic operations
|
|
|
|
define i32 @test1(i32* %p) {
|
|
; CHECK-LABEL: @test1(
|
|
; CHECK-NEXT: [[X:%.*]] = load atomic i32, i32* [[P:%.*]] seq_cst, align 4
|
|
; CHECK-NEXT: [[Z:%.*]] = shl i32 [[X]], 1
|
|
; CHECK-NEXT: ret i32 [[Z]]
|
|
;
|
|
%x = load atomic i32, i32* %p seq_cst, align 4
|
|
%y = load i32, i32* %p, align 4
|
|
%z = add i32 %x, %y
|
|
ret i32 %z
|
|
}
|
|
|
|
define i32 @test2(i32* %p) {
|
|
; CHECK-LABEL: @test2(
|
|
; CHECK-NEXT: [[X:%.*]] = load volatile i32, i32* [[P:%.*]], align 4
|
|
; CHECK-NEXT: [[Y:%.*]] = load volatile i32, i32* [[P]], align 4
|
|
; CHECK-NEXT: [[Z:%.*]] = add i32 [[X]], [[Y]]
|
|
; CHECK-NEXT: ret i32 [[Z]]
|
|
;
|
|
%x = load volatile i32, i32* %p, align 4
|
|
%y = load volatile i32, i32* %p, align 4
|
|
%z = add i32 %x, %y
|
|
ret i32 %z
|
|
}
|
|
|
|
; The exact semantics of mixing volatile and non-volatile on the same
|
|
; memory location are a bit unclear, but conservatively, we know we don't
|
|
; want to remove the volatile.
|
|
define i32 @test3(i32* %p) {
|
|
; CHECK-LABEL: @test3(
|
|
; CHECK-NEXT: [[X:%.*]] = load volatile i32, i32* [[P:%.*]], align 4
|
|
; CHECK-NEXT: [[Z:%.*]] = shl i32 [[X]], 1
|
|
; CHECK-NEXT: ret i32 [[Z]]
|
|
;
|
|
%x = load volatile i32, i32* %p, align 4
|
|
%y = load i32, i32* %p, align 4
|
|
%z = add i32 %x, %y
|
|
ret i32 %z
|
|
}
|
|
|
|
; Forwarding from a stronger ordered atomic is fine
|
|
define i32 @test4(i32* %p) {
|
|
; CHECK-LABEL: @test4(
|
|
; CHECK-NEXT: [[X:%.*]] = load atomic i32, i32* [[P:%.*]] seq_cst, align 4
|
|
; CHECK-NEXT: [[Z:%.*]] = shl i32 [[X]], 1
|
|
; CHECK-NEXT: ret i32 [[Z]]
|
|
;
|
|
%x = load atomic i32, i32* %p seq_cst, align 4
|
|
%y = load atomic i32, i32* %p unordered, align 4
|
|
%z = add i32 %x, %y
|
|
ret i32 %z
|
|
}
|
|
|
|
; Forwarding from a non-atomic is not. (The earlier load
|
|
; could in priciple be promoted to atomic and then forwarded,
|
|
; but we can't just drop the atomic from the load.)
