mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 12:12:47 +01:00
3dc9a2a61f
llvm-svn: 1503
1443 lines
47 KiB
C++
1443 lines
47 KiB
C++
// $Id$ -*- C++ -*--
|
|
//***************************************************************************
|
|
// File:
|
|
// SparcInternals.h
|
|
//
|
|
// Purpose:
|
|
// This file defines stuff that is to be private to the Sparc
|
|
// backend, but is shared among different portions of the backend.
|
|
//**************************************************************************/
|
|
|
|
|
|
#ifndef SPARC_INTERNALS_H
|
|
#define SPARC_INTERNALS_H
|
|
|
|
|
|
#include "SparcRegClassInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/MachineInstrInfo.h"
|
|
#include "llvm/Target/MachineSchedInfo.h"
|
|
#include "llvm/Target/MachineFrameInfo.h"
|
|
#include "llvm/Target/MachineCacheInfo.h"
|
|
#include "llvm/CodeGen/RegClass.h"
|
|
#include "llvm/Type.h"
|
|
|
|
#include <sys/types.h>
|
|
|
|
class UltraSparc;
|
|
|
|
// OpCodeMask definitions for the Sparc V9
|
|
//
|
|
const OpCodeMask Immed = 0x00002000; // immed or reg operand?
|
|
const OpCodeMask Annul = 0x20000000; // annul delay instr?
|
|
const OpCodeMask PredictTaken = 0x00080000; // predict branch taken?
|
|
|
|
|
|
enum SparcInstrSchedClass {
|
|
SPARC_NONE, /* Instructions with no scheduling restrictions */
|
|
SPARC_IEUN, /* Integer class that can use IEU0 or IEU1 */
|
|
SPARC_IEU0, /* Integer class IEU0 */
|
|
SPARC_IEU1, /* Integer class IEU1 */
|
|
SPARC_FPM, /* FP Multiply or Divide instructions */
|
|
SPARC_FPA, /* All other FP instructions */
|
|
SPARC_CTI, /* Control-transfer instructions */
|
|
SPARC_LD, /* Load instructions */
|
|
SPARC_ST, /* Store instructions */
|
|
SPARC_SINGLE, /* Instructions that must issue by themselves */
|
|
|
|
SPARC_INV, /* This should stay at the end for the next value */
|
|
SPARC_NUM_SCHED_CLASSES = SPARC_INV
|
|
};
|
|
|
|
|
|
//---------------------------------------------------------------------------
|
|
// enum SparcMachineOpCode.
|
|
// const MachineInstrDescriptor SparcMachineInstrDesc[]
|
|
//
|
|
// Purpose:
|
|
// Description of UltraSparc machine instructions.
|
|
//
|
|
//---------------------------------------------------------------------------
|
|
|
|
enum SparcMachineOpCode {
|
|
#define I(ENUM, OPCODESTRING, NUMOPERANDS, RESULTPOS, MAXIMM, IMMSE, \
|
|
NUMDELAYSLOTS, LATENCY, SCHEDCLASS, INSTFLAGS) \
|
|
ENUM,
|
|
#include "SparcInstr.def"
|
|
|
|
// End-of-array marker
|
|
INVALID_OPCODE,
|
|
NUM_REAL_OPCODES = PHI, // number of valid opcodes
|
|
NUM_TOTAL_OPCODES = INVALID_OPCODE
|
|
};
|
|
|
|
|
|
// Array of machine instruction descriptions...
|
|
extern const MachineInstrDescriptor SparcMachineInstrDesc[];
|
|
|
|
|
|
//---------------------------------------------------------------------------
|
|
// class UltraSparcInstrInfo
|
|
//
|
|
// Purpose:
|
|
// Information about individual instructions.
|
|
// Most information is stored in the SparcMachineInstrDesc array above.
|
|
// Other information is computed on demand, and most such functions
|
|
// default to member functions in base class MachineInstrInfo.
|
|
//---------------------------------------------------------------------------
|
|
|
|
class UltraSparcInstrInfo : public MachineInstrInfo {
|
|
public:
|
|
/*ctor*/ UltraSparcInstrInfo(const TargetMachine& tgt);
|
|
|
|
//
|
|
// All immediate constants are in position 0 except the
|
|
// store instructions.
|
|
//
|
|
virtual int getImmmedConstantPos(MachineOpCode opCode) const {
|
|
bool ignore;
|
|
if (this->maxImmedConstant(opCode, ignore) != 0)
|
|
{
|
|
assert(! this->isStore((MachineOpCode) STB - 1)); // first store is STB
|
|
assert(! this->isStore((MachineOpCode) STD + 1)); // last store is STD
|
|
return (opCode >= STB || opCode <= STD)? 2 : 1;
|
|
}
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
virtual bool hasResultInterlock (MachineOpCode opCode) const
|
|
{
|
|
// All UltraSPARC instructions have interlocks (note that delay slots
|
|
// are not considered here).
|
|
// However, instructions that use the result of an FCMP produce a
|
|
// 9-cycle stall if they are issued less than 3 cycles after the FCMP.
|
|
// Force the compiler to insert a software interlock (i.e., gap of
|
|
// 2 other groups, including NOPs if necessary).
|
|
return (opCode == FCMPS || opCode == FCMPD || opCode == FCMPQ);
|
|
}
|
|
|
|
//-------------------------------------------------------------------------
|
|
// Code generation support for creating individual machine instructions
|
|
//-------------------------------------------------------------------------
|
|
|
|
// Create an instruction sequence to put the constant `val' into
|
|
// the virtual register `dest'. The generated instructions are
|
|
// returned in `minstrVec'. Any temporary registers (TmpInstruction)
|
|
// created are returned in `tempVec'.
|
|
//
|
|
virtual void CreateCodeToLoadConst(Value* val,
|
|
Instruction* dest,
|
|
std::vector<MachineInstr*>& minstrVec,
|
|
std::vector<TmpInstruction*>& tmp) const;
|
|
|
|
|
|
// Create an instruction sequence to copy an integer value `val'
|
|
// to a floating point value `dest' by copying to memory and back.
|
|
// val must be an integral type. dest must be a Float or Double.
|
|
// The generated instructions are returned in `minstrVec'.
|
|
// Any temp. registers (TmpInstruction) created are returned in `tempVec'.
|
|
//
|
|
virtual void CreateCodeToCopyIntToFloat(Method* method,
|
|
Value* val,
|
|
Instruction* dest,
|
|
std::vector<MachineInstr*>& minstr,
|
|
std::vector<TmpInstruction*>& temp,
|
|
TargetMachine& target) const;
|
|
|
|
// Similarly, create an instruction sequence to copy an FP value
|
|
// `val' to an integer value `dest' by copying to memory and back.
|
|
// See the previous function for information about return values.
|
|
//
|
|
virtual void CreateCodeToCopyFloatToInt(Method* method,
|
|
Value* val,
|
|
Instruction* dest,
|
|
std::vector<MachineInstr*>& minstr,
|
|
std::vector<TmpInstruction*>& temp,
|
|
TargetMachine& target) const;
|
|
|
|
// create copy instruction(s)
|
|
virtual void
|
|
CreateCopyInstructionsByType(const TargetMachine& target,
|
|
Value* src,
|
|
Instruction* dest,
|
|
std::vector<MachineInstr*>& minstr) const;
|
|
|
|
|
|
};
|
|
|
|
|
|
//----------------------------------------------------------------------------
|
|
// class UltraSparcRegInfo
|
|
//
|
|
// This class implements the virtual class MachineRegInfo for Sparc.
|
|
//
|
|
//----------------------------------------------------------------------------
|
|
|
|
|
|
class LiveRange;
|
|
class UltraSparc;
|
|
class PhyRegAlloc;
|
|
|
|
|
|
class UltraSparcRegInfo : public MachineRegInfo
|
|
{
|
|
private:
|
|
|
|
// The actual register classes in the Sparc
|
|
//
|
|
enum RegClassIDs {
|
|
IntRegClassID, // Integer
|
|
FloatRegClassID, // Float (both single/double)
|
|
IntCCRegClassID, // Int Condition Code
|
|
FloatCCRegClassID // Float Condition code
|
|
};
|
|
|
|
|
|
// Type of registers available in Sparc. There can be several reg types
|
|
// in the same class. For instace, the float reg class has Single/Double
|
|
// types
|
|
//
|
|
enum RegTypes {
|
|
IntRegType,
|
|
FPSingleRegType,
|
|
FPDoubleRegType,
|
|
IntCCRegType,
|
|
FloatCCRegType
|
|
};
|
|
|
|
// **** WARNING: If the above enum order is changed, also modify
|
|
// getRegisterClassOfValue method below since it assumes this particular
|
|
// order for efficiency.
