mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-26 04:32:44 +01:00
0c81356419
Since this method can apply to cmpxchg operations, make sure it's clear what value we're actually retrieving. This will help ensure we don't accidentally ignore the failure ordering of cmpxchg in the future. We could potentially introduce a getOrdering() method on AtomicSDNode that asserts the operation isn't cmpxchg, but not sure that's worthwhile. Differential Revision: https://reviews.llvm.org/D103338
2763 lines
95 KiB
C++
2763 lines
95 KiB
C++
//===- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ----*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file declares the SDNode class and derived classes, which are used to
|
|
// represent the nodes and operations present in a SelectionDAG. These nodes
|
|
// and operations are machine code level operations, with some similarities to
|
|
// the GCC RTL representation.
|
|
//
|
|
// Clients should include the SelectionDAG.h file instead of this file directly.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
|
|
#define LLVM_CODEGEN_SELECTIONDAGNODES_H
|
|
|
|
#include "llvm/ADT/APFloat.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/FoldingSet.h"
|
|
#include "llvm/ADT/GraphTraits.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/ilist_node.h"
|
|
#include "llvm/ADT/iterator.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/CodeGen/ISDOpcodes.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/Register.h"
|
|
#include "llvm/CodeGen/ValueTypes.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/Support/AlignOf.h"
|
|
#include "llvm/Support/AtomicOrdering.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MachineValueType.h"
|
|
#include "llvm/Support/TypeSize.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <climits>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <cstring>
|
|
#include <iterator>
|
|
#include <string>
|
|
#include <tuple>
|
|
|
|
namespace llvm {
|
|
|
|
class APInt;
|
|
class Constant;
|
|
template <typename T> struct DenseMapInfo;
|
|
class GlobalValue;
|
|
class MachineBasicBlock;
|
|
class MachineConstantPoolValue;
|
|
class MCSymbol;
|
|
class raw_ostream;
|
|
class SDNode;
|
|
class SelectionDAG;
|
|
class Type;
|
|
class Value;
|
|
|
|
void checkForCycles(const SDNode *N, const SelectionDAG *DAG = nullptr,
|
|
bool force = false);
|
|
|
|
/// This represents a list of ValueType's that has been intern'd by
|
|
/// a SelectionDAG. Instances of this simple value class are returned by
|
|
/// SelectionDAG::getVTList(...).
|
|
///
|
|
struct SDVTList {
|
|
const EVT *VTs;
|
|
unsigned int NumVTs;
|
|
};
|
|
|
|
namespace ISD {
|
|
|
|
/// Node predicates
|
|
|
|
/// If N is a BUILD_VECTOR or SPLAT_VECTOR node whose elements are all the
|
|
/// same constant or undefined, return true and return the constant value in
|
|
/// \p SplatValue.
|
|
bool isConstantSplatVector(const SDNode *N, APInt &SplatValue);
|
|
|
|
/// Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where
|
|
/// all of the elements are ~0 or undef. If \p BuildVectorOnly is set to
|
|
/// true, it only checks BUILD_VECTOR.
|
|
bool isConstantSplatVectorAllOnes(const SDNode *N,
|
|
bool BuildVectorOnly = false);
|
|
|
|
/// Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where
|
|
/// all of the elements are 0 or undef. If \p BuildVectorOnly is set to true, it
|
|
/// only checks BUILD_VECTOR.
|
|
bool isConstantSplatVectorAllZeros(const SDNode *N,
|
|
bool BuildVectorOnly = false);
|
|
|
|
/// Return true if the specified node is a BUILD_VECTOR where all of the
|
|
/// elements are ~0 or undef.
|
|
bool isBuildVectorAllOnes(const SDNode *N);
|
|
|
|
/// Return true if the specified node is a BUILD_VECTOR where all of the
|
|
/// elements are 0 or undef.
|
|
bool isBuildVectorAllZeros(const SDNode *N);
|
|
|
|
/// Return true if the specified node is a BUILD_VECTOR node of all
|
|
/// ConstantSDNode or undef.
|
|
bool isBuildVectorOfConstantSDNodes(const SDNode *N);
|
|
|
|
/// Return true if the specified node is a BUILD_VECTOR node of all
|
|
/// ConstantFPSDNode or undef.
|
|
bool isBuildVectorOfConstantFPSDNodes(const SDNode *N);
|
|
|
|
/// Return true if the node has at least one operand and all operands of the
|
|
/// specified node are ISD::UNDEF.
|
|
bool allOperandsUndef(const SDNode *N);
|
|
|
|
} // end namespace ISD
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// Unlike LLVM values, Selection DAG nodes may return multiple
|
|
/// values as the result of a computation. Many nodes return multiple values,
|
|
/// from loads (which define a token and a return value) to ADDC (which returns
|
|
/// a result and a carry value), to calls (which may return an arbitrary number
|
|
/// of values).
|
|
///
|
|
/// As such, each use of a SelectionDAG computation must indicate the node that
|
|
/// computes it as well as which return value to use from that node. This pair
|
|
/// of information is represented with the SDValue value type.
|
|
///
|
|
class SDValue {
|
|
friend struct DenseMapInfo<SDValue>;
|
|
|
|
SDNode *Node = nullptr; // The node defining the value we are using.
|
|
unsigned ResNo = 0; // Which return value of the node we are using.
|
|
|
|
public:
|
|
SDValue() = default;
|
|
SDValue(SDNode *node, unsigned resno);
|
|
|
|
/// get the index which selects a specific result in the SDNode
|
|
unsigned getResNo() const { return ResNo; }
|
|
|
|
/// get the SDNode which holds the desired result
|
|
SDNode *getNode() const { return Node; }
|
|
|
|
/// set the SDNode
|
|
void setNode(SDNode *N) { Node = N; }
|
|
|
|
inline SDNode *operator->() const { return Node; }
|
|
|
|
bool operator==(const SDValue &O) const {
|
|
return Node == O.Node && ResNo == O.ResNo;
|
|
}
|
|
bool operator!=(const SDValue &O) const {
|
|
return !operator==(O);
|
|
}
|
|
bool operator<(const SDValue &O) const {
|
|
return std::tie(Node, ResNo) < std::tie(O.Node, O.ResNo);
|
|
}
|
|
explicit operator bool() const {
|
|
return Node != nullptr;
|
|
}
|
|
|
|
SDValue getValue(unsigned R) const {
|
|
return SDValue(Node, R);
|
|
}
|
|
|
|
/// Return true if this node is an operand of N.
|
|
bool isOperandOf(const SDNode *N) const;
|
|
|
|
/// Return the ValueType of the referenced return value.
|
|
inline EVT getValueType() const;
|
|
|
|
/// Return the simple ValueType of the referenced return value.
|
|
MVT getSimpleValueType() const {
|
|
return getValueType().getSimpleVT();
|
|
}
|
|
|
|
/// Returns the size of the value in bits.
|
|
///
|
|
/// If the value type is a scalable vector type, the scalable property will
|
|
/// be set and the runtime size will be a positive integer multiple of the
|
|
/// base size.
|
|
TypeSize getValueSizeInBits() const {
|
|
return getValueType().getSizeInBits();
|
|
}
|
|
|
|
uint64_t getScalarValueSizeInBits() const {
|
|
return getValueType().getScalarType().getFixedSizeInBits();
|
|
}
|
|
|
|
// Forwarding methods - These forward to the corresponding methods in SDNode.
|
|
inline unsigned getOpcode() const;
|
|
inline unsigned getNumOperands() const;
|
|
inline const SDValue &getOperand(unsigned i) const;
|
|
inline uint64_t getConstantOperandVal(unsigned i) const;
|
|
inline const APInt &getConstantOperandAPInt(unsigned i) const;
|
|
inline bool isTargetMemoryOpcode() const;
|
|
inline bool isTargetOpcode() const;
|
|
inline bool isMachineOpcode() const;
|
|
inline bool isUndef() const;
|
|
inline unsigned getMachineOpcode() const;
|
|
inline const DebugLoc &getDebugLoc() const;
|
|
inline void dump() const;
|
|
inline void dump(const SelectionDAG *G) const;
|
|
inline void dumpr() const;
|
|
inline void dumpr(const SelectionDAG *G) const;
|
|
|
|
/// Return true if this operand (which must be a chain) reaches the
|
|
/// specified operand without crossing any side-effecting instructions.
|
|
/// In practice, this looks through token factors and non-volatile loads.
|
|
/// In order to remain efficient, this only
|
|
/// looks a couple of nodes in, it does not do an exhaustive search.
|
|
bool reachesChainWithoutSideEffects(SDValue Dest,
|
|
unsigned Depth = 2) const;
|
|
|
|
/// Return true if there are no nodes using value ResNo of Node.
|
|
inline bool use_empty() const;
|
|
|
|
/// Return true if there is exactly one node using value ResNo of Node.
|
|
inline bool hasOneUse() const;
|
|
};
|
|
|
|
template<> struct DenseMapInfo<SDValue> {
|
|
static inline SDValue getEmptyKey() {
|
|
SDValue V;
|
|
V.ResNo = -1U;
|
|
return V;
|
|
}
|
|
|
|
static inline SDValue getTombstoneKey() {
|
|
SDValue V;
|
|
V.ResNo = -2U;
|
|
return V;
|
|
}
|
|
|
|
static unsigned getHashValue(const SDValue &Val) {
|
|
return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
|
|
(unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
|
|
}
|
|
|
|
static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
|
|
return LHS == RHS;
|
|
}
|
|
};
|
|
|
|
/// Allow casting operators to work directly on
|
|
/// SDValues as if they were SDNode*'s.
|
|
template<> struct simplify_type<SDValue> {
|
|
using SimpleType = SDNode *;
|
|
|
|
static SimpleType getSimplifiedValue(SDValue &Val) {
|
|
return Val.getNode();
|
|
}
|
|
};
|
|
template<> struct simplify_type<const SDValue> {
|
|
using SimpleType = /*const*/ SDNode *;
|
|
|
|
static SimpleType getSimplifiedValue(const SDValue &Val) {
|
|
return Val.getNode();
|
|
}
|
|
};
|
|
|
|
/// Represents a use of a SDNode. This class holds an SDValue,
|
|
/// which records the SDNode being used and the result number, a
|
|
/// pointer to the SDNode using the value, and Next and Prev pointers,
|
|
/// which link together all the uses of an SDNode.
|
|
///
|
|
class SDUse {
|
|
/// Val - The value being used.
|
|
SDValue Val;
|
|
/// User - The user of this value.
|
|
SDNode *User = nullptr;
|
|
/// Prev, Next - Pointers to the uses list of the SDNode referred by
|
|
/// this operand.
|
|
SDUse **Prev = nullptr;
|
|
SDUse *Next = nullptr;
|
|
|
|
public:
|
|
SDUse() = default;
|
|
SDUse(const SDUse &U) = delete;
|
|
SDUse &operator=(const SDUse &) = delete;
|
|
|
|
/// Normally SDUse will just implicitly convert to an SDValue that it holds.
|
|
operator const SDValue&() const { return Val; }
|
|
|
|
/// If implicit conversion to SDValue doesn't work, the get() method returns
|
|
/// the SDValue.
|
|
const SDValue &get() const { return Val; }
|
|
|
|
/// This returns the SDNode that contains this Use.
|
|
SDNode *getUser() { return User; }
|
|
|
|
/// Get the next SDUse in the use list.
|
|
SDUse *getNext() const { return Next; }
|
|
|
|
/// Convenience function for get().getNode().
|
|
SDNode *getNode() const { return Val.getNode(); }
|
|
/// Convenience function for get().getResNo().
|
|
unsigned getResNo() const { return Val.getResNo(); }
|
|
/// Convenience function for get().getValueType().
|
|
EVT getValueType() const { return Val.getValueType(); }
|
|
|
|
/// Convenience function for get().operator==
|
|
bool operator==(const SDValue &V) const {
|
|
return Val == V;
|
|
}
|
|
|
|
/// Convenience function for get().operator!=
|
|
bool operator!=(const SDValue &V) const {
|
|
return Val != V;
|
|
}
|
|
|
|
/// Convenience function for get().operator<
|
|
bool operator<(const SDValue &V) const {
|
|
return Val < V;
|
|
}
|
|
|
|
private:
|
|
friend class SelectionDAG;
|
|
friend class SDNode;
|
|
// TODO: unfriend HandleSDNode once we fix its operand handling.
|
|
friend class HandleSDNode;
|
|
|
|
void setUser(SDNode *p) { User = p; }
|
|
|
|
/// Remove this use from its existing use list, assign it the
|
|
/// given value, and add it to the new value's node's use list.
|
|
inline void set(const SDValue &V);
|
|
/// Like set, but only supports initializing a newly-allocated
|
|
/// SDUse with a non-null value.
|
|
inline void setInitial(const SDValue &V);
|
|
/// Like set, but only sets the Node portion of the value,
|
|
/// leaving the ResNo portion unmodified.
|
|
inline void setNode(SDNode *N);
|
|
|
|
void addToList(SDUse **List) {
|
|
Next = *List;
|
|
if (Next) Next->Prev = &Next;
|
|
Prev = List;
|
|
*List = this;
|
|
}
|
|
|
|
void removeFromList() {
|
|
*Prev = Next;
|
|
if (Next) Next->Prev = Prev;
|
|
}
|
|
};
|
|
|
|
/// simplify_type specializations - Allow casting operators to work directly on
|
|
/// SDValues as if they were SDNode*'s.
|
|
template<> struct simplify_type<SDUse> {
|
|
using SimpleType = SDNode *;
|
|
|
|
static SimpleType getSimplifiedValue(SDUse &Val) {
|
|
return Val.getNode();
|
|
}
|
|
};
|
|
|
|
/// These are IR-level optimization flags that may be propagated to SDNodes.
|
|
/// TODO: This data structure should be shared by the IR optimizer and the
|
|
/// the backend.