|
|
define i32 @test5(i32* %p) {
|
|
; CHECK-LABEL: @test5(
|
|
; CHECK-NEXT: [[X:%.*]] = load atomic i32, i32* [[P:%.*]] unordered, align 4
|
|
; CHECK-NEXT: [[Z:%.*]] = shl i32 [[X]], 1
|
|
; CHECK-NEXT: ret i32 [[Z]]
|
|
;
|
|
%x = load atomic i32, i32* %p unordered, align 4
|
|
%y = load i32, i32* %p, align 4
|
|
%z = add i32 %x, %y
|
|
ret i32 %z
|
|
}
|
|
|
|
; Forwarding atomic to atomic is fine
|
|
define i32 @test6(i32* %p) {
|
|
; CHECK-LABEL: @test6(
|
|
; CHECK-NEXT: [[X:%.*]] = load atomic i32, i32* [[P:%.*]] unordered, align 4
|
|
; CHECK-NEXT: [[Z:%.*]] = shl i32 [[X]], 1
|
|
; CHECK-NEXT: ret i32 [[Z]]
|
|
;
|
|
%x = load atomic i32, i32* %p unordered, align 4
|
|
%y = load atomic i32, i32* %p unordered, align 4
|
|
%z = add i32 %x, %y
|
|
ret i32 %z
|
|
}
|
|
|
|
; FIXME: we currently don't do anything for monotonic
|
|
define i32 @test7(i32* %p) {
|
|
; CHECK-LABEL: @test7(
|
|
; CHECK-NEXT: [[X:%.*]] = load atomic i32, i32* [[P:%.*]] seq_cst, align 4
|
|
; CHECK-NEXT: [[Y:%.*]] = load atomic i32, i32* [[P]] monotonic, align 4
|
|
; CHECK-NEXT: [[Z:%.*]] = add i32 [[X]], [[Y]]
|
|
; CHECK-NEXT: ret i32 [[Z]]
|
|
;
|
|
%x = load atomic i32, i32* %p seq_cst, align 4
|
|
%y = load atomic i32, i32* %p monotonic, align 4
|
|
%z = add i32 %x, %y
|
|
ret i32 %z
|
|
}
|
|
|
|
; FIXME: We could forward in racy code
|
|
define i32 @test8(i32* %p) {
|
|
; CHECK-LABEL: @test8(
|
|
; CHECK-NEXT: [[X:%.*]] = load atomic i32, i32* [[P:%.*]] seq_cst, align 4
|
|
; CHECK-NEXT: [[Y:%.*]] = load atomic i32, i32* [[P]] acquire, align 4
|
|
; CHECK-NEXT: [[Z:%.*]] = add i32 [[X]], [[Y]]
|
|
; CHECK-NEXT: ret i32 [[Z]]
|
|
;
|
|
%x = load atomic i32, i32* %p seq_cst, align 4
|
|
%y = load atomic i32, i32* %p acquire, align 4
|
|
%z = add i32 %x, %y
|
|
ret i32 %z
|
|
}
|
|
|
|
; An unordered access to null is still unreachable. There's no
|
|
; ordering imposed.
|
|
define i32 @test9() {
|
|
; CHECK-LABEL: @test9(
|
|
; CHECK-NEXT: store i32 poison, i32* null, align 536870912
|
|
; CHECK-NEXT: ret i32 poison
|
|
;
|
|
%x = load atomic i32, i32* null unordered, align 4
|
|
ret i32 %x
|
|
}
|
|
|
|
define i32 @test9_no_null_opt() #0 {
|
|
; CHECK-LABEL: @test9_no_null_opt(
|
|
; CHECK-NEXT: [[X:%.*]] = load atomic i32, i32* null unordered, align 536870912
|
|
; CHECK-NEXT: ret i32 [[X]]
|
|
;
|
|
%x = load atomic i32, i32* null unordered, align 4
|
|
ret i32 %x
|
|
}
|
|
|
|
; FIXME: Could also fold
|
|
define i32 @test10() {
|
|
; CHECK-LABEL: @test10(
|
|
; CHECK-NEXT: [[X:%.*]] = load atomic i32, i32* null monotonic, align 536870912
|
|
; CHECK-NEXT: ret i32 [[X]]
|
|
;
|
|
%x = load atomic i32, i32* null monotonic, align 4
|
|
ret i32 %x
|
|
}
|
|
|
|
define i32 @test10_no_null_opt() #0 {
|
|
; CHECK-LABEL: @test10_no_null_opt(
|
|
; CHECK-NEXT: [[X:%.*]] = load atomic i32, i32* null monotonic, align 536870912
|
|
; CHECK-NEXT: ret i32 [[X]]
|
|
;
|
|
%x = load atomic i32, i32* null monotonic, align 4
|
|
ret i32 %x
|
|
}
|
|
|
|
; Would this be legal to fold? Probably?
|
|
define i32 @test11() {
|
|
; CHECK-LABEL: @test11(
|
|
; CHECK-NEXT: [[X:%.*]] = load atomic i32, i32* null seq_cst, align 536870912
|
|
; CHECK-NEXT: ret i32 [[X]]
|
|
;
|
|
%x = load atomic i32, i32* null seq_cst, align 4
|
|
ret i32 %x
|
|
}
|
|
|
|
define i32 @test11_no_null_opt() #0 {
|
|
; CHECK-LABEL: @test11_no_null_opt(
|
|
; CHECK-NEXT: [[X:%.*]] = load atomic i32, i32* null seq_cst, align 536870912
|
|
; CHECK-NEXT: ret i32 [[X]]
|
|
;
|
|
%x = load atomic i32, i32* null seq_cst, align 4
|
|
ret i32 %x
|
|
}
|
|
|
|
; An unordered access to null is still unreachable. There's no
|
|
; ordering imposed.
