1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 19:23:23 +01:00
llvm-mirror/test/Transforms/InstCombine/fcmp.ll
Sanjay Patel cf6a337475 [InstCombine] propagate FMF for fcmp+fabs folds
By morphing the instruction rather than deleting and creating a new one,
we retain fast-math-flags and potentially other metadata (profile info?).

llvm-svn: 346331
2018-11-07 16:15:01 +00:00

464 lines
14 KiB
LLVM

; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt -S -instcombine < %s | FileCheck %s
declare half @llvm.fabs.f16(half)
declare double @llvm.fabs.f64(double)
declare <2 x float> @llvm.fabs.v2f32(<2 x float>)
define i1 @fpext_fpext(float %x, float %y) {
; CHECK-LABEL: @fpext_fpext(
; CHECK-NEXT: [[CMP:%.*]] = fcmp nnan ogt float [[X:%.*]], [[Y:%.*]]
; CHECK-NEXT: ret i1 [[CMP]]
;
%ext1 = fpext float %x to double
%ext2 = fpext float %y to double
%cmp = fcmp nnan ogt double %ext1, %ext2
ret i1 %cmp
}
define i1 @fpext_constant(float %a) {
; CHECK-LABEL: @fpext_constant(
; CHECK-NEXT: [[CMP:%.*]] = fcmp ninf ogt float [[A:%.*]], 1.000000e+00
; CHECK-NEXT: ret i1 [[CMP]]
;
%ext = fpext float %a to double
%cmp = fcmp ninf ogt double %ext, 1.000000e+00
ret i1 %cmp
}
define <2 x i1> @fpext_constant_vec_splat(<2 x half> %a) {
; CHECK-LABEL: @fpext_constant_vec_splat(
; CHECK-NEXT: [[CMP:%.*]] = fcmp nnan ole <2 x half> [[A:%.*]], <half 0xH5140, half 0xH5140>
; CHECK-NEXT: ret <2 x i1> [[CMP]]
;
%ext = fpext <2 x half> %a to <2 x double>
%cmp = fcmp nnan ole <2 x double> %ext, <double 42.0, double 42.0>
ret <2 x i1> %cmp
}
define i1 @fpext_constant_lossy(float %a) {
; CHECK-LABEL: @fpext_constant_lossy(
; CHECK-NEXT: [[EXT:%.*]] = fpext float [[A:%.*]] to double
; CHECK-NEXT: [[CMP:%.*]] = fcmp ogt double [[EXT]], 0x3FF0000000000001
; CHECK-NEXT: ret i1 [[CMP]]
;
%ext = fpext float %a to double
%cmp = fcmp ogt double %ext, 0x3FF0000000000001 ; more precision than float.
ret i1 %cmp
}
define i1 @fpext_constant_denorm(float %a) {
; CHECK-LABEL: @fpext_constant_denorm(
; CHECK-NEXT: [[EXT:%.*]] = fpext float [[A:%.*]] to double
; CHECK-NEXT: [[CMP:%.*]] = fcmp ogt double [[EXT]], 0x36A0000000000000
; CHECK-NEXT: ret i1 [[CMP]]
;
%ext = fpext float %a to double
%cmp = fcmp ogt double %ext, 0x36A0000000000000 ; denormal in float.
ret i1 %cmp
}
define i1 @fneg_constant_swap_pred(float %x) {
; CHECK-LABEL: @fneg_constant_swap_pred(
; CHECK-NEXT: [[CMP:%.*]] = fcmp olt float [[X:%.*]], -1.000000e+00
; CHECK-NEXT: ret i1 [[CMP]]
;
%neg = fsub float -0.0, %x
%cmp = fcmp ogt float %neg, 1.0
ret i1 %cmp
}
define <2 x i1> @fneg_constant_swap_pred_vec(<2 x float> %x) {
; CHECK-LABEL: @fneg_constant_swap_pred_vec(
; CHECK-NEXT: [[CMP:%.*]] = fcmp olt <2 x float> [[X:%.*]], <float -1.000000e+00, float -2.000000e+00>
; CHECK-NEXT: ret <2 x i1> [[CMP]]
;
%neg = fsub <2 x float> <float -0.0, float -0.0>, %x
%cmp = fcmp ogt <2 x float> %neg, <float 1.0, float 2.0>
ret <2 x i1> %cmp
}
define <2 x i1> @fneg_constant_swap_pred_vec_undef(<2 x float> %x) {
; CHECK-LABEL: @fneg_constant_swap_pred_vec_undef(
; CHECK-NEXT: [[CMP:%.*]] = fcmp olt <2 x float> [[X:%.*]], <float -1.000000e+00, float -2.000000e+00>
; CHECK-NEXT: ret <2 x i1> [[CMP]]
;
%neg = fsub <2 x float> <float undef, float -0.0>, %x
%cmp = fcmp ogt <2 x float> %neg, <float 1.0, float 2.0>
ret <2 x i1> %cmp
}
; The new fcmp should have the same FMF as the original.
