1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 18:54:02 +01:00
llvm-mirror/test/Transforms/InstCombine/bitcast-inseltpoison.ll
Juneyoung Lee a7f581c4d0 [InstCombine] use poison as placeholder for undemanded elems
Currently undef is used as a don’t-care vector when constructing a vector using a series of insertelement.
However, this is problematic because undef isn’t undefined enough.
Especially, a sequence of insertelement can be optimized to shufflevector, but using undef as its placeholder makes shufflevector a poison-blocking instruction because undef cannot be optimized to poison.
This makes a few straightforward optimizations incorrect, such as:

```
;  https://bugs.llvm.org/show_bug.cgi?id=44185

define <4 x float> @insert_not_undef_shuffle_translate_commute(float %x, <4 x float> %y, <4 x float> %q) {
  %xv = insertelement <4 x float> %q, float %x, i32 2
  %r = shufflevector <4 x float> %y, <4 x float> %xv, <4 x i32> { 0, 6, 2, undef }
  ret <4 x float> %r ; %r[3] is undef
}
=>
define <4 x float> @insert_not_undef_shuffle_translate_commute(float %x, <4 x float> %y, <4 x float> %q) {
  %r = insertelement <4 x float> %y, float %x, i32 1
  ret <4 x float> %r ; %r[3] = %y[3], incorrect if %y[3] = poison
}

Transformation doesn't verify!
ERROR: Target is more poisonous than source
```

I’d like to suggest
1. Using poison as insertelement’s placeholder value (IRBuilder::CreateVectorSplat should be patched too)
2. Updating shufflevector’s semantics to return poison element if mask is undef

Note that poison is currently lowered into UNDEF in SelDag, so codegen part is okay.
m_Undef() matches PoisonValue as well, so existing optimizations will still fire.

The only concern is hidden miscompilations that will go incorrect when poison constant is given.
A conservative way is copying all tests having `insertelement undef` & replacing it with `insertelement poison` & run Alive2 on it, but it will create many tests and people won’t like it. :(

Instead, I’ll simply locally maintain the tests and run Alive2.
If there is any bug found, I’ll report it.

Relevant links: https://bugs.llvm.org/show_bug.cgi?id=43958 , http://lists.llvm.org/pipermail/llvm-dev/2019-November/137242.html

Reviewed By: nikic

Differential Revision: https://reviews.llvm.org/D93586
2020-12-28 08:58:15 +09:00

574 lines
22 KiB
LLVM

; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt < %s -instcombine -S | FileCheck %s
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64"
target triple = "x86_64-apple-darwin10.0.0"
; Bitcasts between vectors and scalars are valid.
; PR4487
define i32 @test1(i64 %a) {
; CHECK-LABEL: @test1(
; CHECK-NEXT: ret i32 0
;
%t1 = bitcast i64 %a to <2 x i32>
%t2 = bitcast i64 %a to <2 x i32>
%t3 = xor <2 x i32> %t1, %t2
%t4 = extractelement <2 x i32> %t3, i32 0
ret i32 %t4
}
; Perform the bitwise logic in the source type of the operands to eliminate bitcasts.
define <2 x i32> @xor_two_vector_bitcasts(<1 x i64> %a, <1 x i64> %b) {
; CHECK-LABEL: @xor_two_vector_bitcasts(
; CHECK-NEXT: [[T31:%.*]] = xor <1 x i64> [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: [[T3:%.*]] = bitcast <1 x i64> [[T31]] to <2 x i32>
; CHECK-NEXT: ret <2 x i32> [[T3]]
;
%t1 = bitcast <1 x i64> %a to <2 x i32>
%t2 = bitcast <1 x i64> %b to <2 x i32>
%t3 = xor <2 x i32> %t1, %t2
ret <2 x i32> %t3
}
; No change. Bitcasts are canonicalized above bitwise logic.
define <2 x i32> @xor_bitcast_vec_to_vec(<1 x i64> %a) {
; CHECK-LABEL: @xor_bitcast_vec_to_vec(
; CHECK-NEXT: [[T1:%.*]] = bitcast <1 x i64> [[A:%.*]] to <2 x i32>
; CHECK-NEXT: [[T2:%.*]] = xor <2 x i32> [[T1]], <i32 1, i32 2>
; CHECK-NEXT: ret <2 x i32> [[T2]]
;
%t1 = bitcast <1 x i64> %a to <2 x i32>
%t2 = xor <2 x i32> <i32 1, i32 2>, %t1
ret <2 x i32> %t2
}
; No change. Bitcasts are canonicalized above bitwise logic.