|
|
struct SDNodeFlags {
|
|
private:
|
|
bool NoUnsignedWrap : 1;
|
|
bool NoSignedWrap : 1;
|
|
bool Exact : 1;
|
|
bool NoNaNs : 1;
|
|
bool NoInfs : 1;
|
|
bool NoSignedZeros : 1;
|
|
bool AllowReciprocal : 1;
|
|
bool AllowContract : 1;
|
|
bool ApproximateFuncs : 1;
|
|
bool AllowReassociation : 1;
|
|
|
|
// We assume instructions do not raise floating-point exceptions by default,
|
|
// and only those marked explicitly may do so. We could choose to represent
|
|
// this via a positive "FPExcept" flags like on the MI level, but having a
|
|
// negative "NoFPExcept" flag here (that defaults to true) makes the flag
|
|
// intersection logic more straightforward.
|
|
bool NoFPExcept : 1;
|
|
|
|
public:
|
|
/// Default constructor turns off all optimization flags.
|
|
SDNodeFlags()
|
|
: NoUnsignedWrap(false), NoSignedWrap(false), Exact(false), NoNaNs(false),
|
|
NoInfs(false), NoSignedZeros(false), AllowReciprocal(false),
|
|
AllowContract(false), ApproximateFuncs(false),
|
|
AllowReassociation(false), NoFPExcept(false) {}
|
|
|
|
/// Propagate the fast-math-flags from an IR FPMathOperator.
|
|
void copyFMF(const FPMathOperator &FPMO) {
|
|
setNoNaNs(FPMO.hasNoNaNs());
|
|
setNoInfs(FPMO.hasNoInfs());
|
|
setNoSignedZeros(FPMO.hasNoSignedZeros());
|
|
setAllowReciprocal(FPMO.hasAllowReciprocal());
|
|
setAllowContract(FPMO.hasAllowContract());
|
|
setApproximateFuncs(FPMO.hasApproxFunc());
|
|
setAllowReassociation(FPMO.hasAllowReassoc());
|
|
}
|
|
|
|
// These are mutators for each flag.
|
|
void setNoUnsignedWrap(bool b) { NoUnsignedWrap = b; }
|
|
void setNoSignedWrap(bool b) { NoSignedWrap = b; }
|
|
void setExact(bool b) { Exact = b; }
|
|
void setNoNaNs(bool b) { NoNaNs = b; }
|
|
void setNoInfs(bool b) { NoInfs = b; }
|
|
void setNoSignedZeros(bool b) { NoSignedZeros = b; }
|
|
void setAllowReciprocal(bool b) { AllowReciprocal = b; }
|
|
void setAllowContract(bool b) { AllowContract = b; }
|
|
void setApproximateFuncs(bool b) { ApproximateFuncs = b; }
|
|
void setAllowReassociation(bool b) { AllowReassociation = b; }
|
|
void setNoFPExcept(bool b) { NoFPExcept = b; }
|
|
|
|
// These are accessors for each flag.
|
|
bool hasNoUnsignedWrap() const { return NoUnsignedWrap; }
|
|
bool hasNoSignedWrap() const { return NoSignedWrap; }
|
|
bool hasExact() const { return Exact; }
|
|
bool hasNoNaNs() const { return NoNaNs; }
|
|
bool hasNoInfs() const { return NoInfs; }
|
|
bool hasNoSignedZeros() const { return NoSignedZeros; }
|
|
bool hasAllowReciprocal() const { return AllowReciprocal; }
|
|
bool hasAllowContract() const { return AllowContract; }
|
|
bool hasApproximateFuncs() const { return ApproximateFuncs; }
|
|
bool hasAllowReassociation() const { return AllowReassociation; }
|
|
bool hasNoFPExcept() const { return NoFPExcept; }
|
|
|
|
/// Clear any flags in this flag set that aren't also set in Flags. All
|
|
/// flags will be cleared if Flags are undefined.
|
|
void intersectWith(const SDNodeFlags Flags) {
|
|
NoUnsignedWrap &= Flags.NoUnsignedWrap;
|
|
NoSignedWrap &= Flags.NoSignedWrap;
|
|
Exact &= Flags.Exact;
|
|
NoNaNs &= Flags.NoNaNs;
|
|
NoInfs &= Flags.NoInfs;
|
|
NoSignedZeros &= Flags.NoSignedZeros;
|
|
AllowReciprocal &= Flags.AllowReciprocal;
|
|
AllowContract &= Flags.AllowContract;
|
|
ApproximateFuncs &= Flags.ApproximateFuncs;
|
|
AllowReassociation &= Flags.AllowReassociation;
|
|
NoFPExcept &= Flags.NoFPExcept;
|
|
}
|
|
};
|
|
|
|
/// Represents one node in the SelectionDAG.
|
|
///
|
|
class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
|
|
private:
|
|
/// The operation that this node performs.
|
|
int16_t NodeType;
|
|
|
|
protected:
|
|
// We define a set of mini-helper classes to help us interpret the bits in our
|
|
// SubclassData. These are designed to fit within a uint16_t so they pack
|
|
// with NodeType.
|
|
|
|
#if defined(_AIX) && (!defined(__GNUC__) || defined(__clang__))
|
|
// Except for GCC; by default, AIX compilers store bit-fields in 4-byte words
|
|
// and give the `pack` pragma push semantics.
|
|
#define BEGIN_TWO_BYTE_PACK() _Pragma("pack(2)")
|
|
#define END_TWO_BYTE_PACK() _Pragma("pack(pop)")
|
|
#else
|
|
#define BEGIN_TWO_BYTE_PACK()
|
|
#define END_TWO_BYTE_PACK()
|
|
#endif
|
|
|
|
BEGIN_TWO_BYTE_PACK()
|
|
class SDNodeBitfields {
|
|
friend class SDNode;
|
|
friend class MemIntrinsicSDNode;
|
|
friend class MemSDNode;
|
|
friend class SelectionDAG;
|
|
|
|
uint16_t HasDebugValue : 1;
|
|
uint16_t IsMemIntrinsic : 1;
|
|
uint16_t IsDivergent : 1;
|
|
};
|
|
enum { NumSDNodeBits = 3 };
|
|
|
|
class ConstantSDNodeBitfields {
|
|
friend class ConstantSDNode;
|
|
|
|
uint16_t : NumSDNodeBits;
|
|
|
|
uint16_t IsOpaque : 1;
|
|
};
|
|
|
|
class MemSDNodeBitfields {
|
|
friend class MemSDNode;
|
|
friend class MemIntrinsicSDNode;
|
|
friend class AtomicSDNode;
|
|
|
|
uint16_t : NumSDNodeBits;
|
|
|
|
uint16_t IsVolatile : 1;
|
|
uint16_t IsNonTemporal : 1;
|
|
uint16_t IsDereferenceable : 1;
|
|
uint16_t IsInvariant : 1;
|
|
};
|
|
enum { NumMemSDNodeBits = NumSDNodeBits + 4 };
|
|
|
|
class LSBaseSDNodeBitfields {
|
|
friend class LSBaseSDNode;
|
|
friend class MaskedLoadStoreSDNode;
|
|
friend class MaskedGatherScatterSDNode;
|
|
|
|
uint16_t : NumMemSDNodeBits;
|
|
|
|
// This storage is shared between disparate class hierarchies to hold an
|
|
// enumeration specific to the class hierarchy in use.
|
|
// LSBaseSDNode => enum ISD::MemIndexedMode
|
|
// MaskedLoadStoreBaseSDNode => enum ISD::MemIndexedMode
|
|
// MaskedGatherScatterSDNode => enum ISD::MemIndexType
|
|
uint16_t AddressingMode : 3;
|
|
};
|
|
enum { NumLSBaseSDNodeBits = NumMemSDNodeBits + 3 };
|
|
|
|
class LoadSDNodeBitfields {
|
|
friend class LoadSDNode;
|
|
friend class MaskedLoadSDNode;
|
|
friend class MaskedGatherSDNode;
|
|
|
|
uint16_t : NumLSBaseSDNodeBits;
|
|
|
|
uint16_t ExtTy : 2; // enum ISD::LoadExtType
|
|
uint16_t IsExpanding : 1;
|
|
};
|
|
|
|
class StoreSDNodeBitfields {
|
|
friend class StoreSDNode;
|
|
friend class MaskedStoreSDNode;
|
|
friend class MaskedScatterSDNode;
|
|
|
|
uint16_t : NumLSBaseSDNodeBits;
|
|
|
|
uint16_t IsTruncating : 1;
|
|
uint16_t IsCompressing : 1;
|
|
};
|
|
|
|
union {
|
|
char RawSDNodeBits[sizeof(uint16_t)];
|
|
SDNodeBitfields SDNodeBits;
|
|
ConstantSDNodeBitfields ConstantSDNodeBits;
|
|
MemSDNodeBitfields MemSDNodeBits;
|
|
LSBaseSDNodeBitfields LSBaseSDNodeBits;
|
|
LoadSDNodeBitfields LoadSDNodeBits;
|
|
StoreSDNodeBitfields StoreSDNodeBits;
|
|
};
|
|
END_TWO_BYTE_PACK()
|
|
#undef BEGIN_TWO_BYTE_PACK
|
|
#undef END_TWO_BYTE_PACK
|
|
|
|
// RawSDNodeBits must cover the entirety of the union. This means that all of
|
|
// the union's members must have size <= RawSDNodeBits. We write the RHS as
|
|
// "2" instead of sizeof(RawSDNodeBits) because MSVC can't handle the latter.
|
|
static_assert(sizeof(SDNodeBitfields) <= 2, "field too wide");
|
|
static_assert(sizeof(ConstantSDNodeBitfields) <= 2, "field too wide");
|
|
static_assert(sizeof(MemSDNodeBitfields) <= 2, "field too wide");
|
|
static_assert(sizeof(LSBaseSDNodeBitfields) <= 2, "field too wide");
|
|
static_assert(sizeof(LoadSDNodeBitfields) <= 2, "field too wide");
|
|
static_assert(sizeof(StoreSDNodeBitfields) <= 2, "field too wide");
|
|
|
|
private:
|
|
friend class SelectionDAG;
|
|
// TODO: unfriend HandleSDNode once we fix its operand handling.
|
|
friend class HandleSDNode;
|
|
|
|
/// Unique id per SDNode in the DAG.
|
|
int NodeId = -1;
|
|
|
|
/// The values that are used by this operation.
|
|
SDUse *OperandList = nullptr;
|
|
|
|
/// The types of the values this node defines. SDNode's may
|
|
/// define multiple values simultaneously.
|
|
const EVT *ValueList;
|
|
|
|
/// List of uses for this SDNode.
|
|
SDUse *UseList = nullptr;
|
|
|
|
/// The number of entries in the Operand/Value list.
|
|
unsigned short NumOperands = 0;
|
|
unsigned short NumValues;
|
|
|
|
// The ordering of the SDNodes. It roughly corresponds to the ordering of the
|
|
// original LLVM instructions.
|
|
// This is used for turning off scheduling, because we'll forgo
|
|
// the normal scheduling algorithms and output the instructions according to
|
|
// this ordering.
|
|
unsigned IROrder;
|
|
|
|
/// Source line information.
|
|
DebugLoc debugLoc;
|
|
|
|
/// Return a pointer to the specified value type.
|
|
static const EVT *getValueTypeList(EVT VT);
|
|
|
|
SDNodeFlags Flags;
|
|
|
|
public:
|
|
/// Unique and persistent id per SDNode in the DAG.
|
|
/// Used for debug printing.
|
|
uint16_t PersistentId;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Accessors
|
|
//
|
|
|
|
/// Return the SelectionDAG opcode value for this node. For
|
|
/// pre-isel nodes (those for which isMachineOpcode returns false), these
|
|
/// are the opcode values in the ISD and <target>ISD namespaces. For
|
|
/// post-isel opcodes, see getMachineOpcode.
|
|
unsigned getOpcode() const { return (unsigned short)NodeType; }
|
|
|
|
/// Test if this node has a target-specific opcode (in the
|
|
/// \<target\>ISD namespace).
|
|
bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
|
|
|
|
/// Test if this node has a target-specific opcode that may raise
|
|
/// FP exceptions (in the \<target\>ISD namespace and greater than
|
|
/// FIRST_TARGET_STRICTFP_OPCODE). Note that all target memory
|
|
/// opcode are currently automatically considered to possibly raise
|
|
/// FP exceptions as well.
|
|
bool isTargetStrictFPOpcode() const {
|
|
return NodeType >= ISD::FIRST_TARGET_STRICTFP_OPCODE;
|
|
}
|
|
|
|
/// Test if this node has a target-specific
|
|
/// memory-referencing opcode (in the \<target\>ISD namespace and
|
|
/// greater than FIRST_TARGET_MEMORY_OPCODE).
|
|
bool isTargetMemoryOpcode() const {
|
|
return NodeType >= ISD::FIRST_TARGET_MEMORY_OPCODE;
|
|
}
|
|
|
|
/// Return true if the type of the node type undefined.
|
|
bool isUndef() const { return NodeType == ISD::UNDEF; }
|
|
|
|
/// Test if this node is a memory intrinsic (with valid pointer information).
|
|
/// INTRINSIC_W_CHAIN and INTRINSIC_VOID nodes are sometimes created for
|
|
/// non-memory intrinsics (with chains) that are not really instances of
|
|
/// MemSDNode. For such nodes, we need some extra state to determine the
|
|
/// proper classof relationship.
|
|
bool isMemIntrinsic() const {
|
|
return (NodeType == ISD::INTRINSIC_W_CHAIN ||
|
|
NodeType == ISD::INTRINSIC_VOID) &&
|
|
SDNodeBits.IsMemIntrinsic;
|
|
}
|
|
|
|
/// Test if this node is a strict floating point pseudo-op.
|
|
bool isStrictFPOpcode() {
|
|
switch (NodeType) {
|
|
default:
|
|
return false;
|
|
case ISD::STRICT_FP16_TO_FP:
|
|
case ISD::STRICT_FP_TO_FP16:
|
|
#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
|
|
case ISD::STRICT_##DAGN:
|
|
#include "llvm/IR/ConstrainedOps.def"
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/// Test if this node has a post-isel opcode, directly
|
|
/// corresponding to a MachineInstr opcode.
|
|
bool isMachineOpcode() const { return NodeType < 0; }
|
|
|
|
/// This may only be called if isMachineOpcode returns
|
|
/// true. It returns the MachineInstr opcode value that the node's opcode
|
|
/// corresponds to.
