mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-24 19:52:54 +01:00
0d29870989
llvm-svn: 104806
1670 lines
58 KiB
C++
1670 lines
58 KiB
C++
//===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This tablegen backend emits a target specifier matcher for converting parsed
|
|
// assembly operands in the MCInst structures.
|
|
//
|
|
// The input to the target specific matcher is a list of literal tokens and
|
|
// operands. The target specific parser should generally eliminate any syntax
|
|
// which is not relevant for matching; for example, comma tokens should have
|
|
// already been consumed and eliminated by the parser. Most instructions will
|
|
// end up with a single literal token (the instruction name) and some number of
|
|
// operands.
|
|
//
|
|
// Some example inputs, for X86:
|
|
// 'addl' (immediate ...) (register ...)
|
|
// 'add' (immediate ...) (memory ...)
|
|
// 'call' '*' %epc
|
|
//
|
|
// The assembly matcher is responsible for converting this input into a precise
|
|
// machine instruction (i.e., an instruction with a well defined encoding). This
|
|
// mapping has several properties which complicate matching:
|
|
//
|
|
// - It may be ambiguous; many architectures can legally encode particular
|
|
// variants of an instruction in different ways (for example, using a smaller
|
|
// encoding for small immediates). Such ambiguities should never be
|
|
// arbitrarily resolved by the assembler, the assembler is always responsible
|
|
// for choosing the "best" available instruction.
|
|
//
|
|
// - It may depend on the subtarget or the assembler context. Instructions
|
|
// which are invalid for the current mode, but otherwise unambiguous (e.g.,
|
|
// an SSE instruction in a file being assembled for i486) should be accepted
|
|
// and rejected by the assembler front end. However, if the proper encoding
|
|
// for an instruction is dependent on the assembler context then the matcher
|
|
// is responsible for selecting the correct machine instruction for the
|
|
// current mode.
|
|
//
|
|
// The core matching algorithm attempts to exploit the regularity in most
|
|
// instruction sets to quickly determine the set of possibly matching
|
|
// instructions, and the simplify the generated code. Additionally, this helps
|
|
// to ensure that the ambiguities are intentionally resolved by the user.
|
|
//
|
|
// The matching is divided into two distinct phases:
|
|
//
|
|
// 1. Classification: Each operand is mapped to the unique set which (a)
|
|
// contains it, and (b) is the largest such subset for which a single
|
|
// instruction could match all members.
|
|
//
|
|
// For register classes, we can generate these subgroups automatically. For
|
|
// arbitrary operands, we expect the user to define the classes and their
|
|
// relations to one another (for example, 8-bit signed immediates as a
|
|
// subset of 32-bit immediates).
|
|
//
|
|
// By partitioning the operands in this way, we guarantee that for any
|
|
// tuple of classes, any single instruction must match either all or none
|
|
// of the sets of operands which could classify to that tuple.
|
|
//
|
|
// In addition, the subset relation amongst classes induces a partial order
|
|
// on such tuples, which we use to resolve ambiguities.
|
|
//
|
|
// FIXME: What do we do if a crazy case shows up where this is the wrong
|
|
// resolution?
|
|
//
|
|
// 2. The input can now be treated as a tuple of classes (static tokens are
|
|
// simple singleton sets). Each such tuple should generally map to a single
|
|
// instruction (we currently ignore cases where this isn't true, whee!!!),
|
|
// which we can emit a simple matcher for.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AsmMatcherEmitter.h"
|
|
#include "CodeGenTarget.h"
|
|
#include "Record.h"
|
|
#include "llvm/ADT/OwningPtr.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include <list>
|
|
#include <map>
|
|
#include <set>
|
|
using namespace llvm;
|
|
|
|
static cl::opt<std::string>
|
|
MatchPrefix("match-prefix", cl::init(""),
|
|
cl::desc("Only match instructions with the given prefix"));
|
|
|
|
/// FlattenVariants - Flatten an .td file assembly string by selecting the
|
|
/// variant at index \arg N.