define i64 @and_bitcast_vec_to_int(<2 x i32> %a) {
; CHECK-LABEL: @and_bitcast_vec_to_int(
; CHECK-NEXT: [[T1:%.*]] = bitcast <2 x i32> [[A:%.*]] to i64
; CHECK-NEXT: [[T2:%.*]] = and i64 [[T1]], 3
; CHECK-NEXT: ret i64 [[T2]]
;
%t1 = bitcast <2 x i32> %a to i64
%t2 = and i64 %t1, 3
ret i64 %t2
}
; No change. Bitcasts are canonicalized above bitwise logic.
define <2 x i32> @or_bitcast_int_to_vec(i64 %a) {
; CHECK-LABEL: @or_bitcast_int_to_vec(
; CHECK-NEXT: [[T1:%.*]] = bitcast i64 [[A:%.*]] to <2 x i32>
; CHECK-NEXT: [[T2:%.*]] = or <2 x i32> [[T1]], <i32 1, i32 2>
; CHECK-NEXT: ret <2 x i32> [[T2]]
;
%t1 = bitcast i64 %a to <2 x i32>
%t2 = or <2 x i32> %t1, <i32 1, i32 2>
ret <2 x i32> %t2
}
; PR26702 - https://bugs.llvm.org//show_bug.cgi?id=26702
; Bitcast is canonicalized above logic, so we can see the not-not pattern.
define <2 x i64> @is_negative(<4 x i32> %x) {
; CHECK-LABEL: @is_negative(
; CHECK-NEXT: [[LOBIT:%.*]] = ashr <4 x i32> [[X:%.*]], <i32 31, i32 31, i32 31, i32 31>
; CHECK-NEXT: [[TMP1:%.*]] = bitcast <4 x i32> [[LOBIT]] to <2 x i64>
; CHECK-NEXT: ret <2 x i64> [[TMP1]]
;
%lobit = ashr <4 x i32> %x, <i32 31, i32 31, i32 31, i32 31>
%not = xor <4 x i32> %lobit, <i32 -1, i32 -1, i32 -1, i32 -1>
%bc = bitcast <4 x i32> %not to <2 x i64>
%notnot = xor <2 x i64> %bc, <i64 -1, i64 -1>
ret <2 x i64> %notnot
}
; This variation has an extra bitcast at the end. This means that the 2nd xor
; can be done in <4 x i32> to eliminate a bitcast regardless of canonicalizaion.
define <4 x i32> @is_negative_bonus_bitcast(<4 x i32> %x) {
; CHECK-LABEL: @is_negative_bonus_bitcast(
; CHECK-NEXT: [[LOBIT:%.*]] = ashr <4 x i32> [[X:%.*]], <i32 31, i32 31, i32 31, i32 31>
; CHECK-NEXT: ret <4 x i32> [[LOBIT]]
;
%lobit = ashr <4 x i32> %x, <i32 31, i32 31, i32 31, i32 31>
%not = xor <4 x i32> %lobit, <i32 -1, i32 -1, i32 -1, i32 -1>
%bc = bitcast <4 x i32> %not to <2 x i64>
%notnot = xor <2 x i64> %bc, <i64 -1, i64 -1>
%bc2 = bitcast <2 x i64> %notnot to <4 x i32>
ret <4 x i32> %bc2
}
; Bitcasts are canonicalized above bitwise logic.
