1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 19:52:54 +01:00
llvm-mirror/lib/MC/MCAssembler.cpp
Rafael Espindola c97d642bf7 Relax address updates in the eh_frame section.
llvm-svn: 122591
2010-12-28 05:39:27 +00:00

948 lines
30 KiB
C++

//===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "assembler"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCAsmLayout.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCSection.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCValue.h"
#include "llvm/MC/MCDwarf.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetRegistry.h"
#include "llvm/Target/TargetAsmBackend.h"
#include <vector>
using namespace llvm;
namespace {
namespace stats {
STATISTIC(EmittedFragments, "Number of emitted assembler fragments");
STATISTIC(EvaluateFixup, "Number of evaluated fixups");
STATISTIC(FragmentLayouts, "Number of fragment layouts");
STATISTIC(ObjectBytes, "Number of emitted object file bytes");
STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
}
}
// FIXME FIXME FIXME: There are number of places in this file where we convert
// what is a 64-bit assembler value used for computation into a value in the
// object file, which may truncate it. We should detect that truncation where
// invalid and report errors back.
/* *** */
MCAsmLayout::MCAsmLayout(MCAssembler &Asm)
: Assembler(Asm), LastValidFragment()
{
// Compute the section layout order. Virtual sections must go last.
for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it)
if (!it->getSection().isVirtualSection())
SectionOrder.push_back(&*it);
for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it)
if (it->getSection().isVirtualSection())
SectionOrder.push_back(&*it);
}
bool MCAsmLayout::isFragmentUpToDate(const MCFragment *F) const {
const MCSectionData &SD = *F->getParent();
const MCFragment *LastValid = LastValidFragment.lookup(&SD);
if (!LastValid)
return false;
assert(LastValid->getParent() == F->getParent());
return F->getLayoutOrder() <= LastValid->getLayoutOrder();
}
void MCAsmLayout::Invalidate(MCFragment *F) {
// If this fragment wasn't already up-to-date, we don't need to do anything.
if (!isFragmentUpToDate(F))
return;
// Otherwise, reset the last valid fragment to this fragment.
const MCSectionData &SD = *F->getParent();
LastValidFragment[&SD] = F;
}
void MCAsmLayout::EnsureValid(const MCFragment *F) const {
MCSectionData &SD = *F->getParent();
MCFragment *Cur = LastValidFragment[&SD];
if (!Cur)
Cur = &*SD.begin();
else
Cur = Cur->getNextNode();
// Advance the layout position until the fragment is up-to-date.
while (!isFragmentUpToDate(F)) {
const_cast<MCAsmLayout*>(this)->LayoutFragment(Cur);
Cur = Cur->getNextNode();
}
}
uint64_t MCAsmLayout::getFragmentOffset(const MCFragment *F) const {
EnsureValid(F);
assert(F->Offset != ~UINT64_C(0) && "Address not set!");
return F->Offset;
}
uint64_t MCAsmLayout::getSymbolOffset(const MCSymbolData *SD) const {
assert(SD->getFragment() && "Invalid getOffset() on undefined symbol!");
return getFragmentOffset(SD->getFragment()) + SD->getOffset();
}
uint64_t MCAsmLayout::getSectionAddressSize(const MCSectionData *SD) const {
// The size is the last fragment's end offset.
const MCFragment &F = SD->getFragmentList().back();
return getFragmentOffset(&F) + getAssembler().ComputeFragmentSize(*this, F);
}
uint64_t MCAsmLayout::getSectionFileSize(const MCSectionData *SD) const {
// Virtual sections have no file size.
if (SD->getSection().isVirtualSection())
return 0;
// Otherwise, the file size is the same as the address space size.