|
|
|
|
|
|
// reverse pointer to get info about the ultra sparc machine
|
|
//
|
|
const UltraSparc *const UltraSparcInfo;
|
|
|
|
// Number of registers used for passing int args (usually 6: %o0 - %o5)
|
|
//
|
|
unsigned const NumOfIntArgRegs;
|
|
|
|
// Number of registers used for passing float args (usually 32: %f0 - %f31)
|
|
//
|
|
unsigned const NumOfFloatArgRegs;
|
|
|
|
// An out of bound register number that can be used to initialize register
|
|
// numbers. Useful for error detection.
|
|
//
|
|
int const InvalidRegNum;
|
|
|
|
|
|
// ======================== Private Methods =============================
|
|
|
|
// The following methods are used to color special live ranges (e.g.
|
|
// method args and return values etc.) with specific hardware registers
|
|
// as required. See SparcRegInfo.cpp for the implementation.
|
|
//
|
|
void setCallOrRetArgCol(LiveRange *const LR, const unsigned RegNo,
|
|
const MachineInstr *MI,AddedInstrMapType &AIMap)const;
|
|
|
|
MachineInstr * getCopy2RegMI(const Value *SrcVal, const unsigned Reg,
|
|
unsigned RegClassID) const ;
|
|
|
|
void suggestReg4RetAddr(const MachineInstr * RetMI,
|
|
LiveRangeInfo& LRI) const;
|
|
|
|
void suggestReg4CallAddr(const MachineInstr * CallMI, LiveRangeInfo& LRI,
|
|
std::vector<RegClass *> RCList) const;
|
|
|
|
|
|
|
|
// The following methods are used to find the addresses etc. contained
|
|
// in specail machine instructions like CALL/RET
|
|
//
|
|
Value *getValue4ReturnAddr( const MachineInstr * MInst ) const ;
|
|
const Value *getCallInstRetAddr(const MachineInstr *CallMI) const;
|
|
const unsigned getCallInstNumArgs(const MachineInstr *CallMI) const;
|
|
|
|
|
|
// The following 3 methods are used to find the RegType (see enum above)
|
|
// of a LiveRange, Value and using the unified RegClassID
|
|
|
|
int getRegType(const LiveRange *const LR) const {
|
|
|
|
unsigned Typ;
|
|
|
|
switch( (LR->getRegClass())->getID() ) {
|
|
|
|
case IntRegClassID: return IntRegType;
|
|
|
|
case FloatRegClassID:
|
|
Typ = LR->getTypeID();
|
|
if( Typ == Type::FloatTyID )
|
|
return FPSingleRegType;
|
|
else if( Typ == Type::DoubleTyID )
|
|
return FPDoubleRegType;
|
|
else assert(0 && "Unknown type in FloatRegClass");
|
|
|
|
case IntCCRegClassID: return IntCCRegType;
|
|
|
|
case FloatCCRegClassID: return FloatCCRegType ;
|
|
|
|
default: assert( 0 && "Unknown reg class ID");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
int getRegType(const Value *const Val) const {
|
|
|
|
unsigned Typ;
|
|
|
|
switch( getRegClassIDOfValue(Val) ) {
|
|
|
|
case IntRegClassID: return IntRegType;
|
|
|
|
case FloatRegClassID:
|
|
Typ = (Val->getType())->getPrimitiveID();
|
|
if( Typ == Type::FloatTyID )
|
|
return FPSingleRegType;
|
|
else if( Typ == Type::DoubleTyID )
|
|
return FPDoubleRegType;
|
|
else assert(0 && "Unknown type in FloatRegClass");
|
|
|
|
case IntCCRegClassID: return IntCCRegType;
|
|
|
|
case FloatCCRegClassID: return FloatCCRegType ;
|
|
|
|
default: assert( 0 && "Unknown reg class ID");
|
|
return 0;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
int getRegType(int reg) const {
|
|
if( reg < 32 )
|
|
return IntRegType;
|
|
else if ( reg < (32 + 32) )
|
|
return FPSingleRegType;
|
|
else if ( reg < (64 + 32) )
|
|
return FPDoubleRegType;
|
|
else if( reg < (64+32+4) )
|
|
return FloatCCRegType;
|
|
else if( reg < (64+32+4+2) )
|
|
return IntCCRegType;
|
|
else
|
|
assert(0 && "Invalid register number in getRegType");
|
|
}
|
|
|
|
|
|
|
|
|
|
// The following methods are used to generate copy instructions to move
|
|
// data between condition code registers
|
|
//
|
|
MachineInstr * cpCCR2IntMI(const unsigned IntReg) const;
|
|
MachineInstr * cpInt2CCRMI(const unsigned IntReg) const;
|
|
|
|
// Used to generate a copy instruction based on the register class of
|
|
// value.
|
|
//
|
|
MachineInstr * cpValue2RegMI(Value * Val, const unsigned DestReg,
|
|
const int RegType) const;
|
|
|
|
|
|
// The following 2 methods are used to order the instructions addeed by
|
|
// the register allocator in association with method calling. See
|
|
// SparcRegInfo.cpp for more details
|
|
//
|
|
void moveInst2OrdVec(std::vector<MachineInstr *> &OrdVec,
|
|
MachineInstr *UnordInst,
|
|
PhyRegAlloc &PRA) const;
|
|
|
|
void OrderAddedInstrns(std::vector<MachineInstr *> &UnordVec,
|
|
std::vector<MachineInstr *> &OrdVec,
|
|
PhyRegAlloc &PRA) const;
|
|
|
|
|
|
// To find whether a particular call is to a var arg method
|
|
//
|
|
bool isVarArgCall(const MachineInstr *CallMI) const;
|
|
|
|
|
|
|
|
public:
|
|
|
|
// constructor
|
|
//
|
|
UltraSparcRegInfo(const TargetMachine& tgt ) :
|
|
MachineRegInfo(tgt),
|
|
UltraSparcInfo(& (const UltraSparc&) tgt),
|
|
NumOfIntArgRegs(6),
|
|
NumOfFloatArgRegs(32),
|
|
InvalidRegNum(1000) {
|
|
|
|
MachineRegClassArr.push_back( new SparcIntRegClass(IntRegClassID) );
|
|
MachineRegClassArr.push_back( new SparcFloatRegClass(FloatRegClassID) );
|
|
MachineRegClassArr.push_back( new SparcIntCCRegClass(IntCCRegClassID) );
|
|
MachineRegClassArr.push_back( new SparcFloatCCRegClass(FloatCCRegClassID));
|
|
|
|
assert( SparcFloatRegOrder::StartOfNonVolatileRegs == 32 &&
|
|
"32 Float regs are used for float arg passing");
|
|
|
|
}
|
|
|
|
|
|
~UltraSparcRegInfo(void) { } // empty destructor
|
|
|
|
|
|
// To get complete machine information structure using the machine register
|
|
// information
|
|
//
|
|
inline const UltraSparc & getUltraSparcInfo() const {
|
|
return *UltraSparcInfo;
|
|
}
|
|
|
|
|
|
// To find the register class of a Value
|
|
//
|
|
inline unsigned getRegClassIDOfValue (const Value *const Val,
|
|
bool isCCReg = false) const {
|
|
|
|
Type::PrimitiveID ty = (Val->getType())->getPrimitiveID();
|
|
|
|
unsigned res;
|
|
|
|
if( (ty && ty <= Type::LongTyID) || (ty == Type::LabelTyID) ||
|
|
(ty == Type::MethodTyID) || (ty == Type::PointerTyID) )
|
|
res = IntRegClassID; // sparc int reg (ty=0: void)
|
|
else if( ty <= Type::DoubleTyID)
|
|
res = FloatRegClassID; // sparc float reg class
|
|
else {
|
|
std::cerr << "TypeID: " << ty << "\n";
|
|
assert(0 && "Cannot resolve register class for type");
|
|
return 0;
|
|
}
|
|
|
|
if(isCCReg)
|
|
return res + 2; // corresponidng condition code regiser
|
|
else
|
|
return res;
|
|
}
|
|
|
|
|
|
|
|
// returns the register that contains always zero
|
|
// this is the unified register number
|
|
//
|
|
inline int getZeroRegNum() const { return SparcIntRegOrder::g0; }
|
|
|
|
// returns the reg used for pushing the address when a method is called.