define <2 x i8> @canonicalize_bitcast_logic_with_constant(<4 x i4> %x) {
; CHECK-LABEL: @canonicalize_bitcast_logic_with_constant(
; CHECK-NEXT: [[TMP1:%.*]] = bitcast <4 x i4> [[X:%.*]] to <2 x i8>
; CHECK-NEXT: [[B:%.*]] = and <2 x i8> [[TMP1]], <i8 -128, i8 -128>
; CHECK-NEXT: ret <2 x i8> [[B]]
;
%a = and <4 x i4> %x, <i4 0, i4 8, i4 0, i4 8>
%b = bitcast <4 x i4> %a to <2 x i8>
ret <2 x i8> %b
}
; PR27925 - https://llvm.org/bugs/show_bug.cgi?id=27925
define <4 x i32> @bitcasts_and_bitcast(<4 x i32> %a, <8 x i16> %b) {
; CHECK-LABEL: @bitcasts_and_bitcast(
; CHECK-NEXT: [[TMP1:%.*]] = bitcast <8 x i16> [[B:%.*]] to <4 x i32>
; CHECK-NEXT: [[BC3:%.*]] = and <4 x i32> [[TMP1]], [[A:%.*]]
; CHECK-NEXT: ret <4 x i32> [[BC3]]
;
%bc1 = bitcast <4 x i32> %a to <2 x i64>
%bc2 = bitcast <8 x i16> %b to <2 x i64>
%and = and <2 x i64> %bc2, %bc1
%bc3 = bitcast <2 x i64> %and to <4 x i32>
ret <4 x i32> %bc3
}
; The destination must have an integer element type.
; FIXME: We can still eliminate one bitcast in this test by doing the logic op
; in the type of the input that has an integer element type.
define <4 x float> @bitcasts_and_bitcast_to_fp(<4 x float> %a, <8 x i16> %b) {
; CHECK-LABEL: @bitcasts_and_bitcast_to_fp(
; CHECK-NEXT: [[BC1:%.*]] = bitcast <4 x float> [[A:%.*]] to <2 x i64>
; CHECK-NEXT: [[BC2:%.*]] = bitcast <8 x i16> [[B:%.*]] to <2 x i64>
; CHECK-NEXT: [[AND:%.*]] = and <2 x i64> [[BC2]], [[BC1]]
; CHECK-NEXT: [[BC3:%.*]] = bitcast <2 x i64> [[AND]] to <4 x float>
; CHECK-NEXT: ret <4 x float> [[BC3]]
;
%bc1 = bitcast <4 x float> %a to <2 x i64>
%bc2 = bitcast <8 x i16> %b to <2 x i64>
%and = and <2 x i64> %bc2, %bc1
%bc3 = bitcast <2 x i64> %and to <4 x float>
ret <4 x float> %bc3
}
; FIXME: Transform limited from changing vector op to integer op to avoid codegen problems.
define i128 @bitcast_or_bitcast(i128 %a, <2 x i64> %b) {
; CHECK-LABEL: @bitcast_or_bitcast(
; CHECK-NEXT: [[BC1:%.*]] = bitcast i128 [[A:%.*]] to <2 x i64>
; CHECK-NEXT: [[OR:%.*]] = or <2 x i64> [[BC1]], [[B:%.*]]
; CHECK-NEXT: [[BC2:%.*]] = bitcast <2 x i64> [[OR]] to i128
; CHECK-NEXT: ret i128 [[BC2]]
;
%bc1 = bitcast i128 %a to <2 x i64>
%or = or <2 x i64> %b, %bc1
%bc2 = bitcast <2 x i64> %or to i128
ret i128 %bc2
}
; FIXME: Transform limited from changing integer op to vector op to avoid codegen problems.
define <4 x i32> @bitcast_xor_bitcast(<4 x i32> %a, i128 %b) {
; CHECK-LABEL: @bitcast_xor_bitcast(
; CHECK-NEXT: [[BC1:%.*]] = bitcast <4 x i32> [[A:%.*]] to i128
; CHECK-NEXT: [[XOR:%.*]] = xor i128 [[BC1]], [[B:%.*]]
; CHECK-NEXT: [[BC2:%.*]] = bitcast i128 [[XOR]] to <4 x i32>
; CHECK-NEXT: ret <4 x i32> [[BC2]]
;
%bc1 = bitcast <4 x i32> %a to i128
%xor = xor i128 %bc1, %b
%bc2 = bitcast i128 %xor to <4 x i32>
ret <4 x i32> %bc2
}
; https://llvm.org/bugs/show_bug.cgi?id=6137#c6
define <4 x float> @bitcast_vector_select(<4 x float> %x, <2 x i64> %y, <4 x i1> %cmp) {
; CHECK-LABEL: @bitcast_vector_select(
; CHECK-NEXT: [[TMP1:%.*]] = bitcast <2 x i64> [[Y:%.*]] to <4 x float>
; CHECK-NEXT: [[T7:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x float> [[X:%.*]], <4 x float> [[TMP1]]
; CHECK-NEXT: ret <4 x float> [[T7]]
;
%t4 = bitcast <4 x float> %x to <4 x i32>
%t5 = bitcast <2 x i64> %y to <4 x i32>
%t6 = select <4 x i1> %cmp, <4 x i32> %t4, <4 x i32> %t5
%t7 = bitcast <4 x i32> %t6 to <4 x float>
ret <4 x float> %t7
}
define float @bitcast_scalar_select_of_scalars(float %x, i32 %y, i1 %cmp) {
; CHECK-LABEL: @bitcast_scalar_select_of_scalars(
; CHECK-NEXT: [[TMP1:%.*]] = bitcast i32 [[Y:%.*]] to float
; CHECK-NEXT: [[T7:%.*]] = select i1 [[CMP:%.*]], float [[X:%.*]], float [[TMP1]]
; CHECK-NEXT: ret float [[T7]]
;
%t4 = bitcast float %x to i32
%t6 = select i1 %cmp, i32 %t4, i32 %y
%t7 = bitcast i32 %t6 to float
ret float %t7
}
; FIXME: We should change the select operand types to scalars, but we need to make
; sure the backend can reverse that transform if needed.