|
|
static std::string FlattenVariants(const std::string &AsmString,
|
|
unsigned N) {
|
|
StringRef Cur = AsmString;
|
|
std::string Res = "";
|
|
|
|
for (;;) {
|
|
// Find the start of the next variant string.
|
|
size_t VariantsStart = 0;
|
|
for (size_t e = Cur.size(); VariantsStart != e; ++VariantsStart)
|
|
if (Cur[VariantsStart] == '{' &&
|
|
(VariantsStart == 0 || (Cur[VariantsStart-1] != '$' &&
|
|
Cur[VariantsStart-1] != '\\')))
|
|
break;
|
|
|
|
// Add the prefix to the result.
|
|
Res += Cur.slice(0, VariantsStart);
|
|
if (VariantsStart == Cur.size())
|
|
break;
|
|
|
|
++VariantsStart; // Skip the '{'.
|
|
|
|
// Scan to the end of the variants string.
|
|
size_t VariantsEnd = VariantsStart;
|
|
unsigned NestedBraces = 1;
|
|
for (size_t e = Cur.size(); VariantsEnd != e; ++VariantsEnd) {
|
|
if (Cur[VariantsEnd] == '}' && Cur[VariantsEnd-1] != '\\') {
|
|
if (--NestedBraces == 0)
|
|
break;
|
|
} else if (Cur[VariantsEnd] == '{')
|
|
++NestedBraces;
|
|
}
|
|
|
|
// Select the Nth variant (or empty).
|
|
StringRef Selection = Cur.slice(VariantsStart, VariantsEnd);
|
|
for (unsigned i = 0; i != N; ++i)
|
|
Selection = Selection.split('|').second;
|
|
Res += Selection.split('|').first;
|
|
|
|
assert(VariantsEnd != Cur.size() &&
|
|
"Unterminated variants in assembly string!");
|
|
Cur = Cur.substr(VariantsEnd + 1);
|
|
}
|
|
|
|
return Res;
|
|
}
|
|
|
|
/// TokenizeAsmString - Tokenize a simplified assembly string.
|
|
static void TokenizeAsmString(StringRef AsmString,
|
|
SmallVectorImpl<StringRef> &Tokens) {
|
|
unsigned Prev = 0;
|
|
bool InTok = true;
|
|
for (unsigned i = 0, e = AsmString.size(); i != e; ++i) {
|
|
switch (AsmString[i]) {
|
|
case '[':
|
|
case ']':
|
|
case '*':
|
|
case '!':
|
|
case ' ':
|
|
case '\t':
|
|
case ',':
|
|
if (InTok) {
|
|
Tokens.push_back(AsmString.slice(Prev, i));
|
|
InTok = false;
|
|
}
|
|
if (!isspace(AsmString[i]) && AsmString[i] != ',')
|
|
Tokens.push_back(AsmString.substr(i, 1));
|
|
Prev = i + 1;
|
|
break;
|
|
|
|
case '\\':
|
|
if (InTok) {
|
|
Tokens.push_back(AsmString.slice(Prev, i));
|
|
InTok = false;
|
|
}
|
|
++i;
|
|
assert(i != AsmString.size() && "Invalid quoted character");
|
|
Tokens.push_back(AsmString.substr(i, 1));
|
|
Prev = i + 1;
|
|
break;
|
|
|
|
case '$': {
|
|
// If this isn't "${", treat like a normal token.
|
|
if (i + 1 == AsmString.size() || AsmString[i + 1] != '{') {
|
|
if (InTok) {
|
|
Tokens.push_back(AsmString.slice(Prev, i));
|
|
InTok = false;
|
|
}
|
|
Prev = i;
|
|
break;
|
|
}
|
|
|
|
if (InTok) {
|
|
Tokens.push_back(AsmString.slice(Prev, i));
|
|
InTok = false;
|
|
}
|
|
|
|
StringRef::iterator End =
|
|
std::find(AsmString.begin() + i, AsmString.end(), '}');
|
|
assert(End != AsmString.end() && "Missing brace in operand reference!");
|
|
size_t EndPos = End - AsmString.begin();
|
|
Tokens.push_back(AsmString.slice(i, EndPos+1));
|
|
Prev = EndPos + 1;
|
|
i = EndPos;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
InTok = true;
|
|
}
|
|
}
|
|
if (InTok && Prev != AsmString.size())
|
|
Tokens.push_back(AsmString.substr(Prev));
|
|
}
|
|
|
|
static bool IsAssemblerInstruction(StringRef Name,
|
|
const CodeGenInstruction &CGI,
|
|
const SmallVectorImpl<StringRef> &Tokens) {
|
|
// Ignore "codegen only" instructions.