|
|
// This can be used for other purposes between calls
|
|
//
|
|
unsigned getCallAddressReg() const { return SparcIntRegOrder::o7; }
|
|
|
|
// Returns the register containing the return address.
|
|
// It should be made sure that this register contains the return
|
|
// value when a return instruction is reached.
|
|
//
|
|
unsigned getReturnAddressReg() const { return SparcIntRegOrder::i7; }
|
|
|
|
|
|
|
|
// The following methods are used to color special live ranges (e.g.
|
|
// method args and return values etc.) with specific hardware registers
|
|
// as required. See SparcRegInfo.cpp for the implementation for Sparc.
|
|
//
|
|
void suggestRegs4MethodArgs(const Method *const Meth,
|
|
LiveRangeInfo& LRI) const;
|
|
|
|
void suggestRegs4CallArgs(const MachineInstr *const CallMI,
|
|
LiveRangeInfo& LRI,
|
|
std::vector<RegClass *> RCL) const;
|
|
|
|
void suggestReg4RetValue(const MachineInstr *const RetMI,
|
|
LiveRangeInfo& LRI) const;
|
|
|
|
|
|
void colorMethodArgs(const Method *const Meth, LiveRangeInfo& LRI,
|
|
AddedInstrns *const FirstAI) const;
|
|
|
|
void colorCallArgs(const MachineInstr *const CallMI, LiveRangeInfo& LRI,
|
|
AddedInstrns *const CallAI, PhyRegAlloc &PRA,
|
|
const BasicBlock *BB) const;
|
|
|
|
void colorRetValue(const MachineInstr *const RetI, LiveRangeInfo& LRI,
|
|
AddedInstrns *const RetAI) const;
|
|
|
|
|
|
|
|
// method used for printing a register for debugging purposes
|
|
//
|
|
static void printReg(const LiveRange *const LR) ;
|
|
|
|
// this method provides a unique number for each register
|
|
//
|
|
inline int getUnifiedRegNum(int RegClassID, int reg) const {
|
|
|
|
if( RegClassID == IntRegClassID && reg < 32 )
|
|
return reg;
|
|
else if ( RegClassID == FloatRegClassID && reg < 64)
|
|
return reg + 32; // we have 32 int regs
|
|
else if( RegClassID == FloatCCRegClassID && reg < 4)
|
|
return reg + 32 + 64; // 32 int, 64 float
|
|
else if( RegClassID == IntCCRegClassID )
|
|
return 4+ 32 + 64; // only int cc reg
|
|
else if (reg==InvalidRegNum)
|
|
return InvalidRegNum;
|
|
else
|
|
assert(0 && "Invalid register class or reg number");
|
|
return 0;
|
|
}
|
|
|
|
// given the unified register number, this gives the name
|
|
// for generating assembly code or debugging.
|
|
//
|
|
inline const std::string getUnifiedRegName(int reg) const {
|
|
if( reg < 32 )
|
|
return SparcIntRegOrder::getRegName(reg);
|
|
else if ( reg < (64 + 32) )
|
|
return SparcFloatRegOrder::getRegName( reg - 32);
|
|
else if( reg < (64+32+4) )
|
|
return SparcFloatCCRegOrder::getRegName( reg -32 - 64);
|
|
else if( reg < (64+32+4+2) ) // two names: %xcc and %ccr
|
|
return SparcIntCCRegOrder::getRegName( reg -32 - 64 - 4);
|
|
else if (reg== InvalidRegNum) //****** TODO: Remove */
|
|
return "<*NoReg*>";
|
|
else
|
|
assert(0 && "Invalid register number");
|
|
return "";
|
|
}
|
|
|
|
|
|
|
|
// The fllowing methods are used by instruction selection
|
|
//
|
|
inline unsigned getRegNumInCallersWindow(int reg) {
|
|
if (reg == InvalidRegNum || reg >= 32)
|
|
return reg;
|
|
return SparcIntRegOrder::getRegNumInCallersWindow(reg);
|
|
}
|
|
|
|
inline bool mustBeRemappedInCallersWindow(int reg) {
|
|
return (reg != InvalidRegNum && reg < 32);
|
|
}
|
|
|
|
|
|
|
|
// returns the # of bytes of stack space allocated for each register
|
|
// type. For Sparc, currently we allocate 8 bytes on stack for all
|
|
// register types. We can optimize this later if necessary to save stack
|
|
// space (However, should make sure that stack alignment is correct)
|
|
//
|
|
inline int getSpilledRegSize(const int RegType) const {
|
|
return 8;
|
|
}
|
|
|
|
|
|
// To obtain the return value contained in a CALL machine instruction
|
|
//
|
|
const Value * getCallInstRetVal(const MachineInstr *CallMI) const;
|
|
|
|
|
|
// The following methods are used to generate "copy" machine instructions
|
|
// for an architecture.
|
|
//
|
|
MachineInstr * cpReg2RegMI(const unsigned SrcReg, const unsigned DestReg,
|
|
const int RegType) const;
|
|
|
|
MachineInstr * cpReg2MemMI(const unsigned SrcReg, const unsigned DestPtrReg,
|
|
const int Offset, const int RegType) const;
|
|
|
|
MachineInstr * cpMem2RegMI(const unsigned SrcPtrReg, const int Offset,
|
|
const unsigned DestReg, const int RegType) const;
|
|
|
|
MachineInstr* cpValue2Value(Value *Src, Value *Dest) const;
|
|
|
|
|
|
// To see whether a register is a volatile (i.e., whehter it must be
|
|
// preserved acorss calls)
|
|
//
|
|
inline bool isRegVolatile(const int RegClassID, const int Reg) const {
|
|
return (MachineRegClassArr[RegClassID])->isRegVolatile(Reg);
|
|
}
|
|
|
|
|
|
inline unsigned getFramePointer() const {
|
|
return SparcIntRegOrder::i6;
|
|
}
|
|
|
|
inline unsigned getStackPointer() const {
|
|
return SparcIntRegOrder::o6;
|
|
}
|
|
|
|
inline int getInvalidRegNum() const {
|
|
return InvalidRegNum;
|
|
}
|
|
|
|
|
|
|
|
// This method inserts the caller saving code for call instructions
|
|
//
|
|
void insertCallerSavingCode(const MachineInstr *MInst,
|
|
const BasicBlock *BB, PhyRegAlloc &PRA ) const;
|
|
|
|
};
|
|
|
|
|
|
|
|
/*---------------------------------------------------------------------------
|
|
Scheduling guidelines for SPARC IIi:
|
|
|
|
I-Cache alignment rules (pg 326)
|
|
-- Align a branch target instruction so that it's entire group is within
|
|
the same cache line (may be 1-4 instructions).
|
|
** Don't let a branch that is predicted taken be the last instruction
|
|
on an I-cache line: delay slot will need an entire line to be fetched
|
|
-- Make a FP instruction or a branch be the 4th instruction in a group.
|
|
For branches, there are tradeoffs in reordering to make this happen
|
|
(see pg. 327).
|
|
** Don't put a branch in a group that crosses a 32-byte boundary!
|
|
An artificial branch is inserted after every 32 bytes, and having
|
|
another branch will force the group to be broken into 2 groups.
|
|
|
|
iTLB rules:
|
|
-- Don't let a loop span two memory pages, if possible
|
|
|
|
Branch prediction performance:
|
|
-- Don't make the branch in a delay slot the target of a branch
|
|
-- Try not to have 2 predicted branches within a group of 4 instructions
|
|
(because each such group has a single branch target field).