|
|
define i32 @test12() {
|
|
; CHECK-LABEL: @test12(
|
|
; CHECK-NEXT: store atomic i32 poison, i32* null unordered, align 536870912
|
|
; CHECK-NEXT: ret i32 0
|
|
;
|
|
store atomic i32 0, i32* null unordered, align 4
|
|
ret i32 0
|
|
}
|
|
|
|
define i32 @test12_no_null_opt() #0 {
|
|
; CHECK-LABEL: @test12_no_null_opt(
|
|
; CHECK-NEXT: store atomic i32 0, i32* null unordered, align 536870912
|
|
; CHECK-NEXT: ret i32 0
|
|
;
|
|
store atomic i32 0, i32* null unordered, align 4
|
|
ret i32 0
|
|
}
|
|
|
|
; FIXME: Could also fold
|
|
define i32 @test13() {
|
|
; CHECK-LABEL: @test13(
|
|
; CHECK-NEXT: store atomic i32 0, i32* null monotonic, align 536870912
|
|
; CHECK-NEXT: ret i32 0
|
|
;
|
|
store atomic i32 0, i32* null monotonic, align 4
|
|
ret i32 0
|
|
}
|
|
|
|
define i32 @test13_no_null_opt() #0 {
|
|
; CHECK-LABEL: @test13_no_null_opt(
|
|
; CHECK-NEXT: store atomic i32 0, i32* null monotonic, align 536870912
|
|
; CHECK-NEXT: ret i32 0
|
|
;
|
|
store atomic i32 0, i32* null monotonic, align 4
|
|
ret i32 0
|
|
}
|
|
|
|
; Would this be legal to fold? Probably?
|
|
define i32 @test14() {
|
|
; CHECK-LABEL: @test14(
|
|
; CHECK-NEXT: store atomic i32 0, i32* null seq_cst, align 536870912
|
|
; CHECK-NEXT: ret i32 0
|
|
;
|
|
store atomic i32 0, i32* null seq_cst, align 4
|
|
ret i32 0
|
|
}
|
|
|
|
define i32 @test14_no_null_opt() #0 {
|
|
; CHECK-LABEL: @test14_no_null_opt(
|
|
; CHECK-NEXT: store atomic i32 0, i32* null seq_cst, align 536870912
|
|
; CHECK-NEXT: ret i32 0
|
|
;
|
|
store atomic i32 0, i32* null seq_cst, align 4
|
|
ret i32 0
|
|
}
|
|
|
|
@a = external global i32
|
|
@b = external global i32
|
|
|
|
define i32 @test15(i1 %cnd) {
|
|
; CHECK-LABEL: @test15(
|
|
; CHECK-NEXT: [[A_VAL:%.*]] = load atomic i32, i32* @a unordered, align 4
|
|
; CHECK-NEXT: [[B_VAL:%.*]] = load atomic i32, i32* @b unordered, align 4
|
|
; CHECK-NEXT: [[X:%.*]] = select i1 [[CND:%.*]], i32 [[A_VAL]], i32 [[B_VAL]]
|
|
; CHECK-NEXT: ret i32 [[X]]
|
|
;
|
|
%addr = select i1 %cnd, i32* @a, i32* @b
|
|
%x = load atomic i32, i32* %addr unordered, align 4
|
|
ret i32 %x
|
|
}
|
|
|
|
; FIXME: This would be legal to transform
|
|
define i32 @test16(i1 %cnd) {
|
|
; CHECK-LABEL: @test16(
|
|
; CHECK-NEXT: [[ADDR:%.*]] = select i1 [[CND:%.*]], i32* @a, i32* @b
|
|
; CHECK-NEXT: [[X:%.*]] = load atomic i32, i32* [[ADDR]] monotonic, align 4
|
|
; CHECK-NEXT: ret i32 [[X]]
|
|
;
|
|
%addr = select i1 %cnd, i32* @a, i32* @b
|
|
%x = load atomic i32, i32* %addr monotonic, align 4
|
|
ret i32 %x
|
|
}
|
|
|
|
; FIXME: This would be legal to transform
|
|
define i32 @test17(i1 %cnd) {
|
|
; CHECK-LABEL: @test17(
|
|
; CHECK-NEXT: [[ADDR:%.*]] = select i1 [[CND:%.*]], i32* @a, i32* @b