define float @bitcast_scalar_select_type_mismatch1(float %x, <4 x i8> %y, i1 %cmp) {
; CHECK-LABEL: @bitcast_scalar_select_type_mismatch1(
; CHECK-NEXT: [[T4:%.*]] = bitcast float [[X:%.*]] to <4 x i8>
; CHECK-NEXT: [[T6:%.*]] = select i1 [[CMP:%.*]], <4 x i8> [[T4]], <4 x i8> [[Y:%.*]]
; CHECK-NEXT: [[T7:%.*]] = bitcast <4 x i8> [[T6]] to float
; CHECK-NEXT: ret float [[T7]]
;
%t4 = bitcast float %x to <4 x i8>
%t6 = select i1 %cmp, <4 x i8> %t4, <4 x i8> %y
%t7 = bitcast <4 x i8> %t6 to float
ret float %t7
}
; FIXME: We should change the select operand types to vectors, but we need to make
; sure the backend can reverse that transform if needed.
define <4 x i8> @bitcast_scalar_select_type_mismatch2(<4 x i8> %x, float %y, i1 %cmp) {
; CHECK-LABEL: @bitcast_scalar_select_type_mismatch2(
; CHECK-NEXT: [[T4:%.*]] = bitcast <4 x i8> [[X:%.*]] to float
; CHECK-NEXT: [[T6:%.*]] = select i1 [[CMP:%.*]], float [[T4]], float [[Y:%.*]]
; CHECK-NEXT: [[T7:%.*]] = bitcast float [[T6]] to <4 x i8>
; CHECK-NEXT: ret <4 x i8> [[T7]]
;
%t4 = bitcast <4 x i8> %x to float
%t6 = select i1 %cmp, float %t4, float %y
%t7 = bitcast float %t6 to <4 x i8>
ret <4 x i8> %t7
}
define <4 x float> @bitcast_scalar_select_of_vectors(<4 x float> %x, <2 x i64> %y, i1 %cmp) {
; CHECK-LABEL: @bitcast_scalar_select_of_vectors(
; CHECK-NEXT: [[TMP1:%.*]] = bitcast <2 x i64> [[Y:%.*]] to <4 x float>
; CHECK-NEXT: [[T7:%.*]] = select i1 [[CMP:%.*]], <4 x float> [[X:%.*]], <4 x float> [[TMP1]]
; CHECK-NEXT: ret <4 x float> [[T7]]
;
%t4 = bitcast <4 x float> %x to <4 x i32>
%t5 = bitcast <2 x i64> %y to <4 x i32>
%t6 = select i1 %cmp, <4 x i32> %t4, <4 x i32> %t5
%t7 = bitcast <4 x i32> %t6 to <4 x float>
ret <4 x float> %t7
}
; Can't change the type of the vector select if the dest type is scalar.