|
|
if (CGI.TheDef->getValueAsBit("isCodeGenOnly"))
|
|
return false;
|
|
|
|
// Ignore pseudo ops.
|
|
//
|
|
// FIXME: This is a hack; can we convert these instructions to set the
|
|
// "codegen only" bit instead?
|
|
if (const RecordVal *Form = CGI.TheDef->getValue("Form"))
|
|
if (Form->getValue()->getAsString() == "Pseudo")
|
|
return false;
|
|
|
|
// Ignore "Int_*" and "*_Int" instructions, which are internal aliases.
|
|
//
|
|
// FIXME: This is a total hack.
|
|
if (StringRef(Name).startswith("Int_") || StringRef(Name).endswith("_Int"))
|
|
return false;
|
|
|
|
// Ignore instructions with no .s string.
|
|
//
|
|
// FIXME: What are these?
|
|
if (CGI.AsmString.empty())
|
|
return false;
|
|
|
|
// FIXME: Hack; ignore any instructions with a newline in them.
|
|
if (std::find(CGI.AsmString.begin(),
|
|
CGI.AsmString.end(), '\n') != CGI.AsmString.end())
|
|
return false;
|
|
|
|
// Ignore instructions with attributes, these are always fake instructions for
|
|
// simplifying codegen.
|
|
//
|
|
// FIXME: Is this true?
|
|
//
|
|
// Also, check for instructions which reference the operand multiple times;
|
|
// this implies a constraint we would not honor.
|
|
std::set<std::string> OperandNames;
|
|
for (unsigned i = 1, e = Tokens.size(); i < e; ++i) {
|
|
if (Tokens[i][0] == '$' &&
|
|
std::find(Tokens[i].begin(),
|
|
Tokens[i].end(), ':') != Tokens[i].end()) {
|
|
DEBUG({
|
|
errs() << "warning: '" << Name << "': "
|
|
<< "ignoring instruction; operand with attribute '"
|
|
<< Tokens[i] << "'\n";
|
|
});
|
|
return false;
|
|
}
|
|
|
|
if (Tokens[i][0] == '$' && !OperandNames.insert(Tokens[i]).second) {
|
|
std::string Err = "'" + Name.str() + "': " +
|
|
"invalid assembler instruction; tied operand '" + Tokens[i].str() + "'";
|
|
throw TGError(CGI.TheDef->getLoc(), Err);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// ClassInfo - Helper class for storing the information about a particular
|
|
/// class of operands which can be matched.
|
|
struct ClassInfo {
|
|
enum ClassInfoKind {
|
|
/// Invalid kind, for use as a sentinel value.
|
|
Invalid = 0,
|
|
|
|
/// The class for a particular token.
|
|
Token,
|
|
|
|
/// The (first) register class, subsequent register classes are
|
|
/// RegisterClass0+1, and so on.
|
|
RegisterClass0,
|
|
|
|
/// The (first) user defined class, subsequent user defined classes are
|
|
/// UserClass0+1, and so on.
|
|
UserClass0 = 1<<16
|
|
};
|
|
|
|
/// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
|
|
/// N) for the Nth user defined class.
|
|
unsigned Kind;
|
|
|
|
/// SuperClasses - The super classes of this class. Note that for simplicities
|
|
/// sake user operands only record their immediate super class, while register
|
|
/// operands include all superclasses.
|
|
std::vector<ClassInfo*> SuperClasses;
|
|
|
|
/// Name - The full class name, suitable for use in an enum.
|
|
std::string Name;
|
|
|
|
/// ClassName - The unadorned generic name for this class (e.g., Token).