|
|
-- Try to align branches in slots 0, 2, 4 or 6 of a cache line (to avoid
|
|
the wrong prediction bits being used in some cases).
|
|
|
|
D-Cache timing constraints:
|
|
-- Signed int loads of less than 64 bits have 3 cycle latency, not 2
|
|
-- All other loads that hit in D-Cache have 2 cycle latency
|
|
-- All loads are returned IN ORDER, so a D-Cache miss will delay a later hit
|
|
-- Mis-aligned loads or stores cause a trap. In particular, replace
|
|
mis-aligned FP double precision l/s with 2 single-precision l/s.
|
|
-- Simulations of integer codes show increase in avg. group size of
|
|
33% when code (including esp. non-faulting loads) is moved across
|
|
one branch, and 50% across 2 branches.
|
|
|
|
E-Cache timing constraints:
|
|
-- Scheduling for E-cache (D-Cache misses) is effective (due to load buffering)
|
|
|
|
Store buffer timing constraints:
|
|
-- Stores can be executed in same cycle as instruction producing the value
|
|
-- Stores are buffered and have lower priority for E-cache until
|
|
highwater mark is reached in the store buffer (5 stores)
|
|
|
|
Pipeline constraints:
|
|
-- Shifts can only use IEU0.
|
|
-- CC setting instructions can only use IEU1.
|
|
-- Several other instructions must only use IEU1:
|
|
EDGE(?), ARRAY(?), CALL, JMPL, BPr, PST, and FCMP.
|
|
-- Two instructions cannot store to the same register file in a single cycle
|
|
(single write port per file).
|
|
|
|
Issue and grouping constraints:
|
|
-- FP and branch instructions must use slot 4.
|
|
-- Shift instructions cannot be grouped with other IEU0-specific instructions.
|
|
-- CC setting instructions cannot be grouped with other IEU1-specific instrs.
|
|
-- Several instructions must be issued in a single-instruction group:
|
|
MOVcc or MOVr, MULs/x and DIVs/x, SAVE/RESTORE, many others
|
|
-- A CALL or JMPL breaks a group, ie, is not combined with subsequent instrs.
|
|
--
|
|
--
|
|
|
|
Branch delay slot scheduling rules:
|
|
-- A CTI couple (two back-to-back CTI instructions in the dynamic stream)
|
|
has a 9-instruction penalty: the entire pipeline is flushed when the
|
|
second instruction reaches stage 9 (W-Writeback).
|
|
-- Avoid putting multicycle instructions, and instructions that may cause
|
|
load misses, in the delay slot of an annulling branch.
|
|
-- Avoid putting WR, SAVE..., RESTORE and RETURN instructions in the
|
|
delay slot of an annulling branch.
|
|
|
|
*--------------------------------------------------------------------------- */
|
|
|
|
//---------------------------------------------------------------------------
|
|
// List of CPUResources for UltraSPARC IIi.
|
|
//---------------------------------------------------------------------------
|
|
|
|
const CPUResource AllIssueSlots( "All Instr Slots", 4);
|
|
const CPUResource IntIssueSlots( "Int Instr Slots", 3);
|
|
const CPUResource First3IssueSlots("Instr Slots 0-3", 3);
|
|
const CPUResource LSIssueSlots( "Load-Store Instr Slot", 1);
|
|
const CPUResource CTIIssueSlots( "Ctrl Transfer Instr Slot", 1);
|
|
const CPUResource FPAIssueSlots( "Int Instr Slot 1", 1);
|
|
const CPUResource FPMIssueSlots( "Int Instr Slot 1", 1);
|
|
|
|
// IEUN instructions can use either Alu and should use IAluN.
|
|
// IEU0 instructions must use Alu 1 and should use both IAluN and IAlu0.
|
|
// IEU1 instructions must use Alu 2 and should use both IAluN and IAlu1.
|
|
const CPUResource IAluN("Int ALU 1or2", 2);
|
|
const CPUResource IAlu0("Int ALU 1", 1);
|
|
const CPUResource IAlu1("Int ALU 2", 1);
|
|
|
|
const CPUResource LSAluC1("Load/Store Unit Addr Cycle", 1);
|
|
const CPUResource LSAluC2("Load/Store Unit Issue Cycle", 1);
|
|
const CPUResource LdReturn("Load Return Unit", 1);
|
|
|
|
const CPUResource FPMAluC1("FP Mul/Div Alu Cycle 1", 1);
|
|
const CPUResource FPMAluC2("FP Mul/Div Alu Cycle 2", 1);
|
|
const CPUResource FPMAluC3("FP Mul/Div Alu Cycle 3", 1);
|
|
|
|
const CPUResource FPAAluC1("FP Other Alu Cycle 1", 1);
|
|
const CPUResource FPAAluC2("FP Other Alu Cycle 2", 1);
|
|
const CPUResource FPAAluC3("FP Other Alu Cycle 3", 1);
|
|
|
|
const CPUResource IRegReadPorts("Int Reg ReadPorts", INT_MAX); // CHECK
|
|
const CPUResource IRegWritePorts("Int Reg WritePorts", 2); // CHECK
|
|
const CPUResource FPRegReadPorts("FP Reg Read Ports", INT_MAX); // CHECK
|
|
const CPUResource FPRegWritePorts("FP Reg Write Ports", 1); // CHECK
|
|
|
|
const CPUResource CTIDelayCycle( "CTI delay cycle", 1);
|
|
const CPUResource FCMPDelayCycle("FCMP delay cycle", 1);
|
|
|
|
|
|
//---------------------------------------------------------------------------
|
|
// const InstrClassRUsage SparcRUsageDesc[]
|
|
//
|
|
// Purpose:
|
|
// Resource usage information for instruction in each scheduling class.
|
|
// The InstrRUsage Objects for individual classes are specified first.
|
|
// Note that fetch and decode are decoupled from the execution pipelines
|
|
// via an instr buffer, so they are not included in the cycles below.