define i1 @fneg_fmf(float %x) {
; CHECK-LABEL: @fneg_fmf(
; CHECK-NEXT: [[R:%.*]] = fcmp fast oeq float [[X:%.*]], -4.200000e+01
; CHECK-NEXT: ret i1 [[R]]
;
%n = fsub fast float -0.0, %x
%r = fcmp fast oeq float %n, 42.0
ret i1 %r
}
; The new fcmp should have the same FMF as the original, vector edition.
define <2 x i1> @fcmp_fneg_fmf_vec(<2 x float> %x) {
; CHECK-LABEL: @fcmp_fneg_fmf_vec(
; CHECK-NEXT: [[R:%.*]] = fcmp reassoc nnan ule <2 x float> [[X:%.*]], <float -4.200000e+01, float 1.900000e+01>
; CHECK-NEXT: ret <2 x i1> [[R]]
;
%n = fsub nsz <2 x float> zeroinitializer, %x
%r = fcmp nnan reassoc uge <2 x float> %n, <float 42.0, float -19.0>
ret <2 x i1> %r
}
define i1 @fneg_fneg_swap_pred(float %x, float %y) {
; CHECK-LABEL: @fneg_fneg_swap_pred(
; CHECK-NEXT: [[CMP:%.*]] = fcmp nnan ogt float [[X:%.*]], [[Y:%.*]]
; CHECK-NEXT: ret i1 [[CMP]]
;
%neg1 = fsub float -0.0, %x
%neg2 = fsub float -0.0, %y
%cmp = fcmp nnan olt float %neg1, %neg2
ret i1 %cmp
}
define <2 x i1> @fneg_fneg_swap_pred_vec(<2 x float> %x, <2 x float> %y) {
; CHECK-LABEL: @fneg_fneg_swap_pred_vec(
; CHECK-NEXT: [[CMP:%.*]] = fcmp ninf ogt <2 x float> [[X:%.*]], [[Y:%.*]]
; CHECK-NEXT: ret <2 x i1> [[CMP]]
;
%neg1 = fsub <2 x float> <float -0.0, float -0.0>, %x
%neg2 = fsub <2 x float> <float -0.0, float -0.0>, %y
%cmp = fcmp ninf olt <2 x float> %neg1, %neg2
ret <2 x i1> %cmp
}
define <2 x i1> @fneg_fneg_swap_pred_vec_undef(<2 x float> %x, <2 x float> %y) {
; CHECK-LABEL: @fneg_fneg_swap_pred_vec_undef(
; CHECK-NEXT: [[CMP:%.*]] = fcmp ogt <2 x float> [[X:%.*]], [[Y:%.*]]
; CHECK-NEXT: ret <2 x i1> [[CMP]]
;
%neg1 = fsub <2 x float> <float -0.0, float undef>, %x
%neg2 = fsub <2 x float> <float undef, float -0.0>, %y
%cmp = fcmp olt <2 x float> %neg1, %neg2
ret <2 x i1> %cmp
}
define i1 @test7(float %x) {
; CHECK-LABEL: @test7(
; CHECK-NEXT: [[CMP:%.*]] = fcmp ogt float [[X:%.*]], 0.000000e+00
; CHECK-NEXT: ret i1 [[CMP]]
;
%ext = fpext float %x to ppc_fp128
%cmp = fcmp ogt ppc_fp128 %ext, 0xM00000000000000000000000000000000
ret i1 %cmp
}
define float @test8(float %x) {
; CHECK-LABEL: @test8(
; CHECK-NEXT: [[CMP:%.*]] = fcmp olt float [[X:%.*]], 0.000000e+00
; CHECK-NEXT: [[CONV2:%.*]] = uitofp i1 [[CMP]] to float
; CHECK-NEXT: ret float [[CONV2]]
;
%conv = fpext float %x to double
%cmp = fcmp olt double %conv, 0.000000e+00
%conv1 = zext i1 %cmp to i32
%conv2 = sitofp i32 %conv1 to float
ret float %conv2
; Float comparison to zero shouldn't cast to double.