return getSectionAddressSize(SD);
}
/* *** */
MCFragment::MCFragment() : Kind(FragmentType(~0)) {
}
MCFragment::~MCFragment() {
}
MCFragment::MCFragment(FragmentType _Kind, MCSectionData *_Parent)
: Kind(_Kind), Parent(_Parent), Atom(0), Offset(~UINT64_C(0))
{
if (Parent)
Parent->getFragmentList().push_back(this);
}
/* *** */
MCSectionData::MCSectionData() : Section(0) {}
MCSectionData::MCSectionData(const MCSection &_Section, MCAssembler *A)
: Section(&_Section),
Ordinal(~UINT32_C(0)),
Alignment(1),
HasInstructions(false)
{
if (A)
A->getSectionList().push_back(this);
}
/* *** */
MCSymbolData::MCSymbolData() : Symbol(0) {}
MCSymbolData::MCSymbolData(const MCSymbol &_Symbol, MCFragment *_Fragment,
uint64_t _Offset, MCAssembler *A)
: Symbol(&_Symbol), Fragment(_Fragment), Offset(_Offset),
IsExternal(false), IsPrivateExtern(false),
CommonSize(0), SymbolSize(0), CommonAlign(0),
Flags(0), Index(0)
{
if (A)
A->getSymbolList().push_back(this);
}
/* *** */
MCAssembler::MCAssembler(MCContext &Context_, TargetAsmBackend &Backend_,
MCCodeEmitter &Emitter_, MCObjectWriter &Writer_,
raw_ostream &OS_)
: Context(Context_), Backend(Backend_), Emitter(Emitter_), Writer(Writer_),
OS(OS_), RelaxAll(false), SubsectionsViaSymbols(false)
{
}
MCAssembler::~MCAssembler() {
}
bool MCAssembler::isSymbolLinkerVisible(const MCSymbol &Symbol) const {
// Non-temporary labels should always be visible to the linker.
if (!Symbol.isTemporary())
return true;
// Absolute temporary labels are never visible.
if (!Symbol.isInSection())
return false;
// Otherwise, check if the section requires symbols even for temporary labels.
return getBackend().doesSectionRequireSymbols(Symbol.getSection());
}
const MCSymbolData *MCAssembler::getAtom(const MCSymbolData *SD) const {
// Linker visible symbols define atoms.
if (isSymbolLinkerVisible(SD->getSymbol()))
return SD;
// Absolute and undefined symbols have no defining atom.
if (!SD->getFragment())
return 0;
// Non-linker visible symbols in sections which can't be atomized have no
// defining atom.
if (!getBackend().isSectionAtomizable(
SD->getFragment()->getParent()->getSection()))
return 0;
// Otherwise, return the atom for the containing fragment.
return SD->getFragment()->getAtom();
}
bool MCAssembler::EvaluateFixup(const MCAsmLayout &Layout,
const MCFixup &Fixup, const MCFragment *DF,
MCValue &Target, uint64_t &Value) const {
++stats::EvaluateFixup;
if (!Fixup.getValue()->EvaluateAsRelocatable(Target, Layout))
report_fatal_error("expected relocatable expression");
bool IsPCRel = Backend.getFixupKindInfo(
Fixup.getKind()).Flags & MCFixupKindInfo::FKF_IsPCRel;
bool IsResolved;
if (IsPCRel) {
if (Target.getSymB()) {
IsResolved = false;
} else if (!Target.getSymA()) {
IsResolved = false;
} else {
const MCSymbol &SA = Target.getSymA()->getSymbol();
if (SA.AliasedSymbol().isUndefined()) {
IsResolved = false;
} else {
const MCSymbolData &DataA = getSymbolData(SA);
IsResolved =
getWriter().IsSymbolRefDifferenceFullyResolvedImpl(*this, DataA,
*DF, false, true);
}
}
} else {
IsResolved = Target.isAbsolute();
}
Value = Target.getConstant();
bool IsThumb = false;
if (const MCSymbolRefExpr *A = Target.getSymA()) {
const MCSymbol &Sym = A->getSymbol().AliasedSymbol();
if (Sym.isDefined())
Value += Layout.getSymbolOffset(&getSymbolData(Sym));
if (isThumbFunc(&Sym))
IsThumb = true;
}
if (const MCSymbolRefExpr *B = Target.getSymB()) {
const MCSymbol &Sym = B->getSymbol().AliasedSymbol();
if (Sym.isDefined())
Value -= Layout.getSymbolOffset(&getSymbolData(Sym));
}
bool ShouldAlignPC = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
MCFixupKindInfo::FKF_IsAlignedDownTo32Bits;
assert((ShouldAlignPC ? IsPCRel : true) &&
"FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!");
if (IsPCRel) {
uint32_t Offset = Layout.getFragmentOffset(DF) + Fixup.getOffset();
// A number of ARM fixups in Thumb mode require that the effective PC
// address be determined as the 32-bit aligned version of the actual offset.