|
|
unsigned getMachineOpcode() const {
|
|
assert(isMachineOpcode() && "Not a MachineInstr opcode!");
|
|
return ~NodeType;
|
|
}
|
|
|
|
bool getHasDebugValue() const { return SDNodeBits.HasDebugValue; }
|
|
void setHasDebugValue(bool b) { SDNodeBits.HasDebugValue = b; }
|
|
|
|
bool isDivergent() const { return SDNodeBits.IsDivergent; }
|
|
|
|
/// Return true if there are no uses of this node.
|
|
bool use_empty() const { return UseList == nullptr; }
|
|
|
|
/// Return true if there is exactly one use of this node.
|
|
bool hasOneUse() const { return hasSingleElement(uses()); }
|
|
|
|
/// Return the number of uses of this node. This method takes
|
|
/// time proportional to the number of uses.
|
|
size_t use_size() const { return std::distance(use_begin(), use_end()); }
|
|
|
|
/// Return the unique node id.
|
|
int getNodeId() const { return NodeId; }
|
|
|
|
/// Set unique node id.
|
|
void setNodeId(int Id) { NodeId = Id; }
|
|
|
|
/// Return the node ordering.
|
|
unsigned getIROrder() const { return IROrder; }
|
|
|
|
/// Set the node ordering.
|
|
void setIROrder(unsigned Order) { IROrder = Order; }
|
|
|
|
/// Return the source location info.
|
|
const DebugLoc &getDebugLoc() const { return debugLoc; }
|
|
|
|
/// Set source location info. Try to avoid this, putting
|
|
/// it in the constructor is preferable.
|
|
void setDebugLoc(DebugLoc dl) { debugLoc = std::move(dl); }
|
|
|
|
/// This class provides iterator support for SDUse
|
|
/// operands that use a specific SDNode.
|
|
class use_iterator {
|
|
friend class SDNode;
|
|
|
|
SDUse *Op = nullptr;
|
|
|
|
explicit use_iterator(SDUse *op) : Op(op) {}
|
|
|
|
public:
|
|
using iterator_category = std::forward_iterator_tag;
|
|
using value_type = SDUse;
|
|
using difference_type = std::ptrdiff_t;
|
|
using pointer = value_type *;
|
|
using reference = value_type &;
|
|
|
|
use_iterator() = default;
|
|
use_iterator(const use_iterator &I) : Op(I.Op) {}
|
|
|
|
bool operator==(const use_iterator &x) const {
|
|
return Op == x.Op;
|
|
}
|
|
bool operator!=(const use_iterator &x) const {
|
|
return !operator==(x);
|
|
}
|
|
|
|
/// Return true if this iterator is at the end of uses list.
|
|
bool atEnd() const { return Op == nullptr; }
|
|
|
|
// Iterator traversal: forward iteration only.
|
|
use_iterator &operator++() { // Preincrement
|
|
assert(Op && "Cannot increment end iterator!");
|
|
Op = Op->getNext();
|
|
return *this;
|
|
}
|
|
|
|
use_iterator operator++(int) { // Postincrement
|
|
use_iterator tmp = *this; ++*this; return tmp;
|
|
}
|
|
|
|
/// Retrieve a pointer to the current user node.
|
|
SDNode *operator*() const {
|
|
assert(Op && "Cannot dereference end iterator!");
|
|
return Op->getUser();
|
|
}
|
|
|
|
SDNode *operator->() const { return operator*(); }
|
|
|
|
SDUse &getUse() const { return *Op; }
|
|
|
|
/// Retrieve the operand # of this use in its user.
|
|
unsigned getOperandNo() const {
|
|
assert(Op && "Cannot dereference end iterator!");
|
|
return (unsigned)(Op - Op->getUser()->OperandList);
|
|
}
|
|
};
|
|
|
|
/// Provide iteration support to walk over all uses of an SDNode.
|
|
use_iterator use_begin() const {
|
|
return use_iterator(UseList);
|
|
}
|
|
|
|
static use_iterator use_end() { return use_iterator(nullptr); }
|
|
|
|
inline iterator_range<use_iterator> uses() {
|
|
return make_range(use_begin(), use_end());
|
|
}
|
|
inline iterator_range<use_iterator> uses() const {
|
|
return make_range(use_begin(), use_end());
|
|
}
|
|
|
|
/// Return true if there are exactly NUSES uses of the indicated value.
|
|
/// This method ignores uses of other values defined by this operation.
|
|
bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
|
|
|
|
/// Return true if there are any use of the indicated value.
|
|
/// This method ignores uses of other values defined by this operation.
|
|
bool hasAnyUseOfValue(unsigned Value) const;
|
|
|
|
/// Return true if this node is the only use of N.
|
|
bool isOnlyUserOf(const SDNode *N) const;
|
|
|
|
/// Return true if this node is an operand of N.
|
|
bool isOperandOf(const SDNode *N) const;
|
|
|
|
/// Return true if this node is a predecessor of N.
|
|
/// NOTE: Implemented on top of hasPredecessor and every bit as
|
|
/// expensive. Use carefully.
|
|
bool isPredecessorOf(const SDNode *N) const {
|
|
return N->hasPredecessor(this);
|
|
}
|
|
|
|
/// Return true if N is a predecessor of this node.
|
|
/// N is either an operand of this node, or can be reached by recursively
|
|
/// traversing up the operands.
|
|
/// NOTE: This is an expensive method. Use it carefully.
|
|
bool hasPredecessor(const SDNode *N) const;
|
|
|
|
/// Returns true if N is a predecessor of any node in Worklist. This
|
|
/// helper keeps Visited and Worklist sets externally to allow unions
|
|
/// searches to be performed in parallel, caching of results across
|
|
/// queries and incremental addition to Worklist. Stops early if N is
|
|
/// found but will resume. Remember to clear Visited and Worklists
|
|
/// if DAG changes. MaxSteps gives a maximum number of nodes to visit before
|
|
/// giving up. The TopologicalPrune flag signals that positive NodeIds are
|
|
/// topologically ordered (Operands have strictly smaller node id) and search
|
|
/// can be pruned leveraging this.
|
|
static bool hasPredecessorHelper(const SDNode *N,
|
|
SmallPtrSetImpl<const SDNode *> &Visited,
|
|
SmallVectorImpl<const SDNode *> &Worklist,
|
|
unsigned int MaxSteps = 0,
|
|
bool TopologicalPrune = false) {
|
|
SmallVector<const SDNode *, 8> DeferredNodes;
|
|
if (Visited.count(N))
|
|
return true;
|
|
|
|
// Node Id's are assigned in three places: As a topological
|
|
// ordering (> 0), during legalization (results in values set to
|
|
// 0), new nodes (set to -1). If N has a topolgical id then we
|
|
// know that all nodes with ids smaller than it cannot be
|
|
// successors and we need not check them. Filter out all node
|
|
// that can't be matches. We add them to the worklist before exit
|
|
// in case of multiple calls. Note that during selection the topological id
|
|
// may be violated if a node's predecessor is selected before it. We mark
|
|
// this at selection negating the id of unselected successors and
|
|
// restricting topological pruning to positive ids.
|
|
|
|
int NId = N->getNodeId();
|
|
// If we Invalidated the Id, reconstruct original NId.
|
|
if (NId < -1)
|
|
NId = -(NId + 1);
|
|
|
|
bool Found = false;
|
|
while (!Worklist.empty()) {
|
|
const SDNode *M = Worklist.pop_back_val();
|
|
int MId = M->getNodeId();
|
|
if (TopologicalPrune && M->getOpcode() != ISD::TokenFactor && (NId > 0) &&
|
|
(MId > 0) && (MId < NId)) {
|
|
DeferredNodes.push_back(M);
|
|
continue;
|
|
}
|
|
for (const SDValue &OpV : M->op_values()) {
|
|
SDNode *Op = OpV.getNode();
|
|
if (Visited.insert(Op).second)
|
|
Worklist.push_back(Op);
|
|
if (Op == N)
|
|
Found = true;
|
|
}
|
|
if (Found)
|
|
break;
|
|
if (MaxSteps != 0 && Visited.size() >= MaxSteps)
|
|
break;
|
|
}
|
|
// Push deferred nodes back on worklist.
|
|
Worklist.append(DeferredNodes.begin(), DeferredNodes.end());
|
|
// If we bailed early, conservatively return found.
|
|
if (MaxSteps != 0 && Visited.size() >= MaxSteps)
|
|
return true;
|
|
return Found;
|
|
}
|
|
|
|
/// Return true if all the users of N are contained in Nodes.
|
|
/// NOTE: Requires at least one match, but doesn't require them all.
|
|
static bool areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N);
|
|
|
|
/// Return the number of values used by this operation.
|
|
unsigned getNumOperands() const { return NumOperands; }
|
|
|
|
/// Return the maximum number of operands that a SDNode can hold.
|
|
static constexpr size_t getMaxNumOperands() {
|
|
return std::numeric_limits<decltype(SDNode::NumOperands)>::max();
|
|
}
|
|
|
|
/// Helper method returns the integer value of a ConstantSDNode operand.
|
|
inline uint64_t getConstantOperandVal(unsigned Num) const;
|
|
|
|
/// Helper method returns the APInt of a ConstantSDNode operand.
|
|
inline const APInt &getConstantOperandAPInt(unsigned Num) const;
|
|
|
|
const SDValue &getOperand(unsigned Num) const {
|
|
assert(Num < NumOperands && "Invalid child # of SDNode!");
|
|
return OperandList[Num];
|
|
}
|
|
|
|
using op_iterator = SDUse *;
|
|
|
|
op_iterator op_begin() const { return OperandList; }
|
|
op_iterator op_end() const { return OperandList+NumOperands; }
|
|
ArrayRef<SDUse> ops() const { return makeArrayRef(op_begin(), op_end()); }
|
|
|
|
/// Iterator for directly iterating over the operand SDValue's.
|
|
struct value_op_iterator
|
|
: iterator_adaptor_base<value_op_iterator, op_iterator,
|
|
std::random_access_iterator_tag, SDValue,
|
|
ptrdiff_t, value_op_iterator *,
|
|
value_op_iterator *> {
|
|
explicit value_op_iterator(SDUse *U = nullptr)
|
|
: iterator_adaptor_base(U) {}
|
|
|
|
const SDValue &operator*() const { return I->get(); }
|
|
};
|
|
|
|
iterator_range<value_op_iterator> op_values() const {
|
|
return make_range(value_op_iterator(op_begin()),
|
|
value_op_iterator(op_end()));
|
|
}
|
|
|
|
SDVTList getVTList() const {
|
|
SDVTList X = { ValueList, NumValues };
|
|
return X;
|
|
}
|
|
|
|
/// If this node has a glue operand, return the node
|
|
/// to which the glue operand points. Otherwise return NULL.
|
|
SDNode *getGluedNode() const {
|
|
if (getNumOperands() != 0 &&
|
|
getOperand(getNumOperands()-1).getValueType() == MVT::Glue)
|
|
return getOperand(getNumOperands()-1).getNode();
|
|
return nullptr;
|
|
}
|
|
|
|
/// If this node has a glue value with a user, return
|
|
/// the user (there is at most one). Otherwise return NULL.
|
|
SDNode *getGluedUser() const {
|
|
for (use_iterator UI = use_begin(), UE = use_end(); UI != UE; ++UI)
|
|
if (UI.getUse().get().getValueType() == MVT::Glue)
|
|
return *UI;
|
|
return nullptr;
|
|
}
|
|
|
|
SDNodeFlags getFlags() const { return Flags; }
|
|
void setFlags(SDNodeFlags NewFlags) { Flags = NewFlags; }
|
|
|
|
/// Clear any flags in this node that aren't also set in Flags.
|
|
/// If Flags is not in a defined state then this has no effect.
|
|
void intersectFlagsWith(const SDNodeFlags Flags);
|
|
|
|
/// Return the number of values defined/returned by this operator.
|
|
unsigned getNumValues() const { return NumValues; }
|
|
|
|
/// Return the type of a specified result.
|
|
EVT getValueType(unsigned ResNo) const {
|
|
assert(ResNo < NumValues && "Illegal result number!");
|
|
return ValueList[ResNo];
|
|
}
|
|
|
|
/// Return the type of a specified result as a simple type.
|
|
MVT getSimpleValueType(unsigned ResNo) const {
|
|
return getValueType(ResNo).getSimpleVT();
|
|
}
|
|
|
|
/// Returns MVT::getSizeInBits(getValueType(ResNo)).
|
|
///
|
|
/// If the value type is a scalable vector type, the scalable property will
|
|
/// be set and the runtime size will be a positive integer multiple of the
|
|
/// base size.
|
|
TypeSize getValueSizeInBits(unsigned ResNo) const {
|
|
return getValueType(ResNo).getSizeInBits();
|
|
}
|
|
|
|
using value_iterator = const EVT *;
|
|
|
|
value_iterator value_begin() const { return ValueList; }
|
|
value_iterator value_end() const { return ValueList+NumValues; }
|
|
iterator_range<value_iterator> values() const {
|
|
return llvm::make_range(value_begin(), value_end());
|
|
}
|
|
|
|
/// Return the opcode of this operation for printing.
|
|
std::string getOperationName(const SelectionDAG *G = nullptr) const;
|
|
static const char* getIndexedModeName(ISD::MemIndexedMode AM);
|
|
void print_types(raw_ostream &OS, const SelectionDAG *G) const;
|
|
void print_details(raw_ostream &OS, const SelectionDAG *G) const;
|
|
void print(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
|
|
void printr(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
|
|
|
|
/// Print a SelectionDAG node and all children down to
|
|
/// the leaves. The given SelectionDAG allows target-specific nodes
|
|
/// to be printed in human-readable form. Unlike printr, this will
|
|
/// print the whole DAG, including children that appear multiple
|
|
/// times.
|
|
///
|
|
void printrFull(raw_ostream &O, const SelectionDAG *G = nullptr) const;
|
|
|
|
/// Print a SelectionDAG node and children up to
|
|
/// depth "depth." The given SelectionDAG allows target-specific
|
|
/// nodes to be printed in human-readable form. Unlike printr, this
|
|
/// will print children that appear multiple times wherever they are
|
|
/// used.