}
define i1 @fabs_uge(double %a) {
; CHECK-LABEL: @fabs_uge(
; CHECK-NEXT: ret i1 true
;
%call = call double @llvm.fabs.f64(double %a)
%cmp = fcmp uge double %call, 0.0
ret i1 %cmp
}
define i1 @fabs_olt(half %a) {
; CHECK-LABEL: @fabs_olt(
; CHECK-NEXT: ret i1 false
;
%call = call half @llvm.fabs.f16(half %a)
%cmp = fcmp olt half %call, 0.0
ret i1 %cmp
}
define <2 x i1> @fabs_ole(<2 x float> %a) {
; CHECK-LABEL: @fabs_ole(
; CHECK-NEXT: [[CMP:%.*]] = fcmp ninf oeq <2 x float> [[A:%.*]], zeroinitializer
; CHECK-NEXT: ret <2 x i1> [[CMP]]
;
%call = call <2 x float> @llvm.fabs.v2f32(<2 x float> %a)
%cmp = fcmp ninf ole <2 x float> %call, zeroinitializer
ret <2 x i1> %cmp
}
define <2 x i1> @fabs_ule(<2 x float> %a) {
; CHECK-LABEL: @fabs_ule(
; CHECK-NEXT: [[CMP:%.*]] = fcmp ninf arcp ueq <2 x float> [[A:%.*]], zeroinitializer
; CHECK-NEXT: ret <2 x i1> [[CMP]]
;
%call = call <2 x float> @llvm.fabs.v2f32(<2 x float> %a)
%cmp = fcmp ninf arcp ule <2 x float> %call, zeroinitializer
ret <2 x i1> %cmp
}
define i1 @fabs_ogt(double %a) {
; CHECK-LABEL: @fabs_ogt(
; CHECK-NEXT: [[CMP:%.*]] = fcmp reassoc one double [[A:%.*]], 0.000000e+00
; CHECK-NEXT: ret i1 [[CMP]]
;
%call = call double @llvm.fabs.f64(double %a)
%cmp = fcmp reassoc ogt double %call, 0.0
ret i1 %cmp
}
define i1 @fabs_ugt(double %a) {
; CHECK-LABEL: @fabs_ugt(
; CHECK-NEXT: [[CMP:%.*]] = fcmp reassoc ninf une double [[A:%.*]], 0.000000e+00
; CHECK-NEXT: ret i1 [[CMP]]
;
%call = call double @llvm.fabs.f64(double %a)
%cmp = fcmp ninf reassoc ugt double %call, 0.0
ret i1 %cmp
}
define i1 @fabs_oge(double %a) {
; CHECK-LABEL: @fabs_oge(
; CHECK-NEXT: [[CMP:%.*]] = fcmp afn ord double [[A:%.*]], 0.000000e+00
; CHECK-NEXT: ret i1 [[CMP]]
;
%call = call double @llvm.fabs.f64(double %a)
%cmp = fcmp afn oge double %call, 0.0
ret i1 %cmp
}
define i1 @fabs_ult(double %a) {
; CHECK-LABEL: @fabs_ult(
; CHECK-NEXT: [[CMP:%.*]] = fcmp reassoc arcp uno double [[A:%.*]], 0.000000e+00
; CHECK-NEXT: ret i1 [[CMP]]
;
%call = call double @llvm.fabs.f64(double %a)
%cmp = fcmp reassoc arcp ult double %call, 0.0
ret i1 %cmp
}
define <2 x i1> @fabs_ult_nnan(<2 x float> %a) {
; CHECK-LABEL: @fabs_ult_nnan(
; CHECK-NEXT: ret <2 x i1> zeroinitializer
;
%call = call <2 x float> @llvm.fabs.v2f32(<2 x float> %a)
%cmp = fcmp nnan reassoc arcp ult <2 x float> %call, zeroinitializer
ret <2 x i1> %cmp
}
define i1 @fabs_une(half %a) {
; CHECK-LABEL: @fabs_une(
; CHECK-NEXT: [[CMP:%.*]] = fcmp ninf une half [[A:%.*]], 0xH0000
; CHECK-NEXT: ret i1 [[CMP]]
;
%call = call half @llvm.fabs.f16(half %a)
%cmp = fcmp ninf une half %call, 0.0
ret i1 %cmp
}
define i1 @fabs_oeq(double %a) {
; CHECK-LABEL: @fabs_oeq(
; CHECK-NEXT: [[CMP:%.*]] = fcmp reassoc ninf oeq double [[A:%.*]], 0.000000e+00
; CHECK-NEXT: ret i1 [[CMP]]
;