|
|
//---------------------------------------------------------------------------
|
|
|
|
const InstrClassRUsage NoneClassRUsage = {
|
|
SPARC_NONE,
|
|
/*totCycles*/ 7,
|
|
|
|
/* maxIssueNum */ 4,
|
|
/* isSingleIssue */ false,
|
|
/* breaksGroup */ false,
|
|
/* numBubbles */ 0,
|
|
|
|
/*numSlots*/ 4,
|
|
/* feasibleSlots[] */ { 0, 1, 2, 3 },
|
|
|
|
/*numEntries*/ 0,
|
|
/* V[] */ {
|
|
/*Cycle G */
|
|
/*Ccle E */
|
|
/*Cycle C */
|
|
/*Cycle N1*/
|
|
/*Cycle N1*/
|
|
/*Cycle N1*/
|
|
/*Cycle W */
|
|
}
|
|
};
|
|
|
|
const InstrClassRUsage IEUNClassRUsage = {
|
|
SPARC_IEUN,
|
|
/*totCycles*/ 7,
|
|
|
|
/* maxIssueNum */ 3,
|
|
/* isSingleIssue */ false,
|
|
/* breaksGroup */ false,
|
|
/* numBubbles */ 0,
|
|
|
|
/*numSlots*/ 3,
|
|
/* feasibleSlots[] */ { 0, 1, 2 },
|
|
|
|
/*numEntries*/ 4,
|
|
/* V[] */ {
|
|
/*Cycle G */ { AllIssueSlots.rid, 0, 1 },
|
|
{ IntIssueSlots.rid, 0, 1 },
|
|
/*Cycle E */ { IAluN.rid, 1, 1 },
|
|
/*Cycle C */
|
|
/*Cycle N1*/
|
|
/*Cycle N1*/
|
|
/*Cycle N1*/
|
|
/*Cycle W */ { IRegWritePorts.rid, 6, 1 }
|
|
}
|
|
};
|
|
|
|
const InstrClassRUsage IEU0ClassRUsage = {
|
|
SPARC_IEU0,
|
|
/*totCycles*/ 7,
|
|
|
|
/* maxIssueNum */ 1,
|
|
/* isSingleIssue */ false,
|
|
/* breaksGroup */ false,
|
|
/* numBubbles */ 0,
|
|
|
|
/*numSlots*/ 3,
|
|
/* feasibleSlots[] */ { 0, 1, 2 },
|
|
|
|
/*numEntries*/ 5,
|
|
/* V[] */ {
|
|
/*Cycle G */ { AllIssueSlots.rid, 0, 1 },
|
|
{ IntIssueSlots.rid, 0, 1 },
|
|
/*Cycle E */ { IAluN.rid, 1, 1 },
|
|
{ IAlu0.rid, 1, 1 },
|
|
/*Cycle C */
|
|
/*Cycle N1*/
|
|
/*Cycle N1*/
|
|
/*Cycle N1*/
|
|
/*Cycle W */ { IRegWritePorts.rid, 6, 1 }
|
|
}
|
|
};
|
|
|
|
const InstrClassRUsage IEU1ClassRUsage = {
|
|
SPARC_IEU1,
|
|
/*totCycles*/ 7,
|
|
|
|
/* maxIssueNum */ 1,
|
|
/* isSingleIssue */ false,
|
|
/* breaksGroup */ false,
|
|
/* numBubbles */ 0,
|
|
|
|
/*numSlots*/ 3,
|
|
/* feasibleSlots[] */ { 0, 1, 2 },
|
|
|
|
/*numEntries*/ 5,
|
|
/* V[] */ {
|
|
/*Cycle G */ { AllIssueSlots.rid, 0, 1 },
|
|
{ IntIssueSlots.rid, 0, 1 },
|
|
/*Cycle E */ { IAluN.rid, 1, 1 },
|
|
{ IAlu1.rid, 1, 1 },
|
|
/*Cycle C */
|
|
/*Cycle N1*/
|
|
/*Cycle N1*/
|
|
/*Cycle N1*/
|
|
/*Cycle W */ { IRegWritePorts.rid, 6, 1 }
|
|
}
|
|
};
|
|
|
|
const InstrClassRUsage FPMClassRUsage = {
|
|
SPARC_FPM,
|
|
/*totCycles*/ 7,
|
|
|
|
/* maxIssueNum */ 1,
|
|
/* isSingleIssue */ false,
|
|
/* breaksGroup */ false,
|
|
/* numBubbles */ 0,
|
|
|
|
/*numSlots*/ 4,
|
|
/* feasibleSlots[] */ { 0, 1, 2, 3 },
|
|
|
|
/*numEntries*/ 7,
|
|
/* V[] */ {
|
|
/*Cycle G */ { AllIssueSlots.rid, 0, 1 },
|
|
{ FPMIssueSlots.rid, 0, 1 },
|
|
/*Cycle E */ { FPRegReadPorts.rid, 1, 1 },
|
|
/*Cycle C */ { FPMAluC1.rid, 2, 1 },
|
|
/*Cycle N1*/ { FPMAluC2.rid, 3, 1 },
|
|
/*Cycle N1*/ { FPMAluC3.rid, 4, 1 },
|
|
/*Cycle N1*/
|
|
/*Cycle W */ { FPRegWritePorts.rid, 6, 1 }
|
|
}
|
|
};
|
|
|
|
const InstrClassRUsage FPAClassRUsage = {
|
|
SPARC_FPA,
|
|
/*totCycles*/ 7,
|
|
|
|
/* maxIssueNum */ 1,
|
|
/* isSingleIssue */ false,
|
|
/* breaksGroup */ false,
|
|
/* numBubbles */ 0,
|
|
|
|
/*numSlots*/ 4,
|
|
/* feasibleSlots[] */ { 0, 1, 2, 3 },
|
|
|
|
/*numEntries*/ 7,
|
|
/* V[] */ {
|
|
/*Cycle G */ { AllIssueSlots.rid, 0, 1 },
|
|
{ FPAIssueSlots.rid, 0, 1 },
|
|
/*Cycle E */ { FPRegReadPorts.rid, 1, 1 },
|
|
/*Cycle C */ { FPAAluC1.rid, 2, 1 },
|
|
/*Cycle N1*/ { FPAAluC2.rid, 3, 1 },
|
|
/*Cycle N1*/ { FPAAluC3.rid, 4, 1 },
|
|
/*Cycle N1*/
|
|
/*Cycle W */ { FPRegWritePorts.rid, 6, 1 }
|
|
}
|
|
};
|
|
|
|
const InstrClassRUsage LDClassRUsage = {
|
|
SPARC_LD,
|
|
/*totCycles*/ 7,
|
|
|
|
/* maxIssueNum */ 1,
|
|
/* isSingleIssue */ false,
|
|
/* breaksGroup */ false,
|
|
/* numBubbles */ 0,
|
|
|
|
/*numSlots*/ 3,
|
|
/* feasibleSlots[] */ { 0, 1, 2, },
|
|
|
|
/*numEntries*/ 6,
|
|
/* V[] */ {
|
|
/*Cycle G */ { AllIssueSlots.rid, 0, 1 },
|
|
{ First3IssueSlots.rid, 0, 1 },
|
|
{ LSIssueSlots.rid, 0, 1 },
|
|
/*Cycle E */ { LSAluC1.rid, 1, 1 },
|
|
/*Cycle C */ { LSAluC2.rid, 2, 1 },
|
|
{ LdReturn.rid, 2, 1 },
|
|
/*Cycle N1*/
|
|
/*Cycle N1*/
|
|
/*Cycle N1*/
|
|
/*Cycle W */ { IRegWritePorts.rid, 6, 1 }
|
|
}
|
|
};
|
|
|
|
const InstrClassRUsage STClassRUsage = {
|
|
SPARC_ST,
|
|
/*totCycles*/ 7,
|
|
|
|
/* maxIssueNum */ 1,
|
|
/* isSingleIssue */ false,
|
|
/* breaksGroup */ false,
|
|
/* numBubbles */ 0,
|
|
|
|
/*numSlots*/ 3,
|
|
/* feasibleSlots[] */ { 0, 1, 2 },
|
|
|
|
/*numEntries*/ 4,
|
|
/* V[] */ {
|
|
/*Cycle G */ { AllIssueSlots.rid, 0, 1 },
|
|
{ First3IssueSlots.rid, 0, 1 },
|
|
{ LSIssueSlots.rid, 0, 1 },
|
|
/*Cycle E */ { LSAluC1.rid, 1, 1 },
|
|
/*Cycle C */ { LSAluC2.rid, 2, 1 }
|
|
/*Cycle N1*/
|
|
/*Cycle N1*/
|
|
/*Cycle N1*/
|
|
/*Cycle W */
|
|
}
|
|
};
|
|
|
|
const InstrClassRUsage CTIClassRUsage = {
|
|
SPARC_CTI,
|
|
/*totCycles*/ 7,
|
|
|
|
/* maxIssueNum */ 1,
|
|
/* isSingleIssue */ false,
|
|
/* breaksGroup */ false,
|
|
/* numBubbles */ 0,
|
|
|
|
/*numSlots*/ 4,
|
|
/* feasibleSlots[] */ { 0, 1, 2, 3 },
|
|
|
|
/*numEntries*/ 4,
|
|
/* V[] */ {
|
|
/*Cycle G */ { AllIssueSlots.rid, 0, 1 },
|
|
{ CTIIssueSlots.rid, 0, 1 },
|
|
/*Cycle E */ { IAlu0.rid, 1, 1 },
|
|
/*Cycles E-C */ { CTIDelayCycle.rid, 1, 2 }
|
|
/*Cycle C */
|
|
/*Cycle N1*/
|
|
/*Cycle N1*/
|
|
/*Cycle N1*/
|
|
/*Cycle W */
|
|
}
|
|
};
|
|
|
|
const InstrClassRUsage SingleClassRUsage = {
|
|
SPARC_SINGLE,
|
|
/*totCycles*/ 7,
|
|
|
|
/* maxIssueNum */ 1,
|
|
/* isSingleIssue */ true,
|
|
/* breaksGroup */ false,
|
|
/* numBubbles */ 0,
|
|
|
|
/*numSlots*/ 1,
|
|
/* feasibleSlots[] */ { 0 },
|
|
|
|
/*numEntries*/ 5,
|
|
/* V[] */ {
|
|
/*Cycle G */ { AllIssueSlots.rid, 0, 1 },
|
|
{ AllIssueSlots.rid, 0, 1 },
|
|
{ AllIssueSlots.rid, 0, 1 },
|
|
{ AllIssueSlots.rid, 0, 1 },
|
|
/*Cycle E */ { IAlu0.rid, 1, 1 }
|
|
/*Cycle C */
|
|
/*Cycle N1*/
|
|
/*Cycle N1*/
|
|
/*Cycle N1*/
|
|
/*Cycle W */
|
|
}
|
|
};
|
|
|
|
|
|
const InstrClassRUsage SparcRUsageDesc[] = {
|
|
NoneClassRUsage,
|
|
IEUNClassRUsage,
|
|
IEU0ClassRUsage,
|
|
IEU1ClassRUsage,
|
|
FPMClassRUsage,
|
|
FPAClassRUsage,
|
|
CTIClassRUsage,
|
|
LDClassRUsage,
|
|
STClassRUsage,
|
|
SingleClassRUsage
|
|
};
|
|
|
|
|
|
//---------------------------------------------------------------------------
|
|
// const InstrIssueDelta SparcInstrIssueDeltas[]
|
|
//
|
|
// Purpose:
|
|
// Changes to issue restrictions information in InstrClassRUsage for
|
|
// instructions that differ from other instructions in their class.