define float @bitcast_vector_select_no_fold1(float %x, <2 x i16> %y, <4 x i1> %cmp) {
; CHECK-LABEL: @bitcast_vector_select_no_fold1(
; CHECK-NEXT: [[T4:%.*]] = bitcast float [[X:%.*]] to <4 x i8>
; CHECK-NEXT: [[T5:%.*]] = bitcast <2 x i16> [[Y:%.*]] to <4 x i8>
; CHECK-NEXT: [[T6:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i8> [[T4]], <4 x i8> [[T5]]
; CHECK-NEXT: [[T7:%.*]] = bitcast <4 x i8> [[T6]] to float
; CHECK-NEXT: ret float [[T7]]
;
%t4 = bitcast float %x to <4 x i8>
%t5 = bitcast <2 x i16> %y to <4 x i8>
%t6 = select <4 x i1> %cmp, <4 x i8> %t4, <4 x i8> %t5
%t7 = bitcast <4 x i8> %t6 to float
ret float %t7
}
; Can't change the type of the vector select if the number of elements in the dest type is not the same.
define <2 x float> @bitcast_vector_select_no_fold2(<2 x float> %x, <4 x i16> %y, <8 x i1> %cmp) {
; CHECK-LABEL: @bitcast_vector_select_no_fold2(
; CHECK-NEXT: [[T4:%.*]] = bitcast <2 x float> [[X:%.*]] to <8 x i8>
; CHECK-NEXT: [[T5:%.*]] = bitcast <4 x i16> [[Y:%.*]] to <8 x i8>
; CHECK-NEXT: [[T6:%.*]] = select <8 x i1> [[CMP:%.*]], <8 x i8> [[T4]], <8 x i8> [[T5]]
; CHECK-NEXT: [[T7:%.*]] = bitcast <8 x i8> [[T6]] to <2 x float>
; CHECK-NEXT: ret <2 x float> [[T7]]
;
%t4 = bitcast <2 x float> %x to <8 x i8>
%t5 = bitcast <4 x i16> %y to <8 x i8>
%t6 = select <8 x i1> %cmp, <8 x i8> %t4, <8 x i8> %t5
%t7 = bitcast <8 x i8> %t6 to <2 x float>
ret <2 x float> %t7
}
; Optimize bitcasts that are extracting low element of vector. This happens because of SRoA.
; rdar://7892780
define float @test2(<2 x float> %A, <2 x i32> %B) {
; CHECK-LABEL: @test2(
; CHECK-NEXT: [[TMP24:%.*]] = extractelement <2 x float> [[A:%.*]], i32 0
; CHECK-NEXT: [[BC:%.*]] = bitcast <2 x i32> [[B:%.*]] to <2 x float>
; CHECK-NEXT: [[TMP4:%.*]] = extractelement <2 x float> [[BC]], i32 0
; CHECK-NEXT: [[ADD:%.*]] = fadd float [[TMP24]], [[TMP4]]
; CHECK-NEXT: ret float [[ADD]]
;
%tmp28 = bitcast <2 x float> %A to i64 ; <i64> [#uses=2]
%tmp23 = trunc i64 %tmp28 to i32 ; <i32> [#uses=1]
%tmp24 = bitcast i32 %tmp23 to float ; <float> [#uses=1]
%tmp = bitcast <2 x i32> %B to i64
%tmp2 = trunc i64 %tmp to i32 ; <i32> [#uses=1]
%tmp4 = bitcast i32 %tmp2 to float ; <float> [#uses=1]
%add = fadd float %tmp24, %tmp4
ret float %add
}
; Optimize bitcasts that are extracting other elements of a vector. This happens because of SRoA.
; rdar://7892780
define float @test3(<2 x float> %A, <2 x i64> %B) {
; CHECK-LABEL: @test3(
; CHECK-NEXT: [[TMP24:%.*]] = extractelement <2 x float> [[A:%.*]], i32 1
; CHECK-NEXT: [[BC2:%.*]] = bitcast <2 x i64> [[B:%.*]] to <4 x float>
; CHECK-NEXT: [[TMP4:%.*]] = extractelement <4 x float> [[BC2]], i32 2
; CHECK-NEXT: [[ADD:%.*]] = fadd float [[TMP24]], [[TMP4]]
; CHECK-NEXT: ret float [[ADD]]
;
%tmp28 = bitcast <2 x float> %A to i64
%tmp29 = lshr i64 %tmp28, 32
%tmp23 = trunc i64 %tmp29 to i32
%tmp24 = bitcast i32 %tmp23 to float
%tmp = bitcast <2 x i64> %B to i128
%tmp1 = lshr i128 %tmp, 64
%tmp2 = trunc i128 %tmp1 to i32
%tmp4 = bitcast i32 %tmp2 to float
%add = fadd float %tmp24, %tmp4
ret float %add
}
; Both bitcasts are unnecessary; change the extractelement.