if (ShouldAlignPC) Offset &= ~0x3;
Value -= Offset;
}
// ARM fixups based from a thumb function address need to have the low
// bit set. The actual value is always at least 16-bit aligned, so the
// low bit is normally clear and available for use as an ISA flag for
// interworking.
if (IsThumb)
Value |= 1;
return IsResolved;
}
uint64_t MCAssembler::ComputeFragmentSize(const MCAsmLayout &Layout,
const MCFragment &F) const {
switch (F.getKind()) {
case MCFragment::FT_Data:
return cast<MCDataFragment>(F).getContents().size();
case MCFragment::FT_Fill:
return cast<MCFillFragment>(F).getSize();
case MCFragment::FT_Inst:
return cast<MCInstFragment>(F).getInstSize();
case MCFragment::FT_LEB:
return cast<MCLEBFragment>(F).getContents().size();
case MCFragment::FT_Align: {
const MCAlignFragment &AF = cast<MCAlignFragment>(F);
unsigned Offset = Layout.getFragmentOffset(&AF);
unsigned Size = OffsetToAlignment(Offset, AF.getAlignment());
if (Size > AF.getMaxBytesToEmit())
return 0;
return Size;
}
case MCFragment::FT_Org: {
MCOrgFragment &OF = cast<MCOrgFragment>(F);
int64_t TargetLocation;
if (!OF.getOffset().EvaluateAsAbsolute(TargetLocation, Layout))
report_fatal_error("expected assembly-time absolute expression");
// FIXME: We need a way to communicate this error.
uint64_t FragmentOffset = Layout.getFragmentOffset(&OF);
int64_t Size = TargetLocation - FragmentOffset;
if (Size < 0 || Size >= 0x40000000)
report_fatal_error("invalid .org offset '" + Twine(TargetLocation) +
"' (at offset '" + Twine(FragmentOffset) + "')");
return Size;
}
case MCFragment::FT_Dwarf:
return cast<MCDwarfLineAddrFragment>(F).getContents().size();
case MCFragment::FT_DwarfFrame:
return cast<MCDwarfCallFrameFragment>(F).getContents().size();
}
assert(0 && "invalid fragment kind");
return 0;
}
void MCAsmLayout::LayoutFragment(MCFragment *F) {
MCFragment *Prev = F->getPrevNode();
// We should never try to recompute something which is up-to-date.
assert(!isFragmentUpToDate(F) && "Attempt to recompute up-to-date fragment!");
// We should never try to compute the fragment layout if it's predecessor
// isn't up-to-date.
assert((!Prev || isFragmentUpToDate(Prev)) &&
"Attempt to compute fragment before it's predecessor!");
++stats::FragmentLayouts;
// Compute fragment offset and size.
uint64_t Offset = 0;
if (Prev)
Offset += Prev->Offset + getAssembler().ComputeFragmentSize(*this, *Prev);
F->Offset = Offset;
LastValidFragment[F->getParent()] = F;
}
/// WriteFragmentData - Write the \arg F data to the output file.
static void WriteFragmentData(const MCAssembler &Asm, const MCAsmLayout &Layout,
const MCFragment &F) {
MCObjectWriter *OW = &Asm.getWriter();
uint64_t Start = OW->getStream().tell();
(void) Start;
++stats::EmittedFragments;
// FIXME: Embed in fragments instead?