|
|
std::string ClassName;
|
|
|
|
/// ValueName - The name of the value this class represents; for a token this
|
|
/// is the literal token string, for an operand it is the TableGen class (or
|
|
/// empty if this is a derived class).
|
|
std::string ValueName;
|
|
|
|
/// PredicateMethod - The name of the operand method to test whether the
|
|
/// operand matches this class; this is not valid for Token or register kinds.
|
|
std::string PredicateMethod;
|
|
|
|
/// RenderMethod - The name of the operand method to add this operand to an
|
|
/// MCInst; this is not valid for Token or register kinds.
|
|
std::string RenderMethod;
|
|
|
|
/// For register classes, the records for all the registers in this class.
|
|
std::set<Record*> Registers;
|
|
|
|
public:
|
|
/// isRegisterClass() - Check if this is a register class.
|
|
bool isRegisterClass() const {
|
|
return Kind >= RegisterClass0 && Kind < UserClass0;
|
|
}
|
|
|
|
/// isUserClass() - Check if this is a user defined class.
|
|
bool isUserClass() const {
|
|
return Kind >= UserClass0;
|
|
}
|
|
|
|
/// isRelatedTo - Check whether this class is "related" to \arg RHS. Classes
|
|
/// are related if they are in the same class hierarchy.
|
|
bool isRelatedTo(const ClassInfo &RHS) const {
|
|
// Tokens are only related to tokens.
|
|
if (Kind == Token || RHS.Kind == Token)
|
|
return Kind == Token && RHS.Kind == Token;
|
|
|
|
// Registers classes are only related to registers classes, and only if
|
|
// their intersection is non-empty.
|
|
if (isRegisterClass() || RHS.isRegisterClass()) {
|
|
if (!isRegisterClass() || !RHS.isRegisterClass())
|
|
return false;
|
|
|
|
std::set<Record*> Tmp;
|
|
std::insert_iterator< std::set<Record*> > II(Tmp, Tmp.begin());
|
|
std::set_intersection(Registers.begin(), Registers.end(),
|
|
RHS.Registers.begin(), RHS.Registers.end(),
|
|
II);
|
|
|
|
return !Tmp.empty();
|
|
}
|
|
|
|
// Otherwise we have two users operands; they are related if they are in the
|
|
// same class hierarchy.
|
|
//
|
|
// FIXME: This is an oversimplification, they should only be related if they
|
|
// intersect, however we don't have that information.
|
|
assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
|
|
const ClassInfo *Root = this;
|
|
while (!Root->SuperClasses.empty())
|
|
Root = Root->SuperClasses.front();
|
|
|
|
const ClassInfo *RHSRoot = &RHS;
|
|
while (!RHSRoot->SuperClasses.empty())
|
|
RHSRoot = RHSRoot->SuperClasses.front();
|
|
|
|
return Root == RHSRoot;
|
|
}
|
|
|
|
/// isSubsetOf - Test whether this class is a subset of \arg RHS;
|
|
bool isSubsetOf(const ClassInfo &RHS) const {
|
|
// This is a subset of RHS if it is the same class...
|
|
if (this == &RHS)
|
|
return true;
|
|
|
|
// ... or if any of its super classes are a subset of RHS.
|
|
for (std::vector<ClassInfo*>::const_iterator it = SuperClasses.begin(),
|
|
ie = SuperClasses.end(); it != ie; ++it)
|
|
if ((*it)->isSubsetOf(RHS))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// operator< - Compare two classes.
|
|
bool operator<(const ClassInfo &RHS) const {
|
|
if (this == &RHS)
|
|
return false;
|
|
|
|
// Unrelated classes can be ordered by kind.
|
|
if (!isRelatedTo(RHS))
|
|
return Kind < RHS.Kind;
|
|
|
|
switch (Kind) {
|
|
case Invalid:
|
|
assert(0 && "Invalid kind!");
|
|
case Token:
|
|
// Tokens are comparable by value.
|
|
//
|
|
// FIXME: Compare by enum value.