define float @bitcast_extelt1(<2 x float> %A) {
; CHECK-LABEL: @bitcast_extelt1(
; CHECK-NEXT: [[BC2:%.*]] = extractelement <2 x float> [[A:%.*]], i32 0
; CHECK-NEXT: ret float [[BC2]]
;
%bc1 = bitcast <2 x float> %A to <2 x i32>
%ext = extractelement <2 x i32> %bc1, i32 0
%bc2 = bitcast i32 %ext to float
ret float %bc2
}
; Second bitcast can be folded into the first.
define i64 @bitcast_extelt2(<4 x float> %A) {
; CHECK-LABEL: @bitcast_extelt2(
; CHECK-NEXT: [[BC:%.*]] = bitcast <4 x float> [[A:%.*]] to <2 x i64>
; CHECK-NEXT: [[BC2:%.*]] = extractelement <2 x i64> [[BC]], i32 1
; CHECK-NEXT: ret i64 [[BC2]]
;
%bc1 = bitcast <4 x float> %A to <2 x double>
%ext = extractelement <2 x double> %bc1, i32 1
%bc2 = bitcast double %ext to i64
ret i64 %bc2
}
; TODO: This should return %A.
define <2 x i32> @bitcast_extelt3(<2 x i32> %A) {
; CHECK-LABEL: @bitcast_extelt3(
; CHECK-NEXT: [[BC1:%.*]] = bitcast <2 x i32> [[A:%.*]] to <1 x i64>
; CHECK-NEXT: [[EXT:%.*]] = extractelement <1 x i64> [[BC1]], i32 0
; CHECK-NEXT: [[BC2:%.*]] = bitcast i64 [[EXT]] to <2 x i32>
; CHECK-NEXT: ret <2 x i32> [[BC2]]
;
%bc1 = bitcast <2 x i32> %A to <1 x i64>
%ext = extractelement <1 x i64> %bc1, i32 0
%bc2 = bitcast i64 %ext to <2 x i32>
ret <2 x i32> %bc2
}
; Handle the case where the input is not a vector.
define double @bitcast_extelt4(i128 %A) {
; CHECK-LABEL: @bitcast_extelt4(
; CHECK-NEXT: [[BC:%.*]] = bitcast i128 [[A:%.*]] to <2 x double>
; CHECK-NEXT: [[BC2:%.*]] = extractelement <2 x double> [[BC]], i32 0
; CHECK-NEXT: ret double [[BC2]]
;
%bc1 = bitcast i128 %A to <2 x i64>
%ext = extractelement <2 x i64> %bc1, i32 0
%bc2 = bitcast i64 %ext to double
ret double %bc2
}
define <2 x i32> @test4(i32 %A, i32 %B){
; CHECK-LABEL: @test4(
; CHECK-NEXT: [[TMP1:%.*]] = insertelement <2 x i32> poison, i32 [[A:%.*]], i32 0
; CHECK-NEXT: [[TMP2:%.*]] = insertelement <2 x i32> [[TMP1]], i32 [[B:%.*]], i32 1
; CHECK-NEXT: ret <2 x i32> [[TMP2]]
;
%tmp38 = zext i32 %A to i64
%tmp32 = zext i32 %B to i64
%tmp33 = shl i64 %tmp32, 32
%ins35 = or i64 %tmp33, %tmp38
%tmp43 = bitcast i64 %ins35 to <2 x i32>
ret <2 x i32> %tmp43
}
; rdar://8360454
define <2 x float> @test5(float %A, float %B) {
; CHECK-LABEL: @test5(
; CHECK-NEXT: [[TMP1:%.*]] = insertelement <2 x float> poison, float [[A:%.*]], i32 0
; CHECK-NEXT: [[TMP2:%.*]] = insertelement <2 x float> [[TMP1]], float [[B:%.*]], i32 1
; CHECK-NEXT: ret <2 x float> [[TMP2]]
;
%tmp37 = bitcast float %A to i32
%tmp38 = zext i32 %tmp37 to i64
%tmp31 = bitcast float %B to i32
%tmp32 = zext i32 %tmp31 to i64
%tmp33 = shl i64 %tmp32, 32
%ins35 = or i64 %tmp33, %tmp38
%tmp43 = bitcast i64 %ins35 to <2 x float>
ret <2 x float> %tmp43
}
define <2 x float> @test6(float %A){
; CHECK-LABEL: @test6(
; CHECK-NEXT: [[TMP1:%.*]] = insertelement <2 x float> <float 4.200000e+01, float poison>, float [[A:%.*]], i32 1
; CHECK-NEXT: ret <2 x float> [[TMP1]]
;
%tmp23 = bitcast float %A to i32
%tmp24 = zext i32 %tmp23 to i64