%call = call double @llvm.fabs.f64(double %a)
%cmp = fcmp ninf reassoc oeq double %call, 0.0
ret i1 %cmp
}
define i1 @fabs_one(double %a) {
; CHECK-LABEL: @fabs_one(
; CHECK-NEXT: [[CMP:%.*]] = fcmp fast one double [[A:%.*]], 0.000000e+00
; CHECK-NEXT: ret i1 [[CMP]]
;
%call = call double @llvm.fabs.f64(double %a)
%cmp = fcmp fast one double %call, 0.0
ret i1 %cmp
}
define <2 x i1> @fabs_ueq(<2 x float> %a) {
; CHECK-LABEL: @fabs_ueq(
; CHECK-NEXT: [[CMP:%.*]] = fcmp arcp ueq <2 x float> [[A:%.*]], zeroinitializer
; CHECK-NEXT: ret <2 x i1> [[CMP]]
;
%call = call <2 x float> @llvm.fabs.v2f32(<2 x float> %a)
%cmp = fcmp arcp ueq <2 x float> %call, zeroinitializer
ret <2 x i1> %cmp
}
define <2 x i1> @fabs_ord(<2 x float> %a) {
; CHECK-LABEL: @fabs_ord(
; CHECK-NEXT: [[CMP:%.*]] = fcmp arcp ord <2 x float> [[A:%.*]], zeroinitializer
; CHECK-NEXT: ret <2 x i1> [[CMP]]
;
%call = call <2 x float> @llvm.fabs.v2f32(<2 x float> %a)
%cmp = fcmp arcp ord <2 x float> %call, zeroinitializer
ret <2 x i1> %cmp
}
define <2 x i1> @fabs_uno(<2 x float> %a) {
; CHECK-LABEL: @fabs_uno(
; CHECK-NEXT: [[CMP:%.*]] = fcmp arcp uno <2 x float> [[A:%.*]], zeroinitializer
; CHECK-NEXT: ret <2 x i1> [[CMP]]
;
%call = call <2 x float> @llvm.fabs.v2f32(<2 x float> %a)
%cmp = fcmp arcp uno <2 x float> %call, zeroinitializer
ret <2 x i1> %cmp
}
; Don't crash.
define i32 @test17(double %a, double (double)* %p) {
; CHECK-LABEL: @test17(
; CHECK-NEXT: [[CALL:%.*]] = tail call double [[P:%.*]](double [[A:%.*]])
; CHECK-NEXT: [[CMP:%.*]] = fcmp ueq double [[CALL]], 0.000000e+00
; CHECK-NEXT: [[CONV:%.*]] = zext i1 [[CMP]] to i32
; CHECK-NEXT: ret i32 [[CONV]]
;
%call = tail call double %p(double %a)
%cmp = fcmp ueq double %call, 0.000000e+00
%conv = zext i1 %cmp to i32
ret i32 %conv
}
; Can fold fcmp with undef on one side by choosing NaN for the undef
define i32 @test18_undef_unordered(float %a) {
; CHECK-LABEL: @test18_undef_unordered(
; CHECK-NEXT: ret i32 1
;
%cmp = fcmp ueq float %a, undef
%conv = zext i1 %cmp to i32
ret i32 %conv
}
; Can fold fcmp with undef on one side by choosing NaN for the undef
define i32 @test18_undef_ordered(float %a) {
; CHECK-LABEL: @test18_undef_ordered(
; CHECK-NEXT: ret i32 0
;
%cmp = fcmp oeq float %a, undef
%conv = zext i1 %cmp to i32
ret i32 %conv
}
; Can fold fcmp with undef on both side
; fcmp u_pred undef, undef -> true
; fcmp o_pred undef, undef -> false
; because whatever you choose for the first undef
; you can choose NaN for the other undef
define i1 @test19_undef_unordered() {
; CHECK-LABEL: @test19_undef_unordered(
; CHECK-NEXT: ret i1 true
;
%cmp = fcmp ueq float undef, undef
ret i1 %cmp
}
define i1 @test19_undef_ordered() {
; CHECK-LABEL: @test19_undef_ordered(
; CHECK-NEXT: ret i1 false
;
%cmp = fcmp oeq float undef, undef
ret i1 %cmp
}