|
|
; CHECK-NEXT: [[X:%.*]] = load atomic i32, i32* [[ADDR]] seq_cst, align 4
|
|
; CHECK-NEXT: ret i32 [[X]]
|
|
;
|
|
%addr = select i1 %cnd, i32* @a, i32* @b
|
|
%x = load atomic i32, i32* %addr seq_cst, align 4
|
|
ret i32 %x
|
|
}
|
|
|
|
define i32 @test22(i1 %cnd) {
|
|
; CHECK-LABEL: @test22(
|
|
; CHECK-NEXT: br i1 [[CND:%.*]], label [[BLOCK1:%.*]], label [[BLOCK2:%.*]]
|
|
; CHECK: block1:
|
|
; CHECK-NEXT: br label [[MERGE:%.*]]
|
|
; CHECK: block2:
|
|
; CHECK-NEXT: br label [[MERGE]]
|
|
; CHECK: merge:
|
|
; CHECK-NEXT: [[STOREMERGE:%.*]] = phi i32 [ 2, [[BLOCK2]] ], [ 1, [[BLOCK1]] ]
|
|
; CHECK-NEXT: store atomic i32 [[STOREMERGE]], i32* @a unordered, align 4
|
|
; CHECK-NEXT: ret i32 0
|
|
;
|
|
br i1 %cnd, label %block1, label %block2
|
|
|
|
block1:
|
|
store atomic i32 1, i32* @a unordered, align 4
|
|
br label %merge
|
|
block2:
|
|
store atomic i32 2, i32* @a unordered, align 4
|
|
br label %merge
|
|
|
|
merge:
|
|
ret i32 0
|
|
}
|
|
|
|
; TODO: probably also legal here
|
|
define i32 @test23(i1 %cnd) {
|
|
; CHECK-LABEL: @test23(
|
|
; CHECK-NEXT: br i1 [[CND:%.*]], label [[BLOCK1:%.*]], label [[BLOCK2:%.*]]
|
|
; CHECK: block1:
|
|
; CHECK-NEXT: store atomic i32 1, i32* @a monotonic, align 4
|
|
; CHECK-NEXT: br label [[MERGE:%.*]]
|
|
; CHECK: block2:
|
|
; CHECK-NEXT: store atomic i32 2, i32* @a monotonic, align 4
|
|
; CHECK-NEXT: br label [[MERGE]]
|
|
; CHECK: merge:
|
|
; CHECK-NEXT: ret i32 0
|
|
;
|
|
br i1 %cnd, label %block1, label %block2
|
|
|
|
block1:
|
|
store atomic i32 1, i32* @a monotonic, align 4
|
|
br label %merge
|
|
block2:
|
|
store atomic i32 2, i32* @a monotonic, align 4
|
|
br label %merge
|
|
|
|
merge:
|
|
ret i32 0
|
|
}
|
|
|
|
declare void @clobber()
|
|
|
|
define i32 @test18(float* %p) {
|
|
; CHECK-LABEL: @test18(
|
|
; CHECK-NEXT: [[X:%.*]] = load atomic float, float* [[P:%.*]] unordered, align 4
|
|
; CHECK-NEXT: call void @clobber()
|
|
; CHECK-NEXT: store atomic float [[X]], float* [[P]] unordered, align 4
|
|
; CHECK-NEXT: ret i32 0
|
|
;
|
|
%x = load atomic float, float* %p unordered, align 4
|
|
call void @clobber() ;; keep the load around
|
|
store atomic float %x, float* %p unordered, align 4
|
|
ret i32 0
|
|
}
|
|
|
|
; TODO: probably also legal in this case
|
|
define i32 @test19(float* %p) {
|
|
; CHECK-LABEL: @test19(
|
|
; CHECK-NEXT: [[X:%.*]] = load atomic float, float* [[P:%.*]] seq_cst, align 4
|
|
; CHECK-NEXT: call void @clobber()
|
|
; CHECK-NEXT: store atomic float [[X]], float* [[P]] seq_cst, align 4
|
|
; CHECK-NEXT: ret i32 0
|
|
;
|
|
%x = load atomic float, float* %p seq_cst, align 4
|
|
call void @clobber() ;; keep the load around