uint64_t FragmentSize = Asm.ComputeFragmentSize(Layout, F);
switch (F.getKind()) {
case MCFragment::FT_Align: {
MCAlignFragment &AF = cast<MCAlignFragment>(F);
uint64_t Count = FragmentSize / AF.getValueSize();
assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!");
// FIXME: This error shouldn't actually occur (the front end should emit
// multiple .align directives to enforce the semantics it wants), but is
// severe enough that we want to report it. How to handle this?
if (Count * AF.getValueSize() != FragmentSize)
report_fatal_error("undefined .align directive, value size '" +
Twine(AF.getValueSize()) +
"' is not a divisor of padding size '" +
Twine(FragmentSize) + "'");
// See if we are aligning with nops, and if so do that first to try to fill
// the Count bytes. Then if that did not fill any bytes or there are any
// bytes left to fill use the the Value and ValueSize to fill the rest.
// If we are aligning with nops, ask that target to emit the right data.
if (AF.hasEmitNops()) {
if (!Asm.getBackend().WriteNopData(Count, OW))
report_fatal_error("unable to write nop sequence of " +
Twine(Count) + " bytes");
break;
}
// Otherwise, write out in multiples of the value size.
for (uint64_t i = 0; i != Count; ++i) {
switch (AF.getValueSize()) {
default:
assert(0 && "Invalid size!");
case 1: OW->Write8 (uint8_t (AF.getValue())); break;
case 2: OW->Write16(uint16_t(AF.getValue())); break;
case 4: OW->Write32(uint32_t(AF.getValue())); break;
case 8: OW->Write64(uint64_t(AF.getValue())); break;
}
}
break;
}
case MCFragment::FT_Data: {
MCDataFragment &DF = cast<MCDataFragment>(F);
assert(FragmentSize == DF.getContents().size() && "Invalid size!");
OW->WriteBytes(DF.getContents().str());
break;
}
case MCFragment::FT_Fill: {
MCFillFragment &FF = cast<MCFillFragment>(F);
assert(FF.getValueSize() && "Invalid virtual align in concrete fragment!");
for (uint64_t i = 0, e = FF.getSize() / FF.getValueSize(); i != e; ++i) {
switch (FF.getValueSize()) {
default:
assert(0 && "Invalid size!");
case 1: OW->Write8 (uint8_t (FF.getValue())); break;
case 2: OW->Write16(uint16_t(FF.getValue())); break;
case 4: OW->Write32(uint32_t(FF.getValue())); break;
case 8: OW->Write64(uint64_t(FF.getValue())); break;
}
}
break;
}
case MCFragment::FT_Inst: {
MCInstFragment &IF = cast<MCInstFragment>(F);
OW->WriteBytes(StringRef(IF.getCode().begin(), IF.getCode().size()));
break;
}
case MCFragment::FT_LEB: {
MCLEBFragment &LF = cast<MCLEBFragment>(F);
OW->WriteBytes(LF.getContents().str());
break;
}
case MCFragment::FT_Org: {
MCOrgFragment &OF = cast<MCOrgFragment>(F);
for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
OW->Write8(uint8_t(OF.getValue()));
break;
}
case MCFragment::FT_Dwarf: {
const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F);
OW->WriteBytes(OF.getContents().str());
break;
}
case MCFragment::FT_DwarfFrame: {
const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F);
OW->WriteBytes(CF.getContents().str());
break;
}
}
assert(OW->getStream().tell() - Start == FragmentSize);
}
void MCAssembler::WriteSectionData(const MCSectionData *SD,
const MCAsmLayout &Layout) const {
// Ignore virtual sections.
if (SD->getSection().isVirtualSection()) {
assert(Layout.getSectionFileSize(SD) == 0 && "Invalid size for section!");
// Check that contents are only things legal inside a virtual section.
for (MCSectionData::const_iterator it = SD->begin(),
ie = SD->end(); it != ie; ++it) {
switch (it->getKind()) {
default:
assert(0 && "Invalid fragment in virtual section!");
case MCFragment::FT_Data: {
// Check that we aren't trying to write a non-zero contents (or fixups)
// into a virtual section. This is to support clients which use standard
// directives to fill the contents of virtual sections.