|
|
///
|
|
void printrWithDepth(raw_ostream &O, const SelectionDAG *G = nullptr,
|
|
unsigned depth = 100) const;
|
|
|
|
/// Dump this node, for debugging.
|
|
void dump() const;
|
|
|
|
/// Dump (recursively) this node and its use-def subgraph.
|
|
void dumpr() const;
|
|
|
|
/// Dump this node, for debugging.
|
|
/// The given SelectionDAG allows target-specific nodes to be printed
|
|
/// in human-readable form.
|
|
void dump(const SelectionDAG *G) const;
|
|
|
|
/// Dump (recursively) this node and its use-def subgraph.
|
|
/// The given SelectionDAG allows target-specific nodes to be printed
|
|
/// in human-readable form.
|
|
void dumpr(const SelectionDAG *G) const;
|
|
|
|
/// printrFull to dbgs(). The given SelectionDAG allows
|
|
/// target-specific nodes to be printed in human-readable form.
|
|
/// Unlike dumpr, this will print the whole DAG, including children
|
|
/// that appear multiple times.
|
|
void dumprFull(const SelectionDAG *G = nullptr) const;
|
|
|
|
/// printrWithDepth to dbgs(). The given
|
|
/// SelectionDAG allows target-specific nodes to be printed in
|
|
/// human-readable form. Unlike dumpr, this will print children
|
|
/// that appear multiple times wherever they are used.
|
|
///
|
|
void dumprWithDepth(const SelectionDAG *G = nullptr,
|
|
unsigned depth = 100) const;
|
|
|
|
/// Gather unique data for the node.
|
|
void Profile(FoldingSetNodeID &ID) const;
|
|
|
|
/// This method should only be used by the SDUse class.
|
|
void addUse(SDUse &U) { U.addToList(&UseList); }
|
|
|
|
protected:
|
|
static SDVTList getSDVTList(EVT VT) {
|
|
SDVTList Ret = { getValueTypeList(VT), 1 };
|
|
return Ret;
|
|
}
|
|
|
|
/// Create an SDNode.
|
|
///
|
|
/// SDNodes are created without any operands, and never own the operand
|
|
/// storage. To add operands, see SelectionDAG::createOperands.
|
|
SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
|
|
: NodeType(Opc), ValueList(VTs.VTs), NumValues(VTs.NumVTs),
|
|
IROrder(Order), debugLoc(std::move(dl)) {
|
|
memset(&RawSDNodeBits, 0, sizeof(RawSDNodeBits));
|
|
assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
|
|
assert(NumValues == VTs.NumVTs &&
|
|
"NumValues wasn't wide enough for its operands!");
|
|
}
|
|
|
|
/// Release the operands and set this node to have zero operands.
|
|
void DropOperands();
|
|
};
|
|
|
|
/// Wrapper class for IR location info (IR ordering and DebugLoc) to be passed
|
|
/// into SDNode creation functions.
|
|
/// When an SDNode is created from the DAGBuilder, the DebugLoc is extracted
|
|
/// from the original Instruction, and IROrder is the ordinal position of
|
|
/// the instruction.
|
|
/// When an SDNode is created after the DAG is being built, both DebugLoc and
|
|
/// the IROrder are propagated from the original SDNode.
|
|
/// So SDLoc class provides two constructors besides the default one, one to
|
|
/// be used by the DAGBuilder, the other to be used by others.
|
|
class SDLoc {
|
|
private:
|
|
DebugLoc DL;
|
|
int IROrder = 0;
|
|
|
|
public:
|
|
SDLoc() = default;
|
|
SDLoc(const SDNode *N) : DL(N->getDebugLoc()), IROrder(N->getIROrder()) {}
|
|
SDLoc(const SDValue V) : SDLoc(V.getNode()) {}
|
|
SDLoc(const Instruction *I, int Order) : IROrder(Order) {
|
|
assert(Order >= 0 && "bad IROrder");
|
|
if (I)
|
|
DL = I->getDebugLoc();
|
|
}
|
|
|
|
unsigned getIROrder() const { return IROrder; }
|
|
const DebugLoc &getDebugLoc() const { return DL; }
|
|
};
|
|
|
|
// Define inline functions from the SDValue class.
|
|
|
|
inline SDValue::SDValue(SDNode *node, unsigned resno)
|
|
: Node(node), ResNo(resno) {
|
|
// Explicitly check for !ResNo to avoid use-after-free, because there are
|
|
// callers that use SDValue(N, 0) with a deleted N to indicate successful
|
|
// combines.
|
|
assert((!Node || !ResNo || ResNo < Node->getNumValues()) &&
|
|
"Invalid result number for the given node!");
|
|
assert(ResNo < -2U && "Cannot use result numbers reserved for DenseMaps.");
|
|
}
|
|
|
|
inline unsigned SDValue::getOpcode() const {
|
|
return Node->getOpcode();
|
|
}
|
|
|
|
inline EVT SDValue::getValueType() const {
|
|
return Node->getValueType(ResNo);
|
|
}
|
|
|
|
inline unsigned SDValue::getNumOperands() const {
|
|
return Node->getNumOperands();
|
|
}
|
|
|
|
inline const SDValue &SDValue::getOperand(unsigned i) const {
|
|
return Node->getOperand(i);
|
|
}
|
|
|
|
inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
|
|
return Node->getConstantOperandVal(i);
|
|
}
|
|
|
|
inline const APInt &SDValue::getConstantOperandAPInt(unsigned i) const {
|
|
return Node->getConstantOperandAPInt(i);
|
|
}
|
|
|
|
inline bool SDValue::isTargetOpcode() const {
|
|
return Node->isTargetOpcode();
|
|
}
|
|
|
|
inline bool SDValue::isTargetMemoryOpcode() const {
|
|
return Node->isTargetMemoryOpcode();
|
|
}
|
|
|
|
inline bool SDValue::isMachineOpcode() const {
|
|
return Node->isMachineOpcode();
|
|
}
|
|
|
|
inline unsigned SDValue::getMachineOpcode() const {
|
|
return Node->getMachineOpcode();
|
|
}
|
|
|
|
inline bool SDValue::isUndef() const {
|
|
return Node->isUndef();
|
|
}
|
|
|
|
inline bool SDValue::use_empty() const {
|
|
return !Node->hasAnyUseOfValue(ResNo);
|
|
}
|
|
|
|
inline bool SDValue::hasOneUse() const {
|
|
return Node->hasNUsesOfValue(1, ResNo);
|
|
}
|
|
|
|
inline const DebugLoc &SDValue::getDebugLoc() const {
|
|
return Node->getDebugLoc();
|
|
}
|
|
|
|
inline void SDValue::dump() const {
|
|
return Node->dump();
|
|
}
|
|
|
|
inline void SDValue::dump(const SelectionDAG *G) const {
|
|
return Node->dump(G);
|
|
}
|
|
|
|
inline void SDValue::dumpr() const {
|
|
return Node->dumpr();
|
|
}
|
|
|
|
inline void SDValue::dumpr(const SelectionDAG *G) const {
|
|
return Node->dumpr(G);
|
|
}
|
|
|
|
// Define inline functions from the SDUse class.
|
|
|
|
inline void SDUse::set(const SDValue &V) {
|
|
if (Val.getNode()) removeFromList();
|
|
Val = V;
|
|
if (V.getNode()) V.getNode()->addUse(*this);
|
|
}
|
|
|
|
inline void SDUse::setInitial(const SDValue &V) {
|
|
Val = V;
|
|
V.getNode()->addUse(*this);
|
|
}
|
|
|
|
inline void SDUse::setNode(SDNode *N) {
|
|
if (Val.getNode()) removeFromList();
|
|
Val.setNode(N);
|
|
if (N) N->addUse(*this);
|
|
}
|
|
|
|
/// This class is used to form a handle around another node that
|
|
/// is persistent and is updated across invocations of replaceAllUsesWith on its
|
|
/// operand. This node should be directly created by end-users and not added to
|
|
/// the AllNodes list.
|
|
class HandleSDNode : public SDNode {
|
|
SDUse Op;
|
|
|
|
public:
|
|
explicit HandleSDNode(SDValue X)
|
|
: SDNode(ISD::HANDLENODE, 0, DebugLoc(), getSDVTList(MVT::Other)) {
|
|
// HandleSDNodes are never inserted into the DAG, so they won't be
|
|
// auto-numbered. Use ID 65535 as a sentinel.
|
|
PersistentId = 0xffff;
|
|
|
|
// Manually set up the operand list. This node type is special in that it's
|
|
// always stack allocated and SelectionDAG does not manage its operands.
|
|
// TODO: This should either (a) not be in the SDNode hierarchy, or (b) not
|
|
// be so special.
|
|
Op.setUser(this);
|
|
Op.setInitial(X);
|
|
NumOperands = 1;
|
|
OperandList = &Op;
|
|
}
|
|
~HandleSDNode();
|
|
|
|
const SDValue &getValue() const { return Op; }
|
|
};
|
|
|
|
class AddrSpaceCastSDNode : public SDNode {
|
|
private:
|
|
unsigned SrcAddrSpace;
|
|
unsigned DestAddrSpace;
|
|
|
|
public:
|
|
AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, EVT VT,
|
|
unsigned SrcAS, unsigned DestAS);
|
|
|
|
unsigned getSrcAddressSpace() const { return SrcAddrSpace; }
|
|
unsigned getDestAddressSpace() const { return DestAddrSpace; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::ADDRSPACECAST;
|
|
}
|
|
};
|
|
|
|
/// This is an abstract virtual class for memory operations.
|
|
class MemSDNode : public SDNode {
|
|
private:
|
|
// VT of in-memory value.
|
|
EVT MemoryVT;
|
|
|
|
protected:
|
|
/// Memory reference information.
|
|
MachineMemOperand *MMO;
|
|
|
|
public:
|
|
MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs,
|
|
EVT memvt, MachineMemOperand *MMO);
|
|
|
|
bool readMem() const { return MMO->isLoad(); }
|
|
bool writeMem() const { return MMO->isStore(); }
|
|
|
|
/// Returns alignment and volatility of the memory access
|
|
Align getOriginalAlign() const { return MMO->getBaseAlign(); }
|
|
Align getAlign() const { return MMO->getAlign(); }
|
|
// FIXME: Remove once transition to getAlign is over.
|
|
unsigned getAlignment() const { return MMO->getAlign().value(); }
|
|
|
|
/// Return the SubclassData value, without HasDebugValue. This contains an
|
|
/// encoding of the volatile flag, as well as bits used by subclasses. This
|
|
/// function should only be used to compute a FoldingSetNodeID value.
|
|
/// The HasDebugValue bit is masked out because CSE map needs to match
|
|
/// nodes with debug info with nodes without debug info. Same is about
|
|
/// isDivergent bit.
|
|
unsigned getRawSubclassData() const {
|
|
uint16_t Data;
|
|
union {
|
|
char RawSDNodeBits[sizeof(uint16_t)];
|
|
SDNodeBitfields SDNodeBits;
|
|
};
|
|
memcpy(&RawSDNodeBits, &this->RawSDNodeBits, sizeof(this->RawSDNodeBits));
|
|
SDNodeBits.HasDebugValue = 0;
|
|
SDNodeBits.IsDivergent = false;
|
|
memcpy(&Data, &RawSDNodeBits, sizeof(RawSDNodeBits));
|
|
return Data;
|
|
}
|
|
|
|
bool isVolatile() const { return MemSDNodeBits.IsVolatile; }
|
|
bool isNonTemporal() const { return MemSDNodeBits.IsNonTemporal; }
|
|
bool isDereferenceable() const { return MemSDNodeBits.IsDereferenceable; }
|
|
bool isInvariant() const { return MemSDNodeBits.IsInvariant; }
|
|
|
|
// Returns the offset from the location of the access.
|
|
int64_t getSrcValueOffset() const { return MMO->getOffset(); }
|
|
|
|
/// Returns the AA info that describes the dereference.
|
|
AAMDNodes getAAInfo() const { return MMO->getAAInfo(); }
|
|
|
|
/// Returns the Ranges that describes the dereference.
|
|
const MDNode *getRanges() const { return MMO->getRanges(); }
|
|
|
|
/// Returns the synchronization scope ID for this memory operation.
|
|
SyncScope::ID getSyncScopeID() const { return MMO->getSyncScopeID(); }
|
|
|
|
/// Return the atomic ordering requirements for this memory operation. For
|
|
/// cmpxchg atomic operations, return the atomic ordering requirements when
|
|
/// store occurs.
|
|
AtomicOrdering getSuccessOrdering() const {
|
|
return MMO->getSuccessOrdering();
|
|
}
|
|
|
|
/// Return a single atomic ordering that is at least as strong as both the
|
|
/// success and failure orderings for an atomic operation. (For operations
|
|
/// other than cmpxchg, this is equivalent to getSuccessOrdering().)
|
|
AtomicOrdering getMergedOrdering() const { return MMO->getMergedOrdering(); }
|
|
|
|
/// Return true if the memory operation ordering is Unordered or higher.
|
|
bool isAtomic() const { return MMO->isAtomic(); }
|
|
|
|
/// Returns true if the memory operation doesn't imply any ordering
|
|
/// constraints on surrounding memory operations beyond the normal memory
|
|
/// aliasing rules.
|
|
bool isUnordered() const { return MMO->isUnordered(); }
|
|
|
|
/// Returns true if the memory operation is neither atomic or volatile.
|
|
bool isSimple() const { return !isAtomic() && !isVolatile(); }
|
|
|
|
/// Return the type of the in-memory value.
|
|
EVT getMemoryVT() const { return MemoryVT; }
|
|
|
|
/// Return a MachineMemOperand object describing the memory
|
|
/// reference performed by operation.
|
|
MachineMemOperand *getMemOperand() const { return MMO; }
|
|
|
|
const MachinePointerInfo &getPointerInfo() const {
|
|
return MMO->getPointerInfo();
|
|
}
|
|
|
|
/// Return the address space for the associated pointer
|
|
unsigned getAddressSpace() const {
|
|
return getPointerInfo().getAddrSpace();
|
|
}
|
|
|
|
/// Update this MemSDNode's MachineMemOperand information
|
|
/// to reflect the alignment of NewMMO, if it has a greater alignment.
|
|
/// This must only be used when the new alignment applies to all users of
|
|
/// this MachineMemOperand.