|
|
//---------------------------------------------------------------------------
|
|
|
|
const InstrIssueDelta SparcInstrIssueDeltas[] = {
|
|
|
|
// opCode, isSingleIssue, breaksGroup, numBubbles
|
|
|
|
// Special cases for single-issue only
|
|
// Other single issue cases are below.
|
|
//{ LDDA, true, true, 0 },
|
|
//{ STDA, true, true, 0 },
|
|
//{ LDDF, true, true, 0 },
|
|
//{ LDDFA, true, true, 0 },
|
|
{ ADDC, true, true, 0 },
|
|
{ ADDCcc, true, true, 0 },
|
|
{ SUBC, true, true, 0 },
|
|
{ SUBCcc, true, true, 0 },
|
|
//{ LDSTUB, true, true, 0 },
|
|
//{ SWAP, true, true, 0 },
|
|
//{ SWAPA, true, true, 0 },
|
|
//{ CAS, true, true, 0 },
|
|
//{ CASA, true, true, 0 },
|
|
//{ CASX, true, true, 0 },
|
|
//{ CASXA, true, true, 0 },
|
|
//{ LDFSR, true, true, 0 },
|
|
//{ LDFSRA, true, true, 0 },
|
|
//{ LDXFSR, true, true, 0 },
|
|
//{ LDXFSRA, true, true, 0 },
|
|
//{ STFSR, true, true, 0 },
|
|
//{ STFSRA, true, true, 0 },
|
|
//{ STXFSR, true, true, 0 },
|
|
//{ STXFSRA, true, true, 0 },
|
|
//{ SAVED, true, true, 0 },
|
|
//{ RESTORED, true, true, 0 },
|
|
//{ FLUSH, true, true, 9 },
|
|
//{ FLUSHW, true, true, 9 },
|
|
//{ ALIGNADDR, true, true, 0 },
|
|
{ RETURN, true, true, 0 },
|
|
//{ DONE, true, true, 0 },
|
|
//{ RETRY, true, true, 0 },
|
|
//{ TCC, true, true, 0 },
|
|
//{ SHUTDOWN, true, true, 0 },
|
|
|
|
// Special cases for breaking group *before*
|
|
// CURRENTLY NOT SUPPORTED!
|
|
{ CALL, false, false, 0 },
|
|
{ JMPLCALL, false, false, 0 },
|
|
{ JMPLRET, false, false, 0 },
|
|
|
|
// Special cases for breaking the group *after*
|
|
{ MULX, true, true, (4+34)/2 },
|
|
{ FDIVS, false, true, 0 },
|
|
{ FDIVD, false, true, 0 },
|
|
{ FDIVQ, false, true, 0 },
|
|
{ FSQRTS, false, true, 0 },
|
|
{ FSQRTD, false, true, 0 },
|
|
{ FSQRTQ, false, true, 0 },
|
|
//{ FCMP{LE,GT,NE,EQ}, false, true, 0 },
|
|
|
|
// Instructions that introduce bubbles
|
|
//{ MULScc, true, true, 2 },
|
|
//{ SMULcc, true, true, (4+18)/2 },
|
|
//{ UMULcc, true, true, (4+19)/2 },
|
|
{ SDIVX, true, true, 68 },
|
|
{ UDIVX, true, true, 68 },
|
|
//{ SDIVcc, true, true, 36 },
|
|
//{ UDIVcc, true, true, 37 },
|
|
{ WRCCR, true, true, 4 },
|
|
//{ WRPR, true, true, 4 },
|
|
//{ RDCCR, true, true, 0 }, // no bubbles after, but see below
|
|
//{ RDPR, true, true, 0 },
|
|
};
|
|
|
|
|
|
//---------------------------------------------------------------------------
|
|
// const InstrRUsageDelta SparcInstrUsageDeltas[]
|
|
//
|
|
// Purpose:
|
|
// Changes to resource usage information in InstrClassRUsage for
|
|
// instructions that differ from other instructions in their class.
|
|
//---------------------------------------------------------------------------
|
|
|
|
const InstrRUsageDelta SparcInstrUsageDeltas[] = {
|
|
|
|
// MachineOpCode, Resource, Start cycle, Num cycles
|
|
|
|
//
|
|
// JMPL counts as a load/store instruction for issue!
|
|
//
|
|
{ JMPLCALL, LSIssueSlots.rid, 0, 1 },
|
|
{ JMPLRET, LSIssueSlots.rid, 0, 1 },
|
|
|
|
//
|
|
// Many instructions cannot issue for the next 2 cycles after an FCMP
|
|
// We model that with a fake resource FCMPDelayCycle.
|
|
//
|
|
{ FCMPS, FCMPDelayCycle.rid, 1, 3 },
|
|
{ FCMPD, FCMPDelayCycle.rid, 1, 3 },
|
|
{ FCMPQ, FCMPDelayCycle.rid, 1, 3 },
|
|
|
|
{ MULX, FCMPDelayCycle.rid, 1, 1 },
|
|
{ SDIVX, FCMPDelayCycle.rid, 1, 1 },
|
|
{ UDIVX, FCMPDelayCycle.rid, 1, 1 },
|
|
//{ SMULcc, FCMPDelayCycle.rid, 1, 1 },
|
|
//{ UMULcc, FCMPDelayCycle.rid, 1, 1 },
|
|
//{ SDIVcc, FCMPDelayCycle.rid, 1, 1 },
|
|
//{ UDIVcc, FCMPDelayCycle.rid, 1, 1 },
|
|
{ STD, FCMPDelayCycle.rid, 1, 1 },
|
|
{ FMOVRSZ, FCMPDelayCycle.rid, 1, 1 },
|
|
{ FMOVRSLEZ,FCMPDelayCycle.rid, 1, 1 },
|
|
{ FMOVRSLZ, FCMPDelayCycle.rid, 1, 1 },
|
|
{ FMOVRSNZ, FCMPDelayCycle.rid, 1, 1 },
|
|
{ FMOVRSGZ, FCMPDelayCycle.rid, 1, 1 },
|
|
{ FMOVRSGEZ,FCMPDelayCycle.rid, 1, 1 },
|
|
|
|
//
|
|
// Some instructions are stalled in the GROUP stage if a CTI is in
|
|
// the E or C stage. We model that with a fake resource CTIDelayCycle.