MCDataFragment &DF = cast<MCDataFragment>(*it);
assert(DF.fixup_begin() == DF.fixup_end() &&
"Cannot have fixups in virtual section!");
for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i)
assert(DF.getContents()[i] == 0 &&
"Invalid data value for virtual section!");
break;
}
case MCFragment::FT_Align:
// Check that we aren't trying to write a non-zero value into a virtual
// section.
assert((!cast<MCAlignFragment>(it)->getValueSize() ||
!cast<MCAlignFragment>(it)->getValue()) &&
"Invalid align in virtual section!");
break;
case MCFragment::FT_Fill:
assert(!cast<MCFillFragment>(it)->getValueSize() &&
"Invalid fill in virtual section!");
break;
}
}
return;
}
uint64_t Start = getWriter().getStream().tell();
(void) Start;
for (MCSectionData::const_iterator it = SD->begin(),
ie = SD->end(); it != ie; ++it)
WriteFragmentData(*this, Layout, *it);
assert(getWriter().getStream().tell() - Start ==
Layout.getSectionAddressSize(SD));
}
uint64_t MCAssembler::HandleFixup(const MCAsmLayout &Layout,
MCFragment &F,
const MCFixup &Fixup) {
// Evaluate the fixup.
MCValue Target;
uint64_t FixedValue;
if (!EvaluateFixup(Layout, Fixup, &F, Target, FixedValue)) {
// The fixup was unresolved, we need a relocation. Inform the object
// writer of the relocation, and give it an opportunity to adjust the
// fixup value if need be.
getWriter().RecordRelocation(*this, Layout, &F, Fixup, Target, FixedValue);
}
return FixedValue;
}
void MCAssembler::Finish() {
DEBUG_WITH_TYPE("mc-dump", {
llvm::errs() << "assembler backend - pre-layout\n--\n";
dump(); });
// Create the layout object.
MCAsmLayout Layout(*this);
// Create dummy fragments and assign section ordinals.
unsigned SectionIndex = 0;
for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) {
// Create dummy fragments to eliminate any empty sections, this simplifies
// layout.
if (it->getFragmentList().empty())
new MCDataFragment(it);
it->setOrdinal(SectionIndex++);
}
// Assign layout order indices to sections and fragments.
for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) {
MCSectionData *SD = Layout.getSectionOrder()[i];
SD->setLayoutOrder(i);
unsigned FragmentIndex = 0;
for (MCSectionData::iterator it2 = SD->begin(),
ie2 = SD->end(); it2 != ie2; ++it2)
it2->setLayoutOrder(FragmentIndex++);
}
// Layout until everything fits.
while (LayoutOnce(Layout))
continue;
DEBUG_WITH_TYPE("mc-dump", {
llvm::errs() << "assembler backend - post-relaxation\n--\n";
dump(); });
// Finalize the layout, including fragment lowering.
FinishLayout(Layout);
DEBUG_WITH_TYPE("mc-dump", {
llvm::errs() << "assembler backend - final-layout\n--\n";
dump(); });
uint64_t StartOffset = OS.tell();
// Allow the object writer a chance to perform post-layout binding (for
// example, to set the index fields in the symbol data).
getWriter().ExecutePostLayoutBinding(*this, Layout);
// Evaluate and apply the fixups, generating relocation entries as necessary.
for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) {
for (MCSectionData::iterator it2 = it->begin(),
ie2 = it->end(); it2 != ie2; ++it2) {
MCDataFragment *DF = dyn_cast<MCDataFragment>(it2);
if (DF) {
for (MCDataFragment::fixup_iterator it3 = DF->fixup_begin(),
ie3 = DF->fixup_end(); it3 != ie3; ++it3) {
MCFixup &Fixup = *it3;
uint64_t FixedValue = HandleFixup(Layout, *DF, Fixup);
getBackend().ApplyFixup(Fixup, DF->getContents().data(),
DF->getContents().size(), FixedValue);
}
}
MCInstFragment *IF = dyn_cast<MCInstFragment>(it2);
if (IF) {
for (MCInstFragment::fixup_iterator it3 = IF->fixup_begin(),
ie3 = IF->fixup_end(); it3 != ie3; ++it3) {
MCFixup &Fixup = *it3;
uint64_t FixedValue = HandleFixup(Layout, *IF, Fixup);
getBackend().ApplyFixup(Fixup, IF->getCode().data(),
IF->getCode().size(), FixedValue);
}
}
}
}
// Write the object file.