|
|
void refineAlignment(const MachineMemOperand *NewMMO) {
|
|
MMO->refineAlignment(NewMMO);
|
|
}
|
|
|
|
const SDValue &getChain() const { return getOperand(0); }
|
|
|
|
const SDValue &getBasePtr() const {
|
|
switch (getOpcode()) {
|
|
case ISD::STORE:
|
|
case ISD::MSTORE:
|
|
return getOperand(2);
|
|
case ISD::MGATHER:
|
|
case ISD::MSCATTER:
|
|
return getOperand(3);
|
|
default:
|
|
return getOperand(1);
|
|
}
|
|
}
|
|
|
|
// Methods to support isa and dyn_cast
|
|
static bool classof(const SDNode *N) {
|
|
// For some targets, we lower some target intrinsics to a MemIntrinsicNode
|
|
// with either an intrinsic or a target opcode.
|
|
return N->getOpcode() == ISD::LOAD ||
|
|
N->getOpcode() == ISD::STORE ||
|
|
N->getOpcode() == ISD::PREFETCH ||
|
|
N->getOpcode() == ISD::ATOMIC_CMP_SWAP ||
|
|
N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
|
|
N->getOpcode() == ISD::ATOMIC_SWAP ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_ADD ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_SUB ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_AND ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_CLR ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_OR ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_XOR ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_NAND ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_MIN ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_MAX ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_UMIN ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_UMAX ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_FADD ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_FSUB ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD ||
|
|
N->getOpcode() == ISD::ATOMIC_STORE ||
|
|
N->getOpcode() == ISD::MLOAD ||
|
|
N->getOpcode() == ISD::MSTORE ||
|
|
N->getOpcode() == ISD::MGATHER ||
|
|
N->getOpcode() == ISD::MSCATTER ||
|
|
N->isMemIntrinsic() ||
|
|
N->isTargetMemoryOpcode();
|
|
}
|
|
};
|
|
|
|
/// This is an SDNode representing atomic operations.
|
|
class AtomicSDNode : public MemSDNode {
|
|
public:
|
|
AtomicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTL,
|
|
EVT MemVT, MachineMemOperand *MMO)
|
|
: MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) {
|
|
assert(((Opc != ISD::ATOMIC_LOAD && Opc != ISD::ATOMIC_STORE) ||
|
|
MMO->isAtomic()) && "then why are we using an AtomicSDNode?");
|
|
}
|
|
|
|
const SDValue &getBasePtr() const { return getOperand(1); }
|
|
const SDValue &getVal() const { return getOperand(2); }
|
|
|
|
/// Returns true if this SDNode represents cmpxchg atomic operation, false
|
|
/// otherwise.
|
|
bool isCompareAndSwap() const {
|
|
unsigned Op = getOpcode();
|
|
return Op == ISD::ATOMIC_CMP_SWAP ||
|
|
Op == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS;
|
|
}
|
|
|
|
/// For cmpxchg atomic operations, return the atomic ordering requirements
|
|
/// when store does not occur.
|
|
AtomicOrdering getFailureOrdering() const {
|
|
assert(isCompareAndSwap() && "Must be cmpxchg operation");
|
|
return MMO->getFailureOrdering();
|
|
}
|
|
|
|
// Methods to support isa and dyn_cast
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::ATOMIC_CMP_SWAP ||
|
|
N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
|
|
N->getOpcode() == ISD::ATOMIC_SWAP ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_ADD ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_SUB ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_AND ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_CLR ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_OR ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_XOR ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_NAND ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_MIN ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_MAX ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_UMIN ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_UMAX ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_FADD ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_FSUB ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD ||
|
|
N->getOpcode() == ISD::ATOMIC_STORE;
|
|
}
|
|
};
|
|
|
|
/// This SDNode is used for target intrinsics that touch
|
|
/// memory and need an associated MachineMemOperand. Its opcode may be
|
|
/// INTRINSIC_VOID, INTRINSIC_W_CHAIN, PREFETCH, or a target-specific opcode
|
|
/// with a value not less than FIRST_TARGET_MEMORY_OPCODE.
|
|
class MemIntrinsicSDNode : public MemSDNode {
|
|
public:
|
|
MemIntrinsicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
|
|
SDVTList VTs, EVT MemoryVT, MachineMemOperand *MMO)
|
|
: MemSDNode(Opc, Order, dl, VTs, MemoryVT, MMO) {
|
|
SDNodeBits.IsMemIntrinsic = true;
|
|
}
|
|
|
|
// Methods to support isa and dyn_cast
|
|
static bool classof(const SDNode *N) {
|
|
// We lower some target intrinsics to their target opcode
|
|
// early a node with a target opcode can be of this class
|
|
return N->isMemIntrinsic() ||
|
|
N->getOpcode() == ISD::PREFETCH ||
|
|
N->isTargetMemoryOpcode();
|
|
}
|
|
};
|
|
|
|
/// This SDNode is used to implement the code generator
|
|
/// support for the llvm IR shufflevector instruction. It combines elements
|
|
/// from two input vectors into a new input vector, with the selection and
|
|
/// ordering of elements determined by an array of integers, referred to as
|
|
/// the shuffle mask. For input vectors of width N, mask indices of 0..N-1
|
|
/// refer to elements from the LHS input, and indices from N to 2N-1 the RHS.
|
|
/// An index of -1 is treated as undef, such that the code generator may put
|
|
/// any value in the corresponding element of the result.
|
|
class ShuffleVectorSDNode : public SDNode {
|
|
// The memory for Mask is owned by the SelectionDAG's OperandAllocator, and
|
|
// is freed when the SelectionDAG object is destroyed.
|
|
const int *Mask;
|
|
|
|
protected:
|
|
friend class SelectionDAG;
|
|
|
|
ShuffleVectorSDNode(EVT VT, unsigned Order, const DebugLoc &dl, const int *M)
|
|
: SDNode(ISD::VECTOR_SHUFFLE, Order, dl, getSDVTList(VT)), Mask(M) {}
|
|
|
|
public:
|
|
ArrayRef<int> getMask() const {
|
|
EVT VT = getValueType(0);
|
|
return makeArrayRef(Mask, VT.getVectorNumElements());
|
|
}
|
|
|
|
int getMaskElt(unsigned Idx) const {
|
|
assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!");
|
|
return Mask[Idx];
|
|
}
|
|
|
|
bool isSplat() const { return isSplatMask(Mask, getValueType(0)); }
|
|
|
|
int getSplatIndex() const {
|
|
assert(isSplat() && "Cannot get splat index for non-splat!");
|
|
EVT VT = getValueType(0);
|
|
for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
|
|
if (Mask[i] >= 0)
|
|
return Mask[i];
|
|
|
|
// We can choose any index value here and be correct because all elements
|
|
// are undefined. Return 0 for better potential for callers to simplify.
|
|
return 0;
|
|
}
|
|
|
|
static bool isSplatMask(const int *Mask, EVT VT);
|
|
|
|
/// Change values in a shuffle permute mask assuming
|
|
/// the two vector operands have swapped position.
|
|
static void commuteMask(MutableArrayRef<int> Mask) {
|
|
unsigned NumElems = Mask.size();
|
|
for (unsigned i = 0; i != NumElems; ++i) {
|
|
int idx = Mask[i];
|
|
if (idx < 0)
|
|
continue;
|
|
else if (idx < (int)NumElems)
|
|
Mask[i] = idx + NumElems;
|
|
else
|
|
Mask[i] = idx - NumElems;
|
|
}
|
|
}
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::VECTOR_SHUFFLE;
|
|
}
|
|
};
|
|
|
|
class ConstantSDNode : public SDNode {
|
|
friend class SelectionDAG;
|
|
|
|
const ConstantInt *Value;
|
|
|
|
ConstantSDNode(bool isTarget, bool isOpaque, const ConstantInt *val, EVT VT)
|
|
: SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, 0, DebugLoc(),
|
|
getSDVTList(VT)),
|
|
Value(val) {
|
|
ConstantSDNodeBits.IsOpaque = isOpaque;
|
|
}
|
|
|
|
public:
|
|
const ConstantInt *getConstantIntValue() const { return Value; }
|
|
const APInt &getAPIntValue() const { return Value->getValue(); }
|
|
uint64_t getZExtValue() const { return Value->getZExtValue(); }
|
|
int64_t getSExtValue() const { return Value->getSExtValue(); }
|
|
uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) {
|
|
return Value->getLimitedValue(Limit);
|
|
}
|
|
MaybeAlign getMaybeAlignValue() const { return Value->getMaybeAlignValue(); }
|
|
Align getAlignValue() const { return Value->getAlignValue(); }
|
|
|
|
bool isOne() const { return Value->isOne(); }
|
|
bool isNullValue() const { return Value->isZero(); }
|
|
bool isAllOnesValue() const { return Value->isMinusOne(); }
|
|
|
|
bool isOpaque() const { return ConstantSDNodeBits.IsOpaque; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::Constant ||
|
|
N->getOpcode() == ISD::TargetConstant;
|
|
}
|
|
};
|
|
|
|
uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
|
|
return cast<ConstantSDNode>(getOperand(Num))->getZExtValue();
|
|
}
|
|
|
|
const APInt &SDNode::getConstantOperandAPInt(unsigned Num) const {
|
|
return cast<ConstantSDNode>(getOperand(Num))->getAPIntValue();
|
|
}
|
|
|
|
class ConstantFPSDNode : public SDNode {
|
|
friend class SelectionDAG;
|
|
|
|
const ConstantFP *Value;
|
|
|
|
ConstantFPSDNode(bool isTarget, const ConstantFP *val, EVT VT)
|
|
: SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP, 0,
|
|
DebugLoc(), getSDVTList(VT)),
|
|
Value(val) {}
|
|
|
|
public:
|
|
const APFloat& getValueAPF() const { return Value->getValueAPF(); }
|
|
const ConstantFP *getConstantFPValue() const { return Value; }
|
|
|
|
/// Return true if the value is positive or negative zero.
|
|
bool isZero() const { return Value->isZero(); }
|
|
|
|
/// Return true if the value is a NaN.
|
|
bool isNaN() const { return Value->isNaN(); }
|
|
|
|
/// Return true if the value is an infinity
|
|
bool isInfinity() const { return Value->isInfinity(); }
|
|
|
|
/// Return true if the value is negative.
|
|
bool isNegative() const { return Value->isNegative(); }
|
|
|
|
/// We don't rely on operator== working on double values, as
|
|
/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
|
|
/// As such, this method can be used to do an exact bit-for-bit comparison of
|
|
/// two floating point values.
|
|
|
|
/// We leave the version with the double argument here because it's just so
|
|
/// convenient to write "2.0" and the like. Without this function we'd
|
|
/// have to duplicate its logic everywhere it's called.
|
|
bool isExactlyValue(double V) const {
|
|
return Value->getValueAPF().isExactlyValue(V);
|
|
}
|
|
bool isExactlyValue(const APFloat& V) const;
|
|
|
|
static bool isValueValidForType(EVT VT, const APFloat& Val);
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::ConstantFP ||
|
|
N->getOpcode() == ISD::TargetConstantFP;
|
|
}
|
|
};
|
|
|
|
/// Returns true if \p V is a constant integer zero.
|
|
bool isNullConstant(SDValue V);
|
|
|
|
/// Returns true if \p V is an FP constant with a value of positive zero.
|
|
bool isNullFPConstant(SDValue V);
|
|
|
|
/// Returns true if \p V is an integer constant with all bits set.
|
|
bool isAllOnesConstant(SDValue V);
|
|
|
|
/// Returns true if \p V is a constant integer one.
|
|
bool isOneConstant(SDValue V);
|
|
|
|
/// Return the non-bitcasted source operand of \p V if it exists.
|
|
/// If \p V is not a bitcasted value, it is returned as-is.
|
|
SDValue peekThroughBitcasts(SDValue V);
|
|
|
|
/// Return the non-bitcasted and one-use source operand of \p V if it exists.
|
|
/// If \p V is not a bitcasted one-use value, it is returned as-is.
|
|
SDValue peekThroughOneUseBitcasts(SDValue V);
|
|
|
|
/// Return the non-extracted vector source operand of \p V if it exists.
|
|
/// If \p V is not an extracted subvector, it is returned as-is.
|
|
SDValue peekThroughExtractSubvectors(SDValue V);
|
|
|
|
/// Returns true if \p V is a bitwise not operation. Assumes that an all ones
|
|
/// constant is canonicalized to be operand 1.
|
|
bool isBitwiseNot(SDValue V, bool AllowUndefs = false);
|
|
|
|
/// Returns the SDNode if it is a constant splat BuildVector or constant int.
|
|
ConstantSDNode *isConstOrConstSplat(SDValue N, bool AllowUndefs = false,
|
|
bool AllowTruncation = false);
|
|
|
|
/// Returns the SDNode if it is a demanded constant splat BuildVector or
|
|
/// constant int.
|
|
ConstantSDNode *isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
|
|
bool AllowUndefs = false,
|
|
bool AllowTruncation = false);
|
|
|
|
/// Returns the SDNode if it is a constant splat BuildVector or constant float.
|
|
ConstantFPSDNode *isConstOrConstSplatFP(SDValue N, bool AllowUndefs = false);
|
|
|
|
/// Returns the SDNode if it is a demanded constant splat BuildVector or
|
|
/// constant float.
|
|
ConstantFPSDNode *isConstOrConstSplatFP(SDValue N, const APInt &DemandedElts,
|
|
bool AllowUndefs = false);
|
|
|
|
/// Return true if the value is a constant 0 integer or a splatted vector of
|
|
/// a constant 0 integer (with no undefs by default).
|
|
/// Build vector implicit truncation is not an issue for null values.
|
|
bool isNullOrNullSplat(SDValue V, bool AllowUndefs = false);
|
|
|
|
/// Return true if the value is a constant 1 integer or a splatted vector of a
|
|
/// constant 1 integer (with no undefs).
|
|
/// Does not permit build vector implicit truncation.
|
|
bool isOneOrOneSplat(SDValue V, bool AllowUndefs = false);
|
|
|
|
/// Return true if the value is a constant -1 integer or a splatted vector of a
|
|
/// constant -1 integer (with no undefs).
