1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 02:52:53 +02:00
llvm-mirror/lib/Target/AArch64/AArch64SchedKryo.td
Craig Topper ead1756da7 [TableGen] When trying to reuse a scheduler class for instructions from an InstRW, make sure we haven't already seen another InstRW containing this instruction on this CPU.
This is similar to the check later when we remap some of the instructions from one class to a new one. But if we reuse the class we don't get to do that check.

So many CPUs have violations of this check that I had to add a flag to the SchedMachineModel to allow it to be disabled. Hopefully we can get those cleaned up quickly and remove this flag.

A lot of the violations are due to overlapping regular expressions, but that's not the only kind of issue it found.

llvm-svn: 327808
2018-03-18 19:56:15 +00:00

139 lines
6.1 KiB
TableGen

//==- AArch64SchedKryo.td - Qualcomm Kryo Scheduling Defs ---*- tablegen -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the machine model for Qualcomm Kryo to support
// instruction scheduling and other instruction cost heuristics.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// The issue width is set to five, matching the five issue queues for expanded
// uops. Now, the latency spreadsheet has information based on fragmented uops,
// but these do not actually take up an issue queue.
def KryoModel : SchedMachineModel {
let IssueWidth = 5; // 5-wide issue for expanded uops
let MicroOpBufferSize = 128; // Out-of-order with temporary unified issue buffer
let LoadLatency = 4; // Optimistic load latency
let MispredictPenalty = 14; // Fetch + Decode/Rename/Dispatch + Branch
// Enable partial & runtime unrolling. The magic number is chosen based on
// experiments and benchmarking data.
let LoopMicroOpBufferSize = 16;
let CompleteModel = 1;
list<Predicate> UnsupportedFeatures = [HasSVE];
// FIXME: Remove when all errors have been fixed.
let FullInstRWOverlapCheck = 0;
}
//===----------------------------------------------------------------------===//
// Define each kind of processor resource and number available on Kryo.
let SchedModel = KryoModel in {
def KryoUnitXA : ProcResource<1>; // Type X(A) micro-ops
def KryoUnitXB : ProcResource<1>; // Type X(B) micro-ops
def KryoUnitYA : ProcResource<1>; // Type Y(A) micro-ops
def KryoUnitYB : ProcResource<1>; // Type Y(B) micro-ops
def KryoUnitX : ProcResGroup<[KryoUnitXA, // Type X micro-ops
KryoUnitXB]>;
def KryoUnitY : ProcResGroup<[KryoUnitYA, // Type Y micro-ops
KryoUnitYB]>;
def KryoUnitXY : ProcResGroup<[KryoUnitXA, // Type XY micro-ops
KryoUnitXB,
KryoUnitYA,
KryoUnitYB]>;
def KryoUnitLSA : ProcResource<1>; // Type LS(A) micro-ops
def KryoUnitLSB : ProcResource<1>; // Type LS(B) micro-ops
def KryoUnitLS : ProcResGroup<[KryoUnitLSA, // Type LS micro-ops
KryoUnitLSB]>;
}
let SchedModel = KryoModel in {
//===----------------------------------------------------------------------===//
// Map the target-defined scheduler read/write resources and latency for
// Kryo.
def : WriteRes<WriteImm, [KryoUnitXY]> { let Latency = 1; }
def : WriteRes<WriteI, [KryoUnitXY]> { let Latency = 1; }
def : WriteRes<WriteISReg, [KryoUnitXY, KryoUnitXY]>
{ let Latency = 2; let NumMicroOps = 2; }
def : WriteRes<WriteIEReg, [KryoUnitXY, KryoUnitXY]>
{ let Latency = 2; let NumMicroOps = 2; }
def : WriteRes<WriteExtr, [KryoUnitXY, KryoUnitX]>
{ let Latency = 2; let NumMicroOps = 2; }
def : WriteRes<WriteIS, [KryoUnitXY]> { let Latency = 2; }
def : WriteRes<WriteID32, [KryoUnitXA, KryoUnitY]>
{ let Latency = 8; let NumMicroOps = 1; } // Fragent -1
def : WriteRes<WriteID64, [KryoUnitXA, KryoUnitY]>
{ let Latency = 8; let NumMicroOps = 1; } // Fragent -1
def : WriteRes<WriteIM32, [KryoUnitX]> { let Latency = 5; }
def : WriteRes<WriteIM64, [KryoUnitX]> { let Latency = 5; }
def : WriteRes<WriteBr, [KryoUnitXY]> { let Latency = 1; }
def : WriteRes<WriteBrReg, [KryoUnitXY]> { let Latency = 1; }
def : WriteRes<WriteLD, [KryoUnitLS]> { let Latency = 4; }
def : WriteRes<WriteST, [KryoUnitLS]> { let Latency = 4; }
def : WriteRes<WriteSTP, [KryoUnitLS]> { let Latency = 4; }
def : WriteRes<WriteAdr, [KryoUnitXY]> { let Latency = 6; }
def : WriteRes<WriteLDIdx, [KryoUnitLS]> { let Latency = 4; }
def : WriteRes<WriteSTIdx, [KryoUnitLS]> { let Latency = 4; }
def : WriteRes<WriteF, [KryoUnitXY, KryoUnitXY]>
{ let Latency = 3; let NumMicroOps = 2; }
def : WriteRes<WriteFCmp, [KryoUnitXY]> { let Latency = 2; }
def : WriteRes<WriteFCvt, [KryoUnitX]> { let Latency = 4; }
def : WriteRes<WriteFCopy, [KryoUnitXY]> { let Latency = 6; }
def : WriteRes<WriteFImm, [KryoUnitXY]> { let Latency = 6; }
def : WriteRes<WriteFMul, [KryoUnitX, KryoUnitX]>
{ let Latency = 6; let NumMicroOps = 2; }
def : WriteRes<WriteFDiv, [KryoUnitXA, KryoUnitY]>
{ let Latency = 12; let NumMicroOps = 2; } // Fragent -1 / NoRSV +1
def : WriteRes<WriteV, [KryoUnitXY]> { let Latency = 6; }
def : WriteRes<WriteVLD, [KryoUnitLS]> { let Latency = 4; }
def : WriteRes<WriteVST, [KryoUnitLS]> { let Latency = 4; }
def : WriteRes<WriteSys, []> { let Latency = 1; }
def : WriteRes<WriteBarrier, []> { let Latency = 1; }
def : WriteRes<WriteHint, []> { let Latency = 1; }
def : WriteRes<WriteLDHi, []> { let Latency = 4; }
def : WriteRes<WriteAtomic, []> { let Unsupported = 1; }
// No forwarding logic is modelled yet.
def : ReadAdvance<ReadI, 0>;
def : ReadAdvance<ReadISReg, 0>;
def : ReadAdvance<ReadIEReg, 0>;
def : ReadAdvance<ReadIM, 0>;
def : ReadAdvance<ReadIMA, 0>;
def : ReadAdvance<ReadID, 0>;
def : ReadAdvance<ReadExtrHi, 0>;
def : ReadAdvance<ReadAdrBase, 0>;
def : ReadAdvance<ReadVLD, 0>;
//===----------------------------------------------------------------------===//
// Specialize the coarse model by associating instruction groups with the
// subtarget-defined types. As the modeled is refined, this will override most
// of the above SchedWriteRes and SchedAlias mappings.
// Miscellaneous
// -----------------------------------------------------------------------------
def : InstRW<[WriteI], (instrs COPY)>;
// Detailed Refinedments
// -----------------------------------------------------------------------------
include "AArch64SchedKryoDetails.td"
} // SchedModel = KryoModel