getWriter().WriteObject(*this, Layout);
stats::ObjectBytes += OS.tell() - StartOffset;
}
bool MCAssembler::FixupNeedsRelaxation(const MCFixup &Fixup,
const MCFragment *DF,
const MCAsmLayout &Layout) const {
if (getRelaxAll())
return true;
// If we cannot resolve the fixup value, it requires relaxation.
MCValue Target;
uint64_t Value;
if (!EvaluateFixup(Layout, Fixup, DF, Target, Value))
return true;
// Otherwise, relax if the value is too big for a (signed) i8.
//
// FIXME: This is target dependent!
return int64_t(Value) != int64_t(int8_t(Value));
}
bool MCAssembler::FragmentNeedsRelaxation(const MCInstFragment *IF,
const MCAsmLayout &Layout) const {
// If this inst doesn't ever need relaxation, ignore it. This occurs when we
// are intentionally pushing out inst fragments, or because we relaxed a
// previous instruction to one that doesn't need relaxation.
if (!getBackend().MayNeedRelaxation(IF->getInst()))
return false;
for (MCInstFragment::const_fixup_iterator it = IF->fixup_begin(),
ie = IF->fixup_end(); it != ie; ++it)
if (FixupNeedsRelaxation(*it, IF, Layout))
return true;
return false;
}
bool MCAssembler::RelaxInstruction(MCAsmLayout &Layout,
MCInstFragment &IF) {
if (!FragmentNeedsRelaxation(&IF, Layout))
return false;
++stats::RelaxedInstructions;
// FIXME-PERF: We could immediately lower out instructions if we can tell
// they are fully resolved, to avoid retesting on later passes.
// Relax the fragment.
MCInst Relaxed;
getBackend().RelaxInstruction(IF.getInst(), Relaxed);
// Encode the new instruction.
//
// FIXME-PERF: If it matters, we could let the target do this. It can
// probably do so more efficiently in many cases.
SmallVector<MCFixup, 4> Fixups;
SmallString<256> Code;
raw_svector_ostream VecOS(Code);
getEmitter().EncodeInstruction(Relaxed, VecOS, Fixups);
VecOS.flush();
// Update the instruction fragment.
IF.setInst(Relaxed);
IF.getCode() = Code;
IF.getFixups().clear();
// FIXME: Eliminate copy.
for (unsigned i = 0, e = Fixups.size(); i != e; ++i)
IF.getFixups().push_back(Fixups[i]);
return true;
}
bool MCAssembler::RelaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) {
int64_t Value = 0;
uint64_t OldSize = LF.getContents().size();
LF.getValue().EvaluateAsAbsolute(Value, Layout);
SmallString<8> &Data = LF.getContents();
Data.clear();
raw_svector_ostream OSE(Data);
if (LF.isSigned())
MCObjectWriter::EncodeSLEB128(Value, OSE);
else
MCObjectWriter::EncodeULEB128(Value, OSE);
OSE.flush();
return OldSize != LF.getContents().size();
}
bool MCAssembler::RelaxDwarfLineAddr(MCAsmLayout &Layout,
MCDwarfLineAddrFragment &DF) {
int64_t AddrDelta = 0;
uint64_t OldSize = DF.getContents().size();
bool IsAbs = DF.getAddrDelta().EvaluateAsAbsolute(AddrDelta, Layout);
(void)IsAbs;
assert(IsAbs);
int64_t LineDelta;
LineDelta = DF.getLineDelta();
SmallString<8> &Data = DF.getContents();
Data.clear();
raw_svector_ostream OSE(Data);
MCDwarfLineAddr::Encode(LineDelta, AddrDelta, OSE);
OSE.flush();
return OldSize != Data.size();
}
bool MCAssembler::RelaxDwarfCallFrameFragment(MCAsmLayout &Layout,
MCDwarfCallFrameFragment &DF) {
int64_t AddrDelta = 0;
uint64_t OldSize = DF.getContents().size();
bool IsAbs = DF.getAddrDelta().EvaluateAsAbsolute(AddrDelta, Layout);
(void)IsAbs;
assert(IsAbs);
SmallString<8> &Data = DF.getContents();
Data.clear();
raw_svector_ostream OSE(Data);
MCDwarfFrameEmitter::EncodeAdvanceLoc(AddrDelta, OSE);
OSE.flush();
return OldSize != Data.size();
}
bool MCAssembler::LayoutSectionOnce(MCAsmLayout &Layout,
MCSectionData &SD) {
MCFragment *FirstInvalidFragment = NULL;
// Scan for fragments that need relaxation.