|
|
/// Does not permit build vector implicit truncation.
|
|
bool isAllOnesOrAllOnesSplat(SDValue V, bool AllowUndefs = false);
|
|
|
|
/// Return true if \p V is either a integer or FP constant.
|
|
inline bool isIntOrFPConstant(SDValue V) {
|
|
return isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V);
|
|
}
|
|
|
|
class GlobalAddressSDNode : public SDNode {
|
|
friend class SelectionDAG;
|
|
|
|
const GlobalValue *TheGlobal;
|
|
int64_t Offset;
|
|
unsigned TargetFlags;
|
|
|
|
GlobalAddressSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL,
|
|
const GlobalValue *GA, EVT VT, int64_t o,
|
|
unsigned TF);
|
|
|
|
public:
|
|
const GlobalValue *getGlobal() const { return TheGlobal; }
|
|
int64_t getOffset() const { return Offset; }
|
|
unsigned getTargetFlags() const { return TargetFlags; }
|
|
// Return the address space this GlobalAddress belongs to.
|
|
unsigned getAddressSpace() const;
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::GlobalAddress ||
|
|
N->getOpcode() == ISD::TargetGlobalAddress ||
|
|
N->getOpcode() == ISD::GlobalTLSAddress ||
|
|
N->getOpcode() == ISD::TargetGlobalTLSAddress;
|
|
}
|
|
};
|
|
|
|
class FrameIndexSDNode : public SDNode {
|
|
friend class SelectionDAG;
|
|
|
|
int FI;
|
|
|
|
FrameIndexSDNode(int fi, EVT VT, bool isTarg)
|
|
: SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex,
|
|
0, DebugLoc(), getSDVTList(VT)), FI(fi) {
|
|
}
|
|
|
|
public:
|
|
int getIndex() const { return FI; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::FrameIndex ||
|
|
N->getOpcode() == ISD::TargetFrameIndex;
|
|
}
|
|
};
|
|
|
|
/// This SDNode is used for LIFETIME_START/LIFETIME_END values, which indicate
|
|
/// the offet and size that are started/ended in the underlying FrameIndex.
|
|
class LifetimeSDNode : public SDNode {
|
|
friend class SelectionDAG;
|
|
int64_t Size;
|
|
int64_t Offset; // -1 if offset is unknown.
|
|
|
|
LifetimeSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl,
|
|
SDVTList VTs, int64_t Size, int64_t Offset)
|
|
: SDNode(Opcode, Order, dl, VTs), Size(Size), Offset(Offset) {}
|
|
public:
|
|
int64_t getFrameIndex() const {
|
|
return cast<FrameIndexSDNode>(getOperand(1))->getIndex();
|
|
}
|
|
|
|
bool hasOffset() const { return Offset >= 0; }
|
|
int64_t getOffset() const {
|
|
assert(hasOffset() && "offset is unknown");
|
|
return Offset;
|
|
}
|
|
int64_t getSize() const {
|
|
assert(hasOffset() && "offset is unknown");
|
|
return Size;
|
|
}
|
|
|
|
// Methods to support isa and dyn_cast
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::LIFETIME_START ||
|
|
N->getOpcode() == ISD::LIFETIME_END;
|
|
}
|
|
};
|
|
|
|
/// This SDNode is used for PSEUDO_PROBE values, which are the function guid and
|
|
/// the index of the basic block being probed. A pseudo probe serves as a place
|
|
/// holder and will be removed at the end of compilation. It does not have any
|
|
/// operand because we do not want the instruction selection to deal with any.
|
|
class PseudoProbeSDNode : public SDNode {
|
|
friend class SelectionDAG;
|
|
uint64_t Guid;
|
|
uint64_t Index;
|
|
uint32_t Attributes;
|
|
|
|
PseudoProbeSDNode(unsigned Opcode, unsigned Order, const DebugLoc &Dl,
|
|
SDVTList VTs, uint64_t Guid, uint64_t Index, uint32_t Attr)
|
|
: SDNode(Opcode, Order, Dl, VTs), Guid(Guid), Index(Index),
|
|
Attributes(Attr) {}
|
|
|
|
public:
|
|
uint64_t getGuid() const { return Guid; }
|
|
uint64_t getIndex() const { return Index; }
|
|
uint32_t getAttributes() const { return Attributes; }
|
|
|
|
// Methods to support isa and dyn_cast
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::PSEUDO_PROBE;
|
|
}
|
|
};
|
|
|
|
class JumpTableSDNode : public SDNode {
|
|
friend class SelectionDAG;
|
|
|
|
int JTI;
|
|
unsigned TargetFlags;
|
|
|
|
JumpTableSDNode(int jti, EVT VT, bool isTarg, unsigned TF)
|
|
: SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable,
|
|
0, DebugLoc(), getSDVTList(VT)), JTI(jti), TargetFlags(TF) {
|
|
}
|
|
|
|
public:
|
|
int getIndex() const { return JTI; }
|
|
unsigned getTargetFlags() const { return TargetFlags; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::JumpTable ||
|
|
N->getOpcode() == ISD::TargetJumpTable;
|
|
}
|
|
};
|
|
|
|
class ConstantPoolSDNode : public SDNode {
|
|
friend class SelectionDAG;
|
|
|
|
union {
|
|
const Constant *ConstVal;
|
|
MachineConstantPoolValue *MachineCPVal;
|
|
} Val;
|
|
int Offset; // It's a MachineConstantPoolValue if top bit is set.
|
|
Align Alignment; // Minimum alignment requirement of CP.
|
|
unsigned TargetFlags;
|
|
|
|
ConstantPoolSDNode(bool isTarget, const Constant *c, EVT VT, int o,
|
|
Align Alignment, unsigned TF)
|
|
: SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
|
|
DebugLoc(), getSDVTList(VT)),
|
|
Offset(o), Alignment(Alignment), TargetFlags(TF) {
|
|
assert(Offset >= 0 && "Offset is too large");
|
|
Val.ConstVal = c;
|
|
}
|
|
|
|
ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v, EVT VT, int o,
|
|
Align Alignment, unsigned TF)
|
|
: SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
|
|
DebugLoc(), getSDVTList(VT)),
|
|
Offset(o), Alignment(Alignment), TargetFlags(TF) {
|
|
assert(Offset >= 0 && "Offset is too large");
|
|
Val.MachineCPVal = v;
|
|
Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1);
|
|
}
|
|
|
|
public:
|
|
bool isMachineConstantPoolEntry() const {
|
|
return Offset < 0;
|
|
}
|
|
|
|
const Constant *getConstVal() const {
|
|
assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
|
|
return Val.ConstVal;
|
|
}
|
|
|
|
MachineConstantPoolValue *getMachineCPVal() const {
|
|
assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
|
|
return Val.MachineCPVal;
|
|
}
|
|
|
|
int getOffset() const {
|
|
return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT-1));
|
|
}
|
|
|
|
// Return the alignment of this constant pool object, which is either 0 (for
|
|
// default alignment) or the desired value.
|
|
Align getAlign() const { return Alignment; }
|
|
unsigned getTargetFlags() const { return TargetFlags; }
|
|
|
|
Type *getType() const;
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::ConstantPool ||
|
|
N->getOpcode() == ISD::TargetConstantPool;
|
|
}
|
|
};
|
|
|
|
/// Completely target-dependent object reference.
|
|
class TargetIndexSDNode : public SDNode {
|
|
friend class SelectionDAG;
|
|
|
|
unsigned TargetFlags;
|
|
int Index;
|
|
int64_t Offset;
|
|
|
|
public:
|
|
TargetIndexSDNode(int Idx, EVT VT, int64_t Ofs, unsigned TF)
|
|
: SDNode(ISD::TargetIndex, 0, DebugLoc(), getSDVTList(VT)),
|
|
TargetFlags(TF), Index(Idx), Offset(Ofs) {}
|
|
|
|
unsigned getTargetFlags() const { return TargetFlags; }
|
|
int getIndex() const { return Index; }
|
|
int64_t getOffset() const { return Offset; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::TargetIndex;
|
|
}
|
|
};
|
|
|
|
class BasicBlockSDNode : public SDNode {
|
|
friend class SelectionDAG;
|
|
|
|
MachineBasicBlock *MBB;
|
|
|
|
/// Debug info is meaningful and potentially useful here, but we create
|
|
/// blocks out of order when they're jumped to, which makes it a bit
|
|
/// harder. Let's see if we need it first.
|
|
explicit BasicBlockSDNode(MachineBasicBlock *mbb)
|
|
: SDNode(ISD::BasicBlock, 0, DebugLoc(), getSDVTList(MVT::Other)), MBB(mbb)
|
|
{}
|
|
|
|
public:
|
|
MachineBasicBlock *getBasicBlock() const { return MBB; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::BasicBlock;
|
|
}
|
|
};
|
|
|
|
/// A "pseudo-class" with methods for operating on BUILD_VECTORs.
|
|
class BuildVectorSDNode : public SDNode {
|
|
public:
|
|
// These are constructed as SDNodes and then cast to BuildVectorSDNodes.
|
|
explicit BuildVectorSDNode() = delete;
|
|
|
|
/// Check if this is a constant splat, and if so, find the
|
|
/// smallest element size that splats the vector. If MinSplatBits is
|
|
/// nonzero, the element size must be at least that large. Note that the
|
|
/// splat element may be the entire vector (i.e., a one element vector).
|
|
/// Returns the splat element value in SplatValue. Any undefined bits in
|
|
/// that value are zero, and the corresponding bits in the SplatUndef mask
|
|
/// are set. The SplatBitSize value is set to the splat element size in
|
|
/// bits. HasAnyUndefs is set to true if any bits in the vector are
|
|
/// undefined. isBigEndian describes the endianness of the target.
|
|
bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
|
|
unsigned &SplatBitSize, bool &HasAnyUndefs,
|
|
unsigned MinSplatBits = 0,
|
|
bool isBigEndian = false) const;
|
|
|
|
/// Returns the demanded splatted value or a null value if this is not a
|
|
/// splat.
|
|
///
|
|
/// The DemandedElts mask indicates the elements that must be in the splat.
|
|
/// If passed a non-null UndefElements bitvector, it will resize it to match
|
|
/// the vector width and set the bits where elements are undef.
|
|
SDValue getSplatValue(const APInt &DemandedElts,
|
|
BitVector *UndefElements = nullptr) const;
|
|
|
|
/// Returns the splatted value or a null value if this is not a splat.
|
|
///
|
|
/// If passed a non-null UndefElements bitvector, it will resize it to match
|
|
/// the vector width and set the bits where elements are undef.
|
|
SDValue getSplatValue(BitVector *UndefElements = nullptr) const;
|
|
|
|
/// Find the shortest repeating sequence of values in the build vector.
|
|
///
|
|
/// e.g. { u, X, u, X, u, u, X, u } -> { X }
|
|
/// { X, Y, u, Y, u, u, X, u } -> { X, Y }
|
|
///
|
|
/// Currently this must be a power-of-2 build vector.
|
|
/// The DemandedElts mask indicates the elements that must be present,
|
|
/// undemanded elements in Sequence may be null (SDValue()). If passed a
|
|
/// non-null UndefElements bitvector, it will resize it to match the original
|
|
/// vector width and set the bits where elements are undef. If result is
|
|
/// false, Sequence will be empty.
|
|
bool getRepeatedSequence(const APInt &DemandedElts,
|
|
SmallVectorImpl<SDValue> &Sequence,
|
|
BitVector *UndefElements = nullptr) const;
|
|
|
|
/// Find the shortest repeating sequence of values in the build vector.
|
|
///
|
|
/// e.g. { u, X, u, X, u, u, X, u } -> { X }
|
|
/// { X, Y, u, Y, u, u, X, u } -> { X, Y }
|
|
///
|
|
/// Currently this must be a power-of-2 build vector.
|
|
/// If passed a non-null UndefElements bitvector, it will resize it to match
|
|
/// the original vector width and set the bits where elements are undef.
|
|
/// If result is false, Sequence will be empty.
|
|
bool getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
|
|
BitVector *UndefElements = nullptr) const;
|
|
|
|
/// Returns the demanded splatted constant or null if this is not a constant
|
|
/// splat.
|
|
///
|
|
/// The DemandedElts mask indicates the elements that must be in the splat.
|
|
/// If passed a non-null UndefElements bitvector, it will resize it to match
|
|
/// the vector width and set the bits where elements are undef.
|
|
ConstantSDNode *
|
|
getConstantSplatNode(const APInt &DemandedElts,
|
|
BitVector *UndefElements = nullptr) const;
|
|
|
|
/// Returns the splatted constant or null if this is not a constant
|
|
/// splat.
|
|
///
|
|
/// If passed a non-null UndefElements bitvector, it will resize it to match
|
|
/// the vector width and set the bits where elements are undef.
|
|
ConstantSDNode *
|
|
getConstantSplatNode(BitVector *UndefElements = nullptr) const;
|
|
|
|
/// Returns the demanded splatted constant FP or null if this is not a
|
|
/// constant FP splat.
|
|
///
|
|
/// The DemandedElts mask indicates the elements that must be in the splat.
|
|
/// If passed a non-null UndefElements bitvector, it will resize it to match
|
|
/// the vector width and set the bits where elements are undef.
|
|
ConstantFPSDNode *
|
|
getConstantFPSplatNode(const APInt &DemandedElts,
|
|
BitVector *UndefElements = nullptr) const;
|
|
|
|
/// Returns the splatted constant FP or null if this is not a constant
|
|
/// FP splat.
|
|
///
|
|
/// If passed a non-null UndefElements bitvector, it will resize it to match
|
|
/// the vector width and set the bits where elements are undef.
|
|
ConstantFPSDNode *
|
|
getConstantFPSplatNode(BitVector *UndefElements = nullptr) const;
|
|
|
|
/// If this is a constant FP splat and the splatted constant FP is an
|
|
/// exact power or 2, return the log base 2 integer value. Otherwise,
|
|
/// return -1.
|
|
///
|
|
/// The BitWidth specifies the necessary bit precision.
|
|
int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
|
|
uint32_t BitWidth) const;
|
|
|
|
bool isConstant() const;
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::BUILD_VECTOR;
|
|
}
|
|
};
|
|
|
|
/// An SDNode that holds an arbitrary LLVM IR Value. This is
|
|
/// used when the SelectionDAG needs to make a simple reference to something
|
|
/// in the LLVM IR representation.