%tmp25 = shl i64 %tmp24, 32
%mask20 = or i64 %tmp25, 1109917696
%tmp35 = bitcast i64 %mask20 to <2 x float>
ret <2 x float> %tmp35
}
define i64 @ISPC0(i64 %in) {
; CHECK-LABEL: @ISPC0(
; CHECK-NEXT: ret i64 0
;
%out = and i64 %in, xor (i64 bitcast (<4 x i16> <i16 -1, i16 -1, i16 -1, i16 -1> to i64), i64 -1)
ret i64 %out
}
define i64 @Vec2(i64 %in) {
; CHECK-LABEL: @Vec2(
; CHECK-NEXT: ret i64 0
;
%out = and i64 %in, xor (i64 bitcast (<4 x i16> <i16 0, i16 0, i16 0, i16 0> to i64), i64 0)
ret i64 %out
}
define i64 @All11(i64 %in) {
; CHECK-LABEL: @All11(
; CHECK-NEXT: ret i64 0
;
%out = and i64 %in, xor (i64 bitcast (<2 x float> bitcast (i64 -1 to <2 x float>) to i64), i64 -1)
ret i64 %out
}
define i32 @All111(i32 %in) {
; CHECK-LABEL: @All111(
; CHECK-NEXT: ret i32 0
;
%out = and i32 %in, xor (i32 bitcast (<1 x float> bitcast (i32 -1 to <1 x float>) to i32), i32 -1)
ret i32 %out
}
define <2 x i16> @BitcastInsert(i32 %a) {
; CHECK-LABEL: @BitcastInsert(
; CHECK-NEXT: [[R:%.*]] = bitcast i32 [[A:%.*]] to <2 x i16>
; CHECK-NEXT: ret <2 x i16> [[R]]
;
%v = insertelement <1 x i32> poison, i32 %a, i32 0
%r = bitcast <1 x i32> %v to <2 x i16>
ret <2 x i16> %r
}
; PR17293
define <2 x i64> @test7(<2 x i8*>* %arg) nounwind {
; CHECK-LABEL: @test7(
; CHECK-NEXT: [[CAST:%.*]] = bitcast <2 x i8*>* [[ARG:%.*]] to <2 x i64>*
; CHECK-NEXT: [[LOAD:%.*]] = load <2 x i64>, <2 x i64>* [[CAST]], align 16
; CHECK-NEXT: ret <2 x i64> [[LOAD]]
;
%cast = bitcast <2 x i8*>* %arg to <2 x i64>*
%load = load <2 x i64>, <2 x i64>* %cast, align 16
ret <2 x i64> %load
}
define i8 @test8() {
; CHECK-LABEL: @test8(
; CHECK-NEXT: ret i8 -85
;
%res = bitcast <8 x i1> <i1 true, i1 true, i1 false, i1 true, i1 false, i1 true, i1 false, i1 true> to i8
ret i8 %res
}
@g = internal unnamed_addr global i32 undef
define void @constant_fold_vector_to_double() {
; CHECK-LABEL: @constant_fold_vector_to_double(
; CHECK-NEXT: store volatile double 1.000000e+00, double* undef, align 8
; CHECK-NEXT: store volatile double 1.000000e+00, double* undef, align 8
; CHECK-NEXT: store volatile double 1.000000e+00, double* undef, align 8
; CHECK-NEXT: store volatile double 1.000000e+00, double* undef, align 8
; CHECK-NEXT: store volatile double 0xFFFFFFFFFFFFFFFF, double* undef, align 8
; CHECK-NEXT: store volatile double 0x162E000004D2, double* undef, align 8
; CHECK-NEXT: store volatile double bitcast (<2 x i32> <i32 1234, i32 ptrtoint (i32* @g to i32)> to double), double* undef, align 8
; CHECK-NEXT: store volatile double 0x400000003F800000, double* undef, align 8
; CHECK-NEXT: store volatile double 0.000000e+00, double* undef, align 8
; CHECK-NEXT: store volatile double 0.000000e+00, double* undef, align 8
; CHECK-NEXT: store volatile double 0.000000e+00, double* undef, align 8
; CHECK-NEXT: store volatile double 0.000000e+00, double* undef, align 8
; CHECK-NEXT: store volatile double 0.000000e+00, double* undef, align 8
; CHECK-NEXT: store volatile double 0.000000e+00, double* undef, align 8