; Can fold 1.0 / X < 0.0 --> X < 0 with ninf
define i1 @test20_recipX_olt_0(float %X) {
; CHECK-LABEL: @test20_recipX_olt_0(
; CHECK-NEXT: [[CMP:%.*]] = fcmp ninf olt float [[X:%.*]], 0.000000e+00
; CHECK-NEXT: ret i1 [[CMP]]
;
%div = fdiv ninf float 1.0, %X
%cmp = fcmp ninf olt float %div, 0.0
ret i1 %cmp
}
; Can fold -2.0 / X <= 0.0 --> X >= 0 with ninf
define i1 @test21_recipX_ole_0(float %X) {
; CHECK-LABEL: @test21_recipX_ole_0(
; CHECK-NEXT: [[CMP:%.*]] = fcmp ninf oge float [[X:%.*]], 0.000000e+00
; CHECK-NEXT: ret i1 [[CMP]]
;
%div = fdiv ninf float -2.0, %X
%cmp = fcmp ninf ole float %div, 0.0
ret i1 %cmp
}
; Can fold 2.0 / X > 0.0 --> X > 0 with ninf
define i1 @test22_recipX_ogt_0(float %X) {
; CHECK-LABEL: @test22_recipX_ogt_0(
; CHECK-NEXT: [[CMP:%.*]] = fcmp ninf ogt float [[X:%.*]], 0.000000e+00
; CHECK-NEXT: ret i1 [[CMP]]
;
%div = fdiv ninf float 2.0, %X
%cmp = fcmp ninf ogt float %div, 0.0
ret i1 %cmp
}
; Can fold -1.0 / X >= 0.0 --> X <= 0 with ninf
define i1 @test23_recipX_oge_0(float %X) {
; CHECK-LABEL: @test23_recipX_oge_0(
; CHECK-NEXT: [[CMP:%.*]] = fcmp ninf ole float [[X:%.*]], 0.000000e+00
; CHECK-NEXT: ret i1 [[CMP]]
;
%div = fdiv ninf float -1.0, %X
%cmp = fcmp ninf oge float %div, 0.0
ret i1 %cmp
}
; Do not fold 1.0 / X > 0.0 when ninf is missing
define i1 @test24_recipX_noninf_cmp(float %X) {
; CHECK-LABEL: @test24_recipX_noninf_cmp(
; CHECK-NEXT: [[DIV:%.*]] = fdiv ninf float 2.000000e+00, [[X:%.*]]
; CHECK-NEXT: [[CMP:%.*]] = fcmp ogt float [[DIV]], 0.000000e+00
; CHECK-NEXT: ret i1 [[CMP]]
;
%div = fdiv ninf float 2.0, %X
%cmp = fcmp ogt float %div, 0.0
ret i1 %cmp
}
; Do not fold 1.0 / X > 0.0 when ninf is missing
define i1 @test25_recipX_noninf_div(float %X) {
; CHECK-LABEL: @test25_recipX_noninf_div(
; CHECK-NEXT: [[DIV:%.*]] = fdiv float 2.000000e+00, [[X:%.*]]
; CHECK-NEXT: [[CMP:%.*]] = fcmp ninf ogt float [[DIV]], 0.000000e+00
; CHECK-NEXT: ret i1 [[CMP]]
;
%div = fdiv float 2.0, %X
%cmp = fcmp ninf ogt float %div, 0.0
ret i1 %cmp
}
; Do not fold 1.0 / X > 0.0 with unordered predicates
define i1 @test26_recipX_unorderd(float %X) {
; CHECK-LABEL: @test26_recipX_unorderd(
; CHECK-NEXT: [[DIV:%.*]] = fdiv ninf float 2.000000e+00, [[X:%.*]]
; CHECK-NEXT: [[CMP:%.*]] = fcmp ninf ugt float [[DIV]], 0.000000e+00
; CHECK-NEXT: ret i1 [[CMP]]
;
%div = fdiv ninf float 2.0, %X
%cmp = fcmp ninf ugt float %div, 0.0
ret i1 %cmp
}
; Fold <-1.0, -1.0> / X > <-0.0, -0.0>
define <2 x i1> @test27_recipX_gt_vecsplat(<2 x float> %X) {
; CHECK-LABEL: @test27_recipX_gt_vecsplat(
; CHECK-NEXT: [[CMP:%.*]] = fcmp ninf olt <2 x float> [[X:%.*]], zeroinitializer
; CHECK-NEXT: ret <2 x i1> [[CMP]]
;
%div = fdiv ninf <2 x float> <float -1.0, float -1.0>, %X
%cmp = fcmp ninf ogt <2 x float> %div, <float -0.0, float -0.0>
ret <2 x i1> %cmp
}