|
|
return ValueName < RHS.ValueName;
|
|
|
|
default:
|
|
// This class preceeds the RHS if it is a proper subset of the RHS.
|
|
if (isSubsetOf(RHS))
|
|
return true;
|
|
if (RHS.isSubsetOf(*this))
|
|
return false;
|
|
|
|
// Otherwise, order by name to ensure we have a total ordering.
|
|
return ValueName < RHS.ValueName;
|
|
}
|
|
}
|
|
};
|
|
|
|
/// InstructionInfo - Helper class for storing the necessary information for an
|
|
/// instruction which is capable of being matched.
|
|
struct InstructionInfo {
|
|
struct Operand {
|
|
/// The unique class instance this operand should match.
|
|
ClassInfo *Class;
|
|
|
|
/// The original operand this corresponds to, if any.
|
|
const CodeGenInstruction::OperandInfo *OperandInfo;
|
|
};
|
|
|
|
/// InstrName - The target name for this instruction.
|
|
std::string InstrName;
|
|
|
|
/// Instr - The instruction this matches.
|
|
const CodeGenInstruction *Instr;
|
|
|
|
/// AsmString - The assembly string for this instruction (with variants
|
|
/// removed).
|
|
std::string AsmString;
|
|
|
|
/// Tokens - The tokenized assembly pattern that this instruction matches.
|
|
SmallVector<StringRef, 4> Tokens;
|
|
|
|
/// Operands - The operands that this instruction matches.
|
|
SmallVector<Operand, 4> Operands;
|
|
|
|
/// ConversionFnKind - The enum value which is passed to the generated
|
|
/// ConvertToMCInst to convert parsed operands into an MCInst for this
|
|
/// function.
|
|
std::string ConversionFnKind;
|
|
|
|
/// operator< - Compare two instructions.
|
|
bool operator<(const InstructionInfo &RHS) const {
|
|
if (Operands.size() != RHS.Operands.size())
|
|
return Operands.size() < RHS.Operands.size();
|
|
|
|
// Compare lexicographically by operand. The matcher validates that other
|
|
// orderings wouldn't be ambiguous using \see CouldMatchAmiguouslyWith().
|
|
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
|
|
if (*Operands[i].Class < *RHS.Operands[i].Class)
|
|
return true;
|
|
if (*RHS.Operands[i].Class < *Operands[i].Class)
|
|
return false;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// CouldMatchAmiguouslyWith - Check whether this instruction could
|
|
/// ambiguously match the same set of operands as \arg RHS (without being a
|
|
/// strictly superior match).
|
|
bool CouldMatchAmiguouslyWith(const InstructionInfo &RHS) {
|
|
// The number of operands is unambiguous.
|
|
if (Operands.size() != RHS.Operands.size())
|
|
return false;
|
|
|
|
// Otherwise, make sure the ordering of the two instructions is unambiguous
|
|
// by checking that either (a) a token or operand kind discriminates them,
|
|
// or (b) the ordering among equivalent kinds is consistent.
|
|
|
|
// Tokens and operand kinds are unambiguous (assuming a correct target
|
|
// specific parser).
|
|
for (unsigned i = 0, e = Operands.size(); i != e; ++i)
|
|
if (Operands[i].Class->Kind != RHS.Operands[i].Class->Kind ||
|
|
Operands[i].Class->Kind == ClassInfo::Token)
|
|
if (*Operands[i].Class < *RHS.Operands[i].Class ||
|
|
*RHS.Operands[i].Class < *Operands[i].Class)
|
|
return false;
|
|
|
|
// Otherwise, this operand could commute if all operands are equivalent, or
|
|
// there is a pair of operands that compare less than and a pair that
|
|
// compare greater than.
|
|
bool HasLT = false, HasGT = false;
|
|
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
|
|
if (*Operands[i].Class < *RHS.Operands[i].Class)
|
|
HasLT = true;
|
|
if (*RHS.Operands[i].Class < *Operands[i].Class)
|
|
HasGT = true;
|
|
}
|
|
|
|
return !(HasLT ^ HasGT);
|
|
}
|
|
|
|
public:
|
|
void dump();
|
|
};
|
|
|
|
class AsmMatcherInfo {
|
|
public:
|
|
/// The tablegen AsmParser record.