; CHECK-NEXT: ret void
;
store volatile double bitcast (<1 x i64> <i64 4607182418800017408> to double), double* undef
store volatile double bitcast (<2 x i32> <i32 0, i32 1072693248> to double), double* undef
store volatile double bitcast (<4 x i16> <i16 0, i16 0, i16 0, i16 16368> to double), double* undef
store volatile double bitcast (<8 x i8> <i8 0, i8 0, i8 0, i8 0, i8 0, i8 0, i8 240, i8 63> to double), double* undef
store volatile double bitcast (<2 x i32> <i32 -1, i32 -1> to double), double* undef
store volatile double bitcast (<2 x i32> <i32 1234, i32 5678> to double), double* undef
store volatile double bitcast (<2 x i32> <i32 1234, i32 ptrtoint (i32* @g to i32)> to double), double* undef
store volatile double bitcast (<2 x float> <float 1.0, float 2.0> to double), double* undef
store volatile double bitcast (<2 x i32> zeroinitializer to double), double* undef
store volatile double bitcast (<4 x i16> zeroinitializer to double), double* undef
store volatile double bitcast (<8 x i8> zeroinitializer to double), double* undef
store volatile double bitcast (<16 x i4> zeroinitializer to double), double* undef
store volatile double bitcast (<32 x i2> zeroinitializer to double), double* undef
store volatile double bitcast (<64 x i1> zeroinitializer to double), double* undef
ret void
}
define void @constant_fold_vector_to_float() {
; CHECK-LABEL: @constant_fold_vector_to_float(
; CHECK-NEXT: store volatile float 1.000000e+00, float* undef, align 4
; CHECK-NEXT: store volatile float 1.000000e+00, float* undef, align 4
; CHECK-NEXT: store volatile float 1.000000e+00, float* undef, align 4
; CHECK-NEXT: store volatile float 1.000000e+00, float* undef, align 4
; CHECK-NEXT: ret void
;
store volatile float bitcast (<1 x i32> <i32 1065353216> to float), float* undef
store volatile float bitcast (<2 x i16> <i16 0, i16 16256> to float), float* undef
store volatile float bitcast (<4 x i8> <i8 0, i8 0, i8 128, i8 63> to float), float* undef
store volatile float bitcast (<32 x i1> <i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 0, i1 1, i1 1, i1 1, i1 1, i1 1, i1 1, i1 1, i1 0, i1 0> to float), float* undef
ret void
}
define void @constant_fold_vector_to_half() {
; CHECK-LABEL: @constant_fold_vector_to_half(
; CHECK-NEXT: store volatile half 0xH4000, half* undef, align 2
; CHECK-NEXT: store volatile half 0xH4000, half* undef, align 2
; CHECK-NEXT: ret void
;
store volatile half bitcast (<2 x i8> <i8 0, i8 64> to half), half* undef
store volatile half bitcast (<4 x i4> <i4 0, i4 0, i4 0, i4 4> to half), half* undef
ret void
}
; Ensure that we do not crash when looking at such a weird bitcast.
define i8* @bitcast_from_single_element_pointer_vector_to_pointer(<1 x i8*> %ptrvec) {
; CHECK-LABEL: @bitcast_from_single_element_pointer_vector_to_pointer(
; CHECK-NEXT: [[TMP1:%.*]] = extractelement <1 x i8*> [[PTRVEC:%.*]], i32 0
; CHECK-NEXT: ret i8* [[TMP1]]
;
%ptr = bitcast <1 x i8*> %ptrvec to i8*
ret i8* %ptr
}