for (MCSectionData::iterator it2 = SD.begin(),
ie2 = SD.end(); it2 != ie2; ++it2) {
// Check if this is an fragment that needs relaxation.
bool relaxedFrag = false;
switch(it2->getKind()) {
default:
break;
case MCFragment::FT_Inst:
relaxedFrag = RelaxInstruction(Layout, *cast<MCInstFragment>(it2));
break;
case MCFragment::FT_Dwarf:
relaxedFrag = RelaxDwarfLineAddr(Layout,
*cast<MCDwarfLineAddrFragment>(it2));
break;
case MCFragment::FT_DwarfFrame:
relaxedFrag =
RelaxDwarfCallFrameFragment(Layout,
*cast<MCDwarfCallFrameFragment>(it2));
break;
case MCFragment::FT_LEB:
relaxedFrag = RelaxLEB(Layout, *cast<MCLEBFragment>(it2));
break;
}
// Update the layout, and remember that we relaxed.
if (relaxedFrag && !FirstInvalidFragment)
FirstInvalidFragment = it2;
}
if (FirstInvalidFragment) {
Layout.Invalidate(FirstInvalidFragment);
return true;
}
return false;
}
bool MCAssembler::LayoutOnce(MCAsmLayout &Layout) {
++stats::RelaxationSteps;
bool WasRelaxed = false;
for (iterator it = begin(), ie = end(); it != ie; ++it) {
MCSectionData &SD = *it;
while(LayoutSectionOnce(Layout, SD))
WasRelaxed = true;
}
return WasRelaxed;
}
void MCAssembler::FinishLayout(MCAsmLayout &Layout) {
// The layout is done. Mark every fragment as valid.
for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) {
Layout.getFragmentOffset(&*Layout.getSectionOrder()[i]->rbegin());
}
}
// Debugging methods
namespace llvm {
raw_ostream &operator<<(raw_ostream &OS, const MCFixup &AF) {
OS << "<MCFixup" << " Offset:" << AF.getOffset()
<< " Value:" << *AF.getValue()
<< " Kind:" << AF.getKind() << ">";
return OS;
}
}
void MCFragment::dump() {
raw_ostream &OS = llvm::errs();
OS << "<";
switch (getKind()) {
case MCFragment::FT_Align: OS << "MCAlignFragment"; break;
case MCFragment::FT_Data: OS << "MCDataFragment"; break;
case MCFragment::FT_Fill: OS << "MCFillFragment"; break;
case MCFragment::FT_Inst: OS << "MCInstFragment"; break;
case MCFragment::FT_Org: OS << "MCOrgFragment"; break;
case MCFragment::FT_Dwarf: OS << "MCDwarfFragment"; break;
case MCFragment::FT_DwarfFrame: OS << "MCDwarfCallFrameFragment"; break;
case MCFragment::FT_LEB: OS << "MCLEBFragment"; break;
}
OS << "<MCFragment " << (void*) this << " LayoutOrder:" << LayoutOrder
<< " Offset:" << Offset << ">";
switch (getKind()) {
case MCFragment::FT_Align: {
const MCAlignFragment *AF = cast<MCAlignFragment>(this);
if (AF->hasEmitNops())
OS << " (emit nops)";
OS << "\n ";
OS << " Alignment:" << AF->getAlignment()
<< " Value:" << AF->getValue() << " ValueSize:" << AF->getValueSize()
<< " MaxBytesToEmit:" << AF->getMaxBytesToEmit() << ">";
break;
}
case MCFragment::FT_Data: {
const MCDataFragment *DF = cast<MCDataFragment>(this);