|
|
Record *AsmParser;
|
|
|
|
/// The AsmParser "CommentDelimiter" value.
|
|
std::string CommentDelimiter;
|
|
|
|
/// The AsmParser "RegisterPrefix" value.
|
|
std::string RegisterPrefix;
|
|
|
|
/// The classes which are needed for matching.
|
|
std::vector<ClassInfo*> Classes;
|
|
|
|
/// The information on the instruction to match.
|
|
std::vector<InstructionInfo*> Instructions;
|
|
|
|
/// Map of Register records to their class information.
|
|
std::map<Record*, ClassInfo*> RegisterClasses;
|
|
|
|
private:
|
|
/// Map of token to class information which has already been constructed.
|
|
std::map<std::string, ClassInfo*> TokenClasses;
|
|
|
|
/// Map of RegisterClass records to their class information.
|
|
std::map<Record*, ClassInfo*> RegisterClassClasses;
|
|
|
|
/// Map of AsmOperandClass records to their class information.
|
|
std::map<Record*, ClassInfo*> AsmOperandClasses;
|
|
|
|
private:
|
|
/// getTokenClass - Lookup or create the class for the given token.
|
|
ClassInfo *getTokenClass(StringRef Token);
|
|
|
|
/// getOperandClass - Lookup or create the class for the given operand.
|
|
ClassInfo *getOperandClass(StringRef Token,
|
|
const CodeGenInstruction::OperandInfo &OI);
|
|
|
|
/// BuildRegisterClasses - Build the ClassInfo* instances for register
|
|
/// classes.
|
|
void BuildRegisterClasses(CodeGenTarget &Target,
|
|
std::set<std::string> &SingletonRegisterNames);
|
|
|
|
/// BuildOperandClasses - Build the ClassInfo* instances for user defined
|
|
/// operand classes.
|
|
void BuildOperandClasses(CodeGenTarget &Target);
|
|
|
|
public:
|
|
AsmMatcherInfo(Record *_AsmParser);
|
|
|
|
/// BuildInfo - Construct the various tables used during matching.
|
|
void BuildInfo(CodeGenTarget &Target);
|
|
};
|
|
|
|
}
|
|
|
|
void InstructionInfo::dump() {
|
|
errs() << InstrName << " -- " << "flattened:\"" << AsmString << '\"'
|
|
<< ", tokens:[";
|
|
for (unsigned i = 0, e = Tokens.size(); i != e; ++i) {
|
|
errs() << Tokens[i];
|
|
if (i + 1 != e)
|
|
errs() << ", ";
|
|
}
|
|
errs() << "]\n";
|
|
|
|
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
|
|
Operand &Op = Operands[i];
|
|
errs() << " op[" << i << "] = " << Op.Class->ClassName << " - ";
|
|
if (Op.Class->Kind == ClassInfo::Token) {
|
|
errs() << '\"' << Tokens[i] << "\"\n";
|
|
continue;
|
|
}
|
|
|
|
if (!Op.OperandInfo) {
|
|
errs() << "(singleton register)\n";
|
|
continue;
|
|
}
|
|
|
|
const CodeGenInstruction::OperandInfo &OI = *Op.OperandInfo;
|
|
errs() << OI.Name << " " << OI.Rec->getName()
|
|
<< " (" << OI.MIOperandNo << ", " << OI.MINumOperands << ")\n";
|
|
}
|
|
}
|
|
|
|
static std::string getEnumNameForToken(StringRef Str) {
|
|
std::string Res;
|
|
|
|
for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
|
|
switch (*it) {
|
|
case '*': Res += "_STAR_"; break;
|
|
case '%': Res += "_PCT_"; break;
|
|
case ':': Res += "_COLON_"; break;
|
|
|
|
default:
|
|
if (isalnum(*it)) {
|
|
Res += *it;
|
|
} else {
|
|
Res += "_" + utostr((unsigned) *it) + "_";
|
|
}
|
|
}
|
|
}
|
|
|
|
return Res;
|
|
}
|
|
|
|
/// getRegisterRecord - Get the register record for \arg name, or 0.