|
|
//
|
|
{ LDD, CTIDelayCycle.rid, 1, 1 },
|
|
//{ LDDA, CTIDelayCycle.rid, 1, 1 },
|
|
//{ LDDSTUB, CTIDelayCycle.rid, 1, 1 },
|
|
//{ LDDSTUBA, CTIDelayCycle.rid, 1, 1 },
|
|
//{ SWAP, CTIDelayCycle.rid, 1, 1 },
|
|
//{ SWAPA, CTIDelayCycle.rid, 1, 1 },
|
|
//{ CAS, CTIDelayCycle.rid, 1, 1 },
|
|
//{ CASA, CTIDelayCycle.rid, 1, 1 },
|
|
//{ CASX, CTIDelayCycle.rid, 1, 1 },
|
|
//{ CASXA, CTIDelayCycle.rid, 1, 1 },
|
|
|
|
//
|
|
// Signed int loads of less than dword size return data in cycle N1 (not C)
|
|
// and put all loads in consecutive cycles into delayed load return mode.
|
|
//
|
|
{ LDSB, LdReturn.rid, 2, -1 },
|
|
{ LDSB, LdReturn.rid, 3, 1 },
|
|
|
|
{ LDSH, LdReturn.rid, 2, -1 },
|
|
{ LDSH, LdReturn.rid, 3, 1 },
|
|
|
|
{ LDSW, LdReturn.rid, 2, -1 },
|
|
{ LDSW, LdReturn.rid, 3, 1 },
|
|
|
|
//
|
|
// RDPR from certain registers and RD from any register are not dispatchable
|
|
// until four clocks after they reach the head of the instr. buffer.
|
|
// Together with their single-issue requirement, this means all four issue
|
|
// slots are effectively blocked for those cycles, plus the issue cycle.
|
|
// This does not increase the latency of the instruction itself.
|
|
//
|
|
{ RDCCR, AllIssueSlots.rid, 0, 5 },
|
|
{ RDCCR, AllIssueSlots.rid, 0, 5 },
|
|
{ RDCCR, AllIssueSlots.rid, 0, 5 },
|
|
{ RDCCR, AllIssueSlots.rid, 0, 5 },
|
|
|
|
#undef EXPLICIT_BUBBLES_NEEDED
|
|
#ifdef EXPLICIT_BUBBLES_NEEDED
|
|
//
|
|
// MULScc inserts one bubble.
|
|
// This means it breaks the current group (captured in UltraSparcSchedInfo)
|
|
// *and occupies all issue slots for the next cycle
|
|
//
|
|
//{ MULScc, AllIssueSlots.rid, 2, 2-1 },
|
|
//{ MULScc, AllIssueSlots.rid, 2, 2-1 },
|
|
//{ MULScc, AllIssueSlots.rid, 2, 2-1 },
|
|
//{ MULScc, AllIssueSlots.rid, 2, 2-1 },
|
|
|
|
//
|
|
// SMULcc inserts between 4 and 18 bubbles, depending on #leading 0s in rs1.
|
|
// We just model this with a simple average.
|
|
//
|
|
//{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 },
|
|
//{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 },
|
|
//{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 },
|
|
//{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 },
|
|
|
|
// SMULcc inserts between 4 and 19 bubbles, depending on #leading 0s in rs1.
|
|
//{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 },
|
|
//{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 },
|
|
//{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 },
|
|
//{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 },
|
|
|
|
//
|
|
// MULX inserts between 4 and 34 bubbles, depending on #leading 0s in rs1.
|
|
//
|
|
{ MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 },
|
|
{ MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 },
|
|
{ MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 },
|
|
{ MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 },
|
|
|
|
//
|
|
// SDIVcc inserts 36 bubbles.
|
|
//
|
|
//{ SDIVcc, AllIssueSlots.rid, 2, 36-1 },
|
|
//{ SDIVcc, AllIssueSlots.rid, 2, 36-1 },
|
|
//{ SDIVcc, AllIssueSlots.rid, 2, 36-1 },
|
|
//{ SDIVcc, AllIssueSlots.rid, 2, 36-1 },
|
|
|
|
// UDIVcc inserts 37 bubbles.
|
|
//{ UDIVcc, AllIssueSlots.rid, 2, 37-1 },
|
|
//{ UDIVcc, AllIssueSlots.rid, 2, 37-1 },
|
|
//{ UDIVcc, AllIssueSlots.rid, 2, 37-1 },
|
|
//{ UDIVcc, AllIssueSlots.rid, 2, 37-1 },
|
|
|
|
//
|
|
// SDIVX inserts 68 bubbles.
|
|
//
|
|
{ SDIVX, AllIssueSlots.rid, 2, 68-1 },
|
|
{ SDIVX, AllIssueSlots.rid, 2, 68-1 },
|
|
{ SDIVX, AllIssueSlots.rid, 2, 68-1 },
|
|
{ SDIVX, AllIssueSlots.rid, 2, 68-1 },
|
|
|
|
//
|
|
// UDIVX inserts 68 bubbles.
|
|
//
|
|
{ UDIVX, AllIssueSlots.rid, 2, 68-1 },
|
|
{ UDIVX, AllIssueSlots.rid, 2, 68-1 },
|
|
{ UDIVX, AllIssueSlots.rid, 2, 68-1 },
|
|
{ UDIVX, AllIssueSlots.rid, 2, 68-1 },
|
|
|
|
//
|
|
// WR inserts 4 bubbles.
|
|
//
|
|
//{ WR, AllIssueSlots.rid, 2, 68-1 },
|
|
//{ WR, AllIssueSlots.rid, 2, 68-1 },
|
|
//{ WR, AllIssueSlots.rid, 2, 68-1 },
|
|
//{ WR, AllIssueSlots.rid, 2, 68-1 },
|
|
|
|
//
|
|
// WRPR inserts 4 bubbles.
|
|
//
|
|
//{ WRPR, AllIssueSlots.rid, 2, 68-1 },
|
|
//{ WRPR, AllIssueSlots.rid, 2, 68-1 },
|
|
//{ WRPR, AllIssueSlots.rid, 2, 68-1 },
|
|
//{ WRPR, AllIssueSlots.rid, 2, 68-1 },
|
|
|
|
//
|
|
// DONE inserts 9 bubbles.
|
|
//
|
|
//{ DONE, AllIssueSlots.rid, 2, 9-1 },
|
|
//{ DONE, AllIssueSlots.rid, 2, 9-1 },
|
|
//{ DONE, AllIssueSlots.rid, 2, 9-1 },
|
|
//{ DONE, AllIssueSlots.rid, 2, 9-1 },
|
|
|
|
//
|
|
// RETRY inserts 9 bubbles.
|
|
//
|
|
//{ RETRY, AllIssueSlots.rid, 2, 9-1 },
|
|
//{ RETRY, AllIssueSlots.rid, 2, 9-1 },
|
|
//{ RETRY, AllIssueSlots.rid, 2, 9-1 },
|
|
//{ RETRY, AllIssueSlots.rid, 2, 9-1 },
|
|
|
|
#endif /*EXPLICIT_BUBBLES_NEEDED */
|
|
};
|
|
|
|
|
|
|
|
// Additional delays to be captured in code:
|
|
// 1. RDPR from several state registers (page 349)
|
|
// 2. RD from *any* register (page 349)
|
|
// 3. Writes to TICK, PSTATE, TL registers and FLUSH{W} instr (page 349)
|
|
// 4. Integer store can be in same group as instr producing value to store.
|
|
// 5. BICC and BPICC can be in the same group as instr producing CC (pg 350)
|
|
// 6. FMOVr cannot be in the same or next group as an IEU instr (pg 351).
|
|
// 7. The second instr. of a CTI group inserts 9 bubbles (pg 351)
|
|
// 8. WR{PR}, SVAE, SAVED, RESTORE, RESTORED, RETURN, RETRY, and DONE that
|
|
// follow an annulling branch cannot be issued in the same group or in
|
|
// the 3 groups following the branch.
|
|
// 9. A predicted annulled load does not stall dependent instructions.
|
|
// Other annulled delay slot instructions *do* stall dependents, so
|
|
// nothing special needs to be done for them during scheduling.
|
|
//10. Do not put a load use that may be annulled in the same group as the
|
|
// branch. The group will stall until the load returns.
|
|
//11. Single-prec. FP loads lock 2 registers, for dependency checking.
|
|
//
|
|
//
|
|
// Additional delays we cannot or will not capture:
|
|
// 1. If DCTI is last word of cache line, it is delayed until next line can be
|
|
// fetched. Also, other DCTI alignment-related delays (pg 352)
|
|
// 2. Load-after-store is delayed by 7 extra cycles if load hits in D-Cache.