OS << "\n ";
OS << " Contents:[";
const SmallVectorImpl<char> &Contents = DF->getContents();
for (unsigned i = 0, e = Contents.size(); i != e; ++i) {
if (i) OS << ",";
OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF);
}
OS << "] (" << Contents.size() << " bytes)";
if (!DF->getFixups().empty()) {
OS << ",\n ";
OS << " Fixups:[";
for (MCDataFragment::const_fixup_iterator it = DF->fixup_begin(),
ie = DF->fixup_end(); it != ie; ++it) {
if (it != DF->fixup_begin()) OS << ",\n ";
OS << *it;
}
OS << "]";
}
break;
}
case MCFragment::FT_Fill: {
const MCFillFragment *FF = cast<MCFillFragment>(this);
OS << " Value:" << FF->getValue() << " ValueSize:" << FF->getValueSize()
<< " Size:" << FF->getSize();
break;
}
case MCFragment::FT_Inst: {
const MCInstFragment *IF = cast<MCInstFragment>(this);
OS << "\n ";
OS << " Inst:";
IF->getInst().dump_pretty(OS);
break;
}
case MCFragment::FT_Org: {
const MCOrgFragment *OF = cast<MCOrgFragment>(this);
OS << "\n ";
OS << " Offset:" << OF->getOffset() << " Value:" << OF->getValue();
break;
}
case MCFragment::FT_Dwarf: {
const MCDwarfLineAddrFragment *OF = cast<MCDwarfLineAddrFragment>(this);
OS << "\n ";
OS << " AddrDelta:" << OF->getAddrDelta()
<< " LineDelta:" << OF->getLineDelta();
break;
}
case MCFragment::FT_DwarfFrame: {
const MCDwarfCallFrameFragment *CF = cast<MCDwarfCallFrameFragment>(this);
OS << "\n ";
OS << " AddrDelta:" << CF->getAddrDelta();
break;
}
case MCFragment::FT_LEB: {
const MCLEBFragment *LF = cast<MCLEBFragment>(this);
OS << "\n ";
OS << " Value:" << LF->getValue() << " Signed:" << LF->isSigned();
break;
}
}
OS << ">";
}
void MCSectionData::dump() {
raw_ostream &OS = llvm::errs();
OS << "<MCSectionData";
OS << " Alignment:" << getAlignment() << " Fragments:[\n ";
for (iterator it = begin(), ie = end(); it != ie; ++it) {
if (it != begin()) OS << ",\n ";
it->dump();
}
OS << "]>";
}
void MCSymbolData::dump() {
raw_ostream &OS = llvm::errs();
OS << "<MCSymbolData Symbol:" << getSymbol()
<< " Fragment:" << getFragment() << " Offset:" << getOffset()
<< " Flags:" << getFlags() << " Index:" << getIndex();
if (isCommon())
OS << " (common, size:" << getCommonSize()
<< " align: " << getCommonAlignment() << ")";
if (isExternal())
OS << " (external)";
if (isPrivateExtern())
OS << " (private extern)";
OS << ">";
}
void MCAssembler::dump() {
raw_ostream &OS = llvm::errs();
OS << "<MCAssembler\n";
OS << " Sections:[\n ";
for (iterator it = begin(), ie = end(); it != ie; ++it) {
if (it != begin()) OS << ",\n ";
it->dump();
}
OS << "],\n";
OS << " Symbols:[";
for (symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) {
if (it != symbol_begin()) OS << ",\n ";
it->dump();
}
OS << "]>\n";
}