|
|
store atomic float %x, float* %p seq_cst, align 4
|
|
ret i32 0
|
|
}
|
|
|
|
define i32 @test20(i32** %p, i8* %v) {
|
|
; CHECK-LABEL: @test20(
|
|
; CHECK-NEXT: [[TMP1:%.*]] = bitcast i32** [[P:%.*]] to i8**
|
|
; CHECK-NEXT: store atomic i8* [[V:%.*]], i8** [[TMP1]] unordered, align 4
|
|
; CHECK-NEXT: ret i32 0
|
|
;
|
|
%cast = bitcast i8* %v to i32*
|
|
store atomic i32* %cast, i32** %p unordered, align 4
|
|
ret i32 0
|
|
}
|
|
|
|
define i32 @test21(i32** %p, i8* %v) {
|
|
; CHECK-LABEL: @test21(
|
|
; CHECK-NEXT: [[CAST:%.*]] = bitcast i8* [[V:%.*]] to i32*
|
|
; CHECK-NEXT: store atomic i32* [[CAST]], i32** [[P:%.*]] monotonic, align 4
|
|
; CHECK-NEXT: ret i32 0
|
|
;
|
|
%cast = bitcast i8* %v to i32*
|
|
store atomic i32* %cast, i32** %p monotonic, align 4
|
|
ret i32 0
|
|
}
|
|
|
|
define void @pr27490a(i8** %p1, i8** %p2) {
|
|
; CHECK-LABEL: @pr27490a(
|
|
; CHECK-NEXT: [[L:%.*]] = load i8*, i8** [[P1:%.*]], align 8
|
|
; CHECK-NEXT: store volatile i8* [[L]], i8** [[P2:%.*]], align 8
|
|
; CHECK-NEXT: ret void
|
|
;
|
|
%l = load i8*, i8** %p1
|
|
store volatile i8* %l, i8** %p2
|
|
ret void
|
|
}
|
|
|
|
define void @pr27490b(i8** %p1, i8** %p2) {
|
|
; CHECK-LABEL: @pr27490b(
|
|
; CHECK-NEXT: [[L:%.*]] = load i8*, i8** [[P1:%.*]], align 8
|
|
; CHECK-NEXT: store atomic i8* [[L]], i8** [[P2:%.*]] seq_cst, align 8
|
|
; CHECK-NEXT: ret void
|
|
;
|
|
%l = load i8*, i8** %p1
|
|
store atomic i8* %l, i8** %p2 seq_cst, align 8
|
|
ret void
|
|
}
|
|
|
|
;; At the moment, we can't form atomic vectors by folding since these are
|
|
;; not representable in the IR. This was pr29121. The right long term
|
|
;; solution is to extend the IR to handle this case.
|
|
define <2 x float> @no_atomic_vector_load(i64* %p) {
|
|
; CHECK-LABEL: @no_atomic_vector_load(
|
|
; CHECK-NEXT: [[LOAD:%.*]] = load atomic i64, i64* [[P:%.*]] unordered, align 8
|
|
; CHECK-NEXT: [[DOTCAST:%.*]] = bitcast i64 [[LOAD]] to <2 x float>
|
|
; CHECK-NEXT: ret <2 x float> [[DOTCAST]]
|
|
;
|
|
%load = load atomic i64, i64* %p unordered, align 8
|
|
%.cast = bitcast i64 %load to <2 x float>
|
|
ret <2 x float> %.cast
|
|
}
|
|
|
|
define void @no_atomic_vector_store(<2 x float> %p, i8* %p2) {
|
|
; CHECK-LABEL: @no_atomic_vector_store(
|
|
; CHECK-NEXT: [[TMP1:%.*]] = bitcast <2 x float> [[P:%.*]] to i64
|
|
; CHECK-NEXT: [[TMP2:%.*]] = bitcast i8* [[P2:%.*]] to i64*
|
|
; CHECK-NEXT: store atomic i64 [[TMP1]], i64* [[TMP2]] unordered, align 8
|
|
; CHECK-NEXT: ret void
|
|
;
|
|
%1 = bitcast <2 x float> %p to i64
|
|
%2 = bitcast i8* %p2 to i64*
|
|
store atomic i64 %1, i64* %2 unordered, align 8
|
|
ret void
|
|
}
|
|
|
|
attributes #0 = { null_pointer_is_valid }
|