|
|
///
|
|
class SrcValueSDNode : public SDNode {
|
|
friend class SelectionDAG;
|
|
|
|
const Value *V;
|
|
|
|
/// Create a SrcValue for a general value.
|
|
explicit SrcValueSDNode(const Value *v)
|
|
: SDNode(ISD::SRCVALUE, 0, DebugLoc(), getSDVTList(MVT::Other)), V(v) {}
|
|
|
|
public:
|
|
/// Return the contained Value.
|
|
const Value *getValue() const { return V; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::SRCVALUE;
|
|
}
|
|
};
|
|
|
|
class MDNodeSDNode : public SDNode {
|
|
friend class SelectionDAG;
|
|
|
|
const MDNode *MD;
|
|
|
|
explicit MDNodeSDNode(const MDNode *md)
|
|
: SDNode(ISD::MDNODE_SDNODE, 0, DebugLoc(), getSDVTList(MVT::Other)), MD(md)
|
|
{}
|
|
|
|
public:
|
|
const MDNode *getMD() const { return MD; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::MDNODE_SDNODE;
|
|
}
|
|
};
|
|
|
|
class RegisterSDNode : public SDNode {
|
|
friend class SelectionDAG;
|
|
|
|
Register Reg;
|
|
|
|
RegisterSDNode(Register reg, EVT VT)
|
|
: SDNode(ISD::Register, 0, DebugLoc(), getSDVTList(VT)), Reg(reg) {}
|
|
|
|
public:
|
|
Register getReg() const { return Reg; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::Register;
|
|
}
|
|
};
|
|
|
|
class RegisterMaskSDNode : public SDNode {
|
|
friend class SelectionDAG;
|
|
|
|
// The memory for RegMask is not owned by the node.
|
|
const uint32_t *RegMask;
|
|
|
|
RegisterMaskSDNode(const uint32_t *mask)
|
|
: SDNode(ISD::RegisterMask, 0, DebugLoc(), getSDVTList(MVT::Untyped)),
|
|
RegMask(mask) {}
|
|
|
|
public:
|
|
const uint32_t *getRegMask() const { return RegMask; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::RegisterMask;
|
|
}
|
|
};
|
|
|
|
class BlockAddressSDNode : public SDNode {
|
|
friend class SelectionDAG;
|
|
|
|
const BlockAddress *BA;
|
|
int64_t Offset;
|
|
unsigned TargetFlags;
|
|
|
|
BlockAddressSDNode(unsigned NodeTy, EVT VT, const BlockAddress *ba,
|
|
int64_t o, unsigned Flags)
|
|
: SDNode(NodeTy, 0, DebugLoc(), getSDVTList(VT)),
|
|
BA(ba), Offset(o), TargetFlags(Flags) {}
|
|
|
|
public:
|
|
const BlockAddress *getBlockAddress() const { return BA; }
|
|
int64_t getOffset() const { return Offset; }
|
|
unsigned getTargetFlags() const { return TargetFlags; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::BlockAddress ||
|
|
N->getOpcode() == ISD::TargetBlockAddress;
|
|
}
|
|
};
|
|
|
|
class LabelSDNode : public SDNode {
|
|
friend class SelectionDAG;
|
|
|
|
MCSymbol *Label;
|
|
|
|
LabelSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl, MCSymbol *L)
|
|
: SDNode(Opcode, Order, dl, getSDVTList(MVT::Other)), Label(L) {
|
|
assert(LabelSDNode::classof(this) && "not a label opcode");
|
|
}
|
|
|
|
public:
|
|
MCSymbol *getLabel() const { return Label; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::EH_LABEL ||
|
|
N->getOpcode() == ISD::ANNOTATION_LABEL;
|
|
}
|
|
};
|
|
|
|
class ExternalSymbolSDNode : public SDNode {
|
|
friend class SelectionDAG;
|
|
|
|
const char *Symbol;
|
|
unsigned TargetFlags;
|
|
|
|
ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned TF, EVT VT)
|
|
: SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol, 0,
|
|
DebugLoc(), getSDVTList(VT)),
|
|
Symbol(Sym), TargetFlags(TF) {}
|
|
|
|
public:
|
|
const char *getSymbol() const { return Symbol; }
|
|
unsigned getTargetFlags() const { return TargetFlags; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::ExternalSymbol ||
|
|
N->getOpcode() == ISD::TargetExternalSymbol;
|
|
}
|
|
};
|
|
|
|
class MCSymbolSDNode : public SDNode {
|
|
friend class SelectionDAG;
|
|
|
|
MCSymbol *Symbol;
|
|
|
|
MCSymbolSDNode(MCSymbol *Symbol, EVT VT)
|
|
: SDNode(ISD::MCSymbol, 0, DebugLoc(), getSDVTList(VT)), Symbol(Symbol) {}
|
|
|
|
public:
|
|
MCSymbol *getMCSymbol() const { return Symbol; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::MCSymbol;
|
|
}
|
|
};
|
|
|
|
class CondCodeSDNode : public SDNode {
|
|
friend class SelectionDAG;
|
|
|
|
ISD::CondCode Condition;
|
|
|
|
explicit CondCodeSDNode(ISD::CondCode Cond)
|
|
: SDNode(ISD::CONDCODE, 0, DebugLoc(), getSDVTList(MVT::Other)),
|
|
Condition(Cond) {}
|
|
|
|
public:
|
|
ISD::CondCode get() const { return Condition; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::CONDCODE;
|
|
}
|
|
};
|
|
|
|
/// This class is used to represent EVT's, which are used
|
|
/// to parameterize some operations.
|
|
class VTSDNode : public SDNode {
|
|
friend class SelectionDAG;
|
|
|
|
EVT ValueType;
|
|
|
|
explicit VTSDNode(EVT VT)
|
|
: SDNode(ISD::VALUETYPE, 0, DebugLoc(), getSDVTList(MVT::Other)),
|
|
ValueType(VT) {}
|
|
|
|
public:
|
|
EVT getVT() const { return ValueType; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::VALUETYPE;
|
|
}
|
|
};
|
|
|
|
/// Base class for LoadSDNode and StoreSDNode
|
|
class LSBaseSDNode : public MemSDNode {
|
|
public:
|
|
LSBaseSDNode(ISD::NodeType NodeTy, unsigned Order, const DebugLoc &dl,
|
|
SDVTList VTs, ISD::MemIndexedMode AM, EVT MemVT,
|
|
MachineMemOperand *MMO)
|
|
: MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
|
|
LSBaseSDNodeBits.AddressingMode = AM;
|
|
assert(getAddressingMode() == AM && "Value truncated");
|
|
}
|
|
|
|
const SDValue &getOffset() const {
|
|
return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
|
|
}
|
|
|
|
/// Return the addressing mode for this load or store:
|
|
/// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
|
|
ISD::MemIndexedMode getAddressingMode() const {
|
|
return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode);
|
|
}
|
|
|
|
/// Return true if this is a pre/post inc/dec load/store.
|
|
bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
|
|
|
|
/// Return true if this is NOT a pre/post inc/dec load/store.
|
|
bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::LOAD ||
|
|
N->getOpcode() == ISD::STORE;
|
|
}
|
|
};
|
|
|
|
/// This class is used to represent ISD::LOAD nodes.
|
|
class LoadSDNode : public LSBaseSDNode {
|
|
friend class SelectionDAG;
|
|
|
|
LoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
|
|
ISD::MemIndexedMode AM, ISD::LoadExtType ETy, EVT MemVT,
|
|
MachineMemOperand *MMO)
|
|
: LSBaseSDNode(ISD::LOAD, Order, dl, VTs, AM, MemVT, MMO) {
|
|
LoadSDNodeBits.ExtTy = ETy;
|
|
assert(readMem() && "Load MachineMemOperand is not a load!");
|
|
assert(!writeMem() && "Load MachineMemOperand is a store!");
|
|
}
|
|
|
|
public:
|
|
/// Return whether this is a plain node,
|
|
/// or one of the varieties of value-extending loads.
|
|
ISD::LoadExtType getExtensionType() const {
|
|
return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
|
|
}
|
|
|
|
const SDValue &getBasePtr() const { return getOperand(1); }
|
|
const SDValue &getOffset() const { return getOperand(2); }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::LOAD;
|
|
}
|
|
};
|
|
|
|
/// This class is used to represent ISD::STORE nodes.
|
|
class StoreSDNode : public LSBaseSDNode {
|
|
friend class SelectionDAG;
|
|
|
|
StoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
|
|
ISD::MemIndexedMode AM, bool isTrunc, EVT MemVT,
|
|
MachineMemOperand *MMO)
|
|
: LSBaseSDNode(ISD::STORE, Order, dl, VTs, AM, MemVT, MMO) {
|
|
StoreSDNodeBits.IsTruncating = isTrunc;
|
|
assert(!readMem() && "Store MachineMemOperand is a load!");
|
|
assert(writeMem() && "Store MachineMemOperand is not a store!");
|
|
}
|
|
|
|
public:
|
|
/// Return true if the op does a truncation before store.
|
|
/// For integers this is the same as doing a TRUNCATE and storing the result.
|
|
/// For floats, it is the same as doing an FP_ROUND and storing the result.
|
|
bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
|
|
void setTruncatingStore(bool Truncating) {
|
|
StoreSDNodeBits.IsTruncating = Truncating;
|
|
}
|
|
|
|
const SDValue &getValue() const { return getOperand(1); }
|
|
const SDValue &getBasePtr() const { return getOperand(2); }
|
|
const SDValue &getOffset() const { return getOperand(3); }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::STORE;
|
|
}
|
|
};
|
|
|
|
/// This base class is used to represent MLOAD and MSTORE nodes
|
|
class MaskedLoadStoreSDNode : public MemSDNode {
|
|
public:
|
|
friend class SelectionDAG;
|
|
|
|
MaskedLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order,
|
|
const DebugLoc &dl, SDVTList VTs,
|
|
ISD::MemIndexedMode AM, EVT MemVT,
|
|
MachineMemOperand *MMO)
|
|
: MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
|
|
LSBaseSDNodeBits.AddressingMode = AM;
|
|
assert(getAddressingMode() == AM && "Value truncated");
|
|
}
|
|
|
|
// MaskedLoadSDNode (Chain, ptr, offset, mask, passthru)
|
|
// MaskedStoreSDNode (Chain, data, ptr, offset, mask)
|
|
// Mask is a vector of i1 elements
|
|
const SDValue &getOffset() const {
|
|
return getOperand(getOpcode() == ISD::MLOAD ? 2 : 3);
|
|
}
|
|
const SDValue &getMask() const {
|
|
return getOperand(getOpcode() == ISD::MLOAD ? 3 : 4);
|
|
}
|
|
|
|
/// Return the addressing mode for this load or store:
|
|
/// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
|
|
ISD::MemIndexedMode getAddressingMode() const {
|
|
return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode);
|
|
}
|
|
|
|
/// Return true if this is a pre/post inc/dec load/store.
|
|
bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
|
|
|
|
/// Return true if this is NOT a pre/post inc/dec load/store.
|
|
bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::MLOAD ||
|
|
N->getOpcode() == ISD::MSTORE;
|
|
}
|
|
};
|
|
|
|
/// This class is used to represent an MLOAD node
|
|
class MaskedLoadSDNode : public MaskedLoadStoreSDNode {
|
|
public:
|
|
friend class SelectionDAG;
|
|
|
|
MaskedLoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
|
|
ISD::MemIndexedMode AM, ISD::LoadExtType ETy,
|
|
bool IsExpanding, EVT MemVT, MachineMemOperand *MMO)
|
|
: MaskedLoadStoreSDNode(ISD::MLOAD, Order, dl, VTs, AM, MemVT, MMO) {
|
|
LoadSDNodeBits.ExtTy = ETy;
|
|
LoadSDNodeBits.IsExpanding = IsExpanding;
|
|
}
|
|
|
|
ISD::LoadExtType getExtensionType() const {
|
|
return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
|
|
}
|
|
|
|
const SDValue &getBasePtr() const { return getOperand(1); }
|
|
const SDValue &getOffset() const { return getOperand(2); }
|
|
const SDValue &getMask() const { return getOperand(3); }
|
|
const SDValue &getPassThru() const { return getOperand(4); }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::MLOAD;
|
|
}
|
|
|
|
bool isExpandingLoad() const { return LoadSDNodeBits.IsExpanding; }
|
|
};
|
|
|
|
/// This class is used to represent an MSTORE node
|
|
class MaskedStoreSDNode : public MaskedLoadStoreSDNode {
|
|
public:
|
|
friend class SelectionDAG;
|
|
|
|
MaskedStoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
|
|
ISD::MemIndexedMode AM, bool isTrunc, bool isCompressing,
|
|
EVT MemVT, MachineMemOperand *MMO)
|
|
: MaskedLoadStoreSDNode(ISD::MSTORE, Order, dl, VTs, AM, MemVT, MMO) {
|
|
StoreSDNodeBits.IsTruncating = isTrunc;
|
|
StoreSDNodeBits.IsCompressing = isCompressing;
|
|
}
|
|
|
|
/// Return true if the op does a truncation before store.
|
|
/// For integers this is the same as doing a TRUNCATE and storing the result.
|
|
/// For floats, it is the same as doing an FP_ROUND and storing the result.
|
|
bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
|
|
|
|
/// Returns true if the op does a compression to the vector before storing.
|
|
/// The node contiguously stores the active elements (integers or floats)
|
|
/// in src (those with their respective bit set in writemask k) to unaligned
|
|
/// memory at base_addr.