|
|
// Also, several other store-load and load-store conflicts (pg 358)
|
|
// 3. MEMBAR, LD{X}FSR, LDD{A} and a bunch of other load stalls (pg 358)
|
|
// 4. There can be at most 8 outstanding buffered store instructions
|
|
// (including some others like MEMBAR, LDSTUB, CAS{AX}, and FLUSH)
|
|
|
|
|
|
|
|
//---------------------------------------------------------------------------
|
|
// class UltraSparcSchedInfo
|
|
//
|
|
// Purpose:
|
|
// Interface to instruction scheduling information for UltraSPARC.
|
|
// The parameter values above are based on UltraSPARC IIi.
|
|
//---------------------------------------------------------------------------
|
|
|
|
|
|
class UltraSparcSchedInfo: public MachineSchedInfo {
|
|
public:
|
|
/*ctor*/ UltraSparcSchedInfo (const TargetMachine& tgt);
|
|
/*dtor*/ virtual ~UltraSparcSchedInfo () {}
|
|
protected:
|
|
virtual void initializeResources ();
|
|
};
|
|
|
|
|
|
//---------------------------------------------------------------------------
|
|
// class UltraSparcFrameInfo
|
|
//
|
|
// Purpose:
|
|
// Interface to stack frame layout info for the UltraSPARC.
|
|
// Starting offsets for each area of the stack frame are aligned at
|
|
// a multiple of getStackFrameSizeAlignment().
|
|
//---------------------------------------------------------------------------
|
|
|
|
class UltraSparcFrameInfo: public MachineFrameInfo {
|
|
public:
|
|
/*ctor*/ UltraSparcFrameInfo(const TargetMachine& tgt) : MachineFrameInfo(tgt) {}
|
|
|
|
public:
|
|
int getStackFrameSizeAlignment () const { return StackFrameSizeAlignment;}
|
|
int getMinStackFrameSize () const { return MinStackFrameSize; }
|
|
int getNumFixedOutgoingArgs () const { return NumFixedOutgoingArgs; }
|
|
int getSizeOfEachArgOnStack () const { return SizeOfEachArgOnStack; }
|
|
bool argsOnStackHaveFixedSize () const { return true; }
|
|
|
|
//
|
|
// These methods compute offsets using the frame contents for a
|
|
// particular method. The frame contents are obtained from the
|
|
// MachineCodeInfoForMethod object for the given method.
|
|
//
|
|
int getFirstIncomingArgOffset (MachineCodeForMethod& mcInfo,
|
|
bool& pos) const
|
|
{
|
|
pos = true; // arguments area grows upwards
|
|
return FirstIncomingArgOffsetFromFP;
|
|
}
|
|
int getFirstOutgoingArgOffset (MachineCodeForMethod& mcInfo,
|
|
bool& pos) const
|
|
{
|
|
pos = true; // arguments area grows upwards
|
|
return FirstOutgoingArgOffsetFromSP;
|
|
}
|
|
int getFirstOptionalOutgoingArgOffset(MachineCodeForMethod& mcInfo,
|
|
bool& pos)const
|
|
{
|
|
pos = true; // arguments area grows upwards
|
|
return FirstOptionalOutgoingArgOffsetFromSP;
|
|
}
|
|
|
|
int getFirstAutomaticVarOffset (MachineCodeForMethod& mcInfo,
|
|
bool& pos) const;
|
|
int getRegSpillAreaOffset (MachineCodeForMethod& mcInfo,
|
|
bool& pos) const;
|
|
int getTmpAreaOffset (MachineCodeForMethod& mcInfo,
|
|
bool& pos) const;
|
|
int getDynamicAreaOffset (MachineCodeForMethod& mcInfo,
|
|
bool& pos) const;
|
|
|
|
//
|
|
// These methods specify the base register used for each stack area
|
|
// (generally FP or SP)
|
|
//
|
|
virtual int getIncomingArgBaseRegNum() const {
|
|
return (int) target.getRegInfo().getFramePointer();
|
|
}
|
|
virtual int getOutgoingArgBaseRegNum() const {
|
|
return (int) target.getRegInfo().getStackPointer();
|
|
}
|
|
virtual int getOptionalOutgoingArgBaseRegNum() const {
|
|
return (int) target.getRegInfo().getStackPointer();
|
|
}
|
|
virtual int getAutomaticVarBaseRegNum() const {
|
|
return (int) target.getRegInfo().getFramePointer();
|
|
}
|
|
virtual int getRegSpillAreaBaseRegNum() const {
|
|
return (int) target.getRegInfo().getFramePointer();
|
|
}
|
|
virtual int getDynamicAreaBaseRegNum() const {
|
|
return (int) target.getRegInfo().getStackPointer();
|
|
}
|
|
|
|
private:
|
|
// All stack addresses must be offset by 0x7ff (2047) on Sparc V9.
|
|
static const int OFFSET = (int) 0x7ff;
|
|
static const int StackFrameSizeAlignment = 16;
|
|
static const int MinStackFrameSize = 176;
|
|
static const int NumFixedOutgoingArgs = 6;
|
|
static const int SizeOfEachArgOnStack = 8;
|
|
static const int StaticAreaOffsetFromFP = 0 + OFFSET;
|
|
static const int FirstIncomingArgOffsetFromFP = 128 + OFFSET;
|
|
static const int FirstOptionalIncomingArgOffsetFromFP = 176 + OFFSET;
|
|
static const int FirstOutgoingArgOffsetFromSP = 128 + OFFSET;
|
|
static const int FirstOptionalOutgoingArgOffsetFromSP = 176 + OFFSET;
|
|
};
|
|
|
|
|
|
//---------------------------------------------------------------------------
|
|
// class UltraSparcCacheInfo
|
|
//
|
|
// Purpose:
|
|
// Interface to cache parameters for the UltraSPARC.
|
|
// Just use defaults for now.
|
|
//---------------------------------------------------------------------------
|
|
|
|
class UltraSparcCacheInfo: public MachineCacheInfo {
|
|
public:
|
|
/*ctor*/ UltraSparcCacheInfo (const TargetMachine& target) :
|
|
MachineCacheInfo(target) {}
|
|
};
|
|
|
|
|
|
//---------------------------------------------------------------------------
|
|
// class UltraSparcMachine
|
|
//
|
|
// Purpose:
|
|
// Primary interface to machine description for the UltraSPARC.
|
|
// Primarily just initializes machine-dependent parameters in
|
|
// class TargetMachine, and creates machine-dependent subclasses
|
|
// for classes such as InstrInfo, SchedInfo and RegInfo.
|
|
//---------------------------------------------------------------------------
|
|
|
|
class UltraSparc : public TargetMachine {
|
|
private:
|
|
UltraSparcInstrInfo instrInfo;
|
|
UltraSparcSchedInfo schedInfo;
|
|
UltraSparcRegInfo regInfo;
|
|
UltraSparcFrameInfo frameInfo;
|
|
UltraSparcCacheInfo cacheInfo;
|
|
public:
|
|
UltraSparc();
|
|
virtual ~UltraSparc() {}
|
|
|
|
virtual const MachineInstrInfo &getInstrInfo() const { return instrInfo; }
|
|
virtual const MachineSchedInfo &getSchedInfo() const { return schedInfo; }
|
|
virtual const MachineRegInfo &getRegInfo() const { return regInfo; }
|
|
virtual const MachineFrameInfo &getFrameInfo() const { return frameInfo; }
|
|
virtual const MachineCacheInfo &getCacheInfo() const { return cacheInfo; }
|
|
|
|
// compileMethod - For the sparc, we do instruction selection, followed by
|
|
// delay slot scheduling, then register allocation.
|
|
//
|
|
virtual bool compileMethod(Method *M);
|
|
|
|
//
|
|
// emitAssembly - Output assembly language code (a .s file) for the specified
|
|
// module. The specified module must have been compiled before this may be
|
|
// used.
|
|
//
|
|
virtual void emitAssembly(const Module *M, std::ostream &OutStr) const;
|
|
};
|
|
|
|
|
|
#endif
|