|
|
bool isCompressingStore() const { return StoreSDNodeBits.IsCompressing; }
|
|
|
|
const SDValue &getValue() const { return getOperand(1); }
|
|
const SDValue &getBasePtr() const { return getOperand(2); }
|
|
const SDValue &getOffset() const { return getOperand(3); }
|
|
const SDValue &getMask() const { return getOperand(4); }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::MSTORE;
|
|
}
|
|
};
|
|
|
|
/// This is a base class used to represent
|
|
/// MGATHER and MSCATTER nodes
|
|
///
|
|
class MaskedGatherScatterSDNode : public MemSDNode {
|
|
public:
|
|
friend class SelectionDAG;
|
|
|
|
MaskedGatherScatterSDNode(ISD::NodeType NodeTy, unsigned Order,
|
|
const DebugLoc &dl, SDVTList VTs, EVT MemVT,
|
|
MachineMemOperand *MMO, ISD::MemIndexType IndexType)
|
|
: MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
|
|
LSBaseSDNodeBits.AddressingMode = IndexType;
|
|
assert(getIndexType() == IndexType && "Value truncated");
|
|
}
|
|
|
|
/// How is Index applied to BasePtr when computing addresses.
|
|
ISD::MemIndexType getIndexType() const {
|
|
return static_cast<ISD::MemIndexType>(LSBaseSDNodeBits.AddressingMode);
|
|
}
|
|
void setIndexType(ISD::MemIndexType IndexType) {
|
|
LSBaseSDNodeBits.AddressingMode = IndexType;
|
|
}
|
|
bool isIndexScaled() const {
|
|
return (getIndexType() == ISD::SIGNED_SCALED) ||
|
|
(getIndexType() == ISD::UNSIGNED_SCALED);
|
|
}
|
|
bool isIndexSigned() const {
|
|
return (getIndexType() == ISD::SIGNED_SCALED) ||
|
|
(getIndexType() == ISD::SIGNED_UNSCALED);
|
|
}
|
|
|
|
// In the both nodes address is Op1, mask is Op2:
|
|
// MaskedGatherSDNode (Chain, passthru, mask, base, index, scale)
|
|
// MaskedScatterSDNode (Chain, value, mask, base, index, scale)
|
|
// Mask is a vector of i1 elements
|
|
const SDValue &getBasePtr() const { return getOperand(3); }
|
|
const SDValue &getIndex() const { return getOperand(4); }
|
|
const SDValue &getMask() const { return getOperand(2); }
|
|
const SDValue &getScale() const { return getOperand(5); }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::MGATHER ||
|
|
N->getOpcode() == ISD::MSCATTER;
|
|
}
|
|
};
|
|
|
|
/// This class is used to represent an MGATHER node
|
|
///
|
|
class MaskedGatherSDNode : public MaskedGatherScatterSDNode {
|
|
public:
|
|
friend class SelectionDAG;
|
|
|
|
MaskedGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
|
|
EVT MemVT, MachineMemOperand *MMO,
|
|
ISD::MemIndexType IndexType, ISD::LoadExtType ETy)
|
|
: MaskedGatherScatterSDNode(ISD::MGATHER, Order, dl, VTs, MemVT, MMO,
|
|
IndexType) {
|
|
LoadSDNodeBits.ExtTy = ETy;
|
|
}
|
|
|
|
const SDValue &getPassThru() const { return getOperand(1); }
|
|
|
|
ISD::LoadExtType getExtensionType() const {
|
|
return ISD::LoadExtType(LoadSDNodeBits.ExtTy);
|
|
}
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::MGATHER;
|
|
}
|
|
};
|
|
|
|
/// This class is used to represent an MSCATTER node
|
|
///
|
|
class MaskedScatterSDNode : public MaskedGatherScatterSDNode {
|
|
public:
|
|
friend class SelectionDAG;
|
|
|
|
MaskedScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
|
|
EVT MemVT, MachineMemOperand *MMO,
|
|
ISD::MemIndexType IndexType, bool IsTrunc)
|
|
: MaskedGatherScatterSDNode(ISD::MSCATTER, Order, dl, VTs, MemVT, MMO,
|
|
IndexType) {
|
|
StoreSDNodeBits.IsTruncating = IsTrunc;
|
|
}
|
|
|
|
/// Return true if the op does a truncation before store.
|
|
/// For integers this is the same as doing a TRUNCATE and storing the result.
|
|
/// For floats, it is the same as doing an FP_ROUND and storing the result.
|
|
bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
|
|
|
|
const SDValue &getValue() const { return getOperand(1); }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::MSCATTER;
|
|
}
|
|
};
|
|
|
|
/// An SDNode that represents everything that will be needed
|
|
/// to construct a MachineInstr. These nodes are created during the
|
|
/// instruction selection proper phase.
|
|
///
|
|
/// Note that the only supported way to set the `memoperands` is by calling the
|
|
/// `SelectionDAG::setNodeMemRefs` function as the memory management happens
|
|
/// inside the DAG rather than in the node.
|
|
class MachineSDNode : public SDNode {
|
|
private:
|
|
friend class SelectionDAG;
|
|
|
|
MachineSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL, SDVTList VTs)
|
|
: SDNode(Opc, Order, DL, VTs) {}
|
|
|
|
// We use a pointer union between a single `MachineMemOperand` pointer and
|
|
// a pointer to an array of `MachineMemOperand` pointers. This is null when
|
|
// the number of these is zero, the single pointer variant used when the
|
|
// number is one, and the array is used for larger numbers.
|
|
//
|
|
// The array is allocated via the `SelectionDAG`'s allocator and so will
|
|
// always live until the DAG is cleaned up and doesn't require ownership here.
|
|
//
|
|
// We can't use something simpler like `TinyPtrVector` here because `SDNode`
|
|
// subclasses aren't managed in a conforming C++ manner. See the comments on
|
|
// `SelectionDAG::MorphNodeTo` which details what all goes on, but the
|
|
// constraint here is that these don't manage memory with their constructor or
|
|
// destructor and can be initialized to a good state even if they start off
|
|
// uninitialized.
|
|
PointerUnion<MachineMemOperand *, MachineMemOperand **> MemRefs = {};
|
|
|
|
// Note that this could be folded into the above `MemRefs` member if doing so
|
|
// is advantageous at some point. We don't need to store this in most cases.
|
|
// However, at the moment this doesn't appear to make the allocation any
|
|
// smaller and makes the code somewhat simpler to read.
|
|
int NumMemRefs = 0;
|
|
|
|
public:
|
|
using mmo_iterator = ArrayRef<MachineMemOperand *>::const_iterator;
|
|
|
|
ArrayRef<MachineMemOperand *> memoperands() const {
|
|
// Special case the common cases.
|
|
if (NumMemRefs == 0)
|
|
return {};
|
|
if (NumMemRefs == 1)
|
|
return makeArrayRef(MemRefs.getAddrOfPtr1(), 1);
|
|
|
|
// Otherwise we have an actual array.
|
|
return makeArrayRef(MemRefs.get<MachineMemOperand **>(), NumMemRefs);
|
|
}
|
|
mmo_iterator memoperands_begin() const { return memoperands().begin(); }
|
|
mmo_iterator memoperands_end() const { return memoperands().end(); }
|
|
bool memoperands_empty() const { return memoperands().empty(); }
|
|
|
|
/// Clear out the memory reference descriptor list.
|
|
void clearMemRefs() {
|
|
MemRefs = nullptr;
|
|
NumMemRefs = 0;
|
|
}
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->isMachineOpcode();
|
|
}
|
|
};
|
|
|
|
/// An SDNode that records if a register contains a value that is guaranteed to
|
|
/// be aligned accordingly.
|
|
class AssertAlignSDNode : public SDNode {
|
|
Align Alignment;
|
|
|
|
public:
|
|
AssertAlignSDNode(unsigned Order, const DebugLoc &DL, EVT VT, Align A)
|
|
: SDNode(ISD::AssertAlign, Order, DL, getSDVTList(VT)), Alignment(A) {}
|
|
|
|
Align getAlign() const { return Alignment; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::AssertAlign;
|
|
}
|
|
};
|
|
|
|
class SDNodeIterator {
|
|
const SDNode *Node;
|
|
unsigned Operand;
|
|
|
|
SDNodeIterator(const SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
|
|
|
|
public:
|
|
using iterator_category = std::forward_iterator_tag;
|
|
using value_type = SDNode;
|
|
using difference_type = std::ptrdiff_t;
|
|
using pointer = value_type *;
|
|
using reference = value_type &;
|
|
|
|
bool operator==(const SDNodeIterator& x) const {
|
|
return Operand == x.Operand;
|
|
}
|
|
bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
|
|
|
|
pointer operator*() const {
|
|
return Node->getOperand(Operand).getNode();
|
|
}
|
|
pointer operator->() const { return operator*(); }
|
|
|
|
SDNodeIterator& operator++() { // Preincrement
|
|
++Operand;
|
|
return *this;
|
|
}
|
|
SDNodeIterator operator++(int) { // Postincrement
|
|
SDNodeIterator tmp = *this; ++*this; return tmp;
|
|
}
|
|
size_t operator-(SDNodeIterator Other) const {
|
|
assert(Node == Other.Node &&
|
|
"Cannot compare iterators of two different nodes!");
|
|
return Operand - Other.Operand;
|
|
}
|
|
|
|
static SDNodeIterator begin(const SDNode *N) { return SDNodeIterator(N, 0); }
|
|
static SDNodeIterator end (const SDNode *N) {
|
|
return SDNodeIterator(N, N->getNumOperands());
|
|
}
|
|
|
|
unsigned getOperand() const { return Operand; }
|
|
const SDNode *getNode() const { return Node; }
|
|
};
|
|
|
|
template <> struct GraphTraits<SDNode*> {
|
|
using NodeRef = SDNode *;
|
|
using ChildIteratorType = SDNodeIterator;
|
|
|
|
static NodeRef getEntryNode(SDNode *N) { return N; }
|
|
|
|
static ChildIteratorType child_begin(NodeRef N) {
|
|
return SDNodeIterator::begin(N);
|
|
}
|
|
|
|
static ChildIteratorType child_end(NodeRef N) {
|
|
return SDNodeIterator::end(N);
|
|
}
|
|
};
|
|
|
|
/// A representation of the largest SDNode, for use in sizeof().
|
|
///
|
|
/// This needs to be a union because the largest node differs on 32 bit systems
|
|
/// with 4 and 8 byte pointer alignment, respectively.
|
|
using LargestSDNode = AlignedCharArrayUnion<AtomicSDNode, TargetIndexSDNode,
|
|
BlockAddressSDNode,
|
|
GlobalAddressSDNode,
|
|
PseudoProbeSDNode>;
|
|
|
|
/// The SDNode class with the greatest alignment requirement.
|
|
using MostAlignedSDNode = GlobalAddressSDNode;
|
|
|
|
namespace ISD {
|
|
|
|
/// Returns true if the specified node is a non-extending and unindexed load.
|
|
inline bool isNormalLoad(const SDNode *N) {
|
|
const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
|
|
return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
|
|
Ld->getAddressingMode() == ISD::UNINDEXED;
|
|
}
|
|
|
|
/// Returns true if the specified node is a non-extending load.
|
|
inline bool isNON_EXTLoad(const SDNode *N) {
|
|
return isa<LoadSDNode>(N) &&
|
|
cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
|
|
}
|
|
|
|
/// Returns true if the specified node is a EXTLOAD.
|
|
inline bool isEXTLoad(const SDNode *N) {
|
|
return isa<LoadSDNode>(N) &&
|
|
cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
|
|
}
|
|
|
|
/// Returns true if the specified node is a SEXTLOAD.
|
|
inline bool isSEXTLoad(const SDNode *N) {
|
|
return isa<LoadSDNode>(N) &&
|
|
cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
|
|
}
|
|
|
|
/// Returns true if the specified node is a ZEXTLOAD.
|
|
inline bool isZEXTLoad(const SDNode *N) {
|
|
return isa<LoadSDNode>(N) &&
|
|
cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
|
|
}
|
|
|
|
/// Returns true if the specified node is an unindexed load.
|
|
inline bool isUNINDEXEDLoad(const SDNode *N) {
|
|
return isa<LoadSDNode>(N) &&
|
|
cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
|
|
}
|
|
|
|
/// Returns true if the specified node is a non-truncating
|
|
/// and unindexed store.
|
|
inline bool isNormalStore(const SDNode *N) {
|
|
const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
|
|
return St && !St->isTruncatingStore() &&
|
|
St->getAddressingMode() == ISD::UNINDEXED;
|
|
}
|
|
|
|
/// Returns true if the specified node is a non-truncating store.
|
|
inline bool isNON_TRUNCStore(const SDNode *N) {
|
|
return isa<StoreSDNode>(N) && !cast<StoreSDNode>(N)->isTruncatingStore();
|
|
}
|
|
|
|
/// Returns true if the specified node is a truncating store.
|
|
inline bool isTRUNCStore(const SDNode *N) {
|
|
return isa<StoreSDNode>(N) && cast<StoreSDNode>(N)->isTruncatingStore();
|
|
}
|
|
|
|
/// Returns true if the specified node is an unindexed store.
|
|
inline bool isUNINDEXEDStore(const SDNode *N) {
|
|
return isa<StoreSDNode>(N) &&
|
|
cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
|
|
}
|
|
|
|
/// Attempt to match a unary predicate against a scalar/splat constant or
|
|
/// every element of a constant BUILD_VECTOR.
|
|
/// If AllowUndef is true, then UNDEF elements will pass nullptr to Match.
|
|
bool matchUnaryPredicate(SDValue Op,
|
|
std::function<bool(ConstantSDNode *)> Match,
|
|
bool AllowUndefs = false);
|
|
|
|
/// Attempt to match a binary predicate against a pair of scalar/splat
|
|
/// constants or every element of a pair of constant BUILD_VECTORs.
|
|
/// If AllowUndef is true, then UNDEF elements will pass nullptr to Match.
|
|
/// If AllowTypeMismatch is true then RetType + ArgTypes don't need to match.
|
|
bool matchBinaryPredicate(
|
|
SDValue LHS, SDValue RHS,
|
|
std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
|
|
bool AllowUndefs = false, bool AllowTypeMismatch = false);
|
|
|
|
/// Returns true if the specified value is the overflow result from one
|
|
/// of the overflow intrinsic nodes.
|
|
inline bool isOverflowIntrOpRes(SDValue Op) {
|
|
unsigned Opc = Op.getOpcode();
|
|
return (Op.getResNo() == 1 &&
|
|
(Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
|
|
Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO));
|
|
}
|
|
|
|
} // end namespace ISD
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif // LLVM_CODEGEN_SELECTIONDAGNODES_H
|