|
|
static Record *getRegisterRecord(CodeGenTarget &Target, StringRef Name) {
|
|
for (unsigned i = 0, e = Target.getRegisters().size(); i != e; ++i) {
|
|
const CodeGenRegister &Reg = Target.getRegisters()[i];
|
|
if (Name == Reg.TheDef->getValueAsString("AsmName"))
|
|
return Reg.TheDef;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
|
|
ClassInfo *&Entry = TokenClasses[Token];
|
|
|
|
if (!Entry) {
|
|
Entry = new ClassInfo();
|
|
Entry->Kind = ClassInfo::Token;
|
|
Entry->ClassName = "Token";
|
|
Entry->Name = "MCK_" + getEnumNameForToken(Token);
|
|
Entry->ValueName = Token;
|
|
Entry->PredicateMethod = "<invalid>";
|
|
Entry->RenderMethod = "<invalid>";
|
|
Classes.push_back(Entry);
|
|
}
|
|
|
|
return Entry;
|
|
}
|
|
|
|
ClassInfo *
|
|
AsmMatcherInfo::getOperandClass(StringRef Token,
|
|
const CodeGenInstruction::OperandInfo &OI) {
|
|
if (OI.Rec->isSubClassOf("RegisterClass")) {
|
|
ClassInfo *CI = RegisterClassClasses[OI.Rec];
|
|
|
|
if (!CI) {
|
|
PrintError(OI.Rec->getLoc(), "register class has no class info!");
|
|
throw std::string("ERROR: Missing register class!");
|
|
}
|
|
|
|
return CI;
|
|
}
|
|
|
|
assert(OI.Rec->isSubClassOf("Operand") && "Unexpected operand!");
|
|
Record *MatchClass = OI.Rec->getValueAsDef("ParserMatchClass");
|
|
ClassInfo *CI = AsmOperandClasses[MatchClass];
|
|
|
|
if (!CI) {
|
|
PrintError(OI.Rec->getLoc(), "operand has no match class!");
|
|
throw std::string("ERROR: Missing match class!");
|
|
}
|
|
|
|
return CI;
|
|
}
|
|
|
|
void AsmMatcherInfo::BuildRegisterClasses(CodeGenTarget &Target,
|
|
std::set<std::string>
|
|
&SingletonRegisterNames) {
|
|
std::vector<CodeGenRegisterClass> RegisterClasses;
|
|
std::vector<CodeGenRegister> Registers;
|
|
|
|
RegisterClasses = Target.getRegisterClasses();
|
|
Registers = Target.getRegisters();
|
|
|
|
// The register sets used for matching.
|
|
std::set< std::set<Record*> > RegisterSets;
|
|
|
|
// Gather the defined sets.
|
|
for (std::vector<CodeGenRegisterClass>::iterator it = RegisterClasses.begin(),
|
|
ie = RegisterClasses.end(); it != ie; ++it)
|
|
RegisterSets.insert(std::set<Record*>(it->Elements.begin(),
|
|
it->Elements.end()));
|
|
|
|
// Add any required singleton sets.
|
|
for (std::set<std::string>::iterator it = SingletonRegisterNames.begin(),
|
|
ie = SingletonRegisterNames.end(); it != ie; ++it)
|
|
if (Record *Rec = getRegisterRecord(Target, *it))
|
|
RegisterSets.insert(std::set<Record*>(&Rec, &Rec + 1));
|
|
|
|
// Introduce derived sets where necessary (when a register does not determine
|
|
// a unique register set class), and build the mapping of registers to the set
|
|
// they should classify to.
|
|
std::map<Record*, std::set<Record*> > RegisterMap;
|
|
for (std::vector<CodeGenRegister>::iterator it = Registers.begin(),
|
|
ie = Registers.end(); it != ie; ++it) {
|
|
CodeGenRegister &CGR = *it;
|
|
// Compute the intersection of all sets containing this register.
|
|
std::set<Record*> ContainingSet;
|
|
|
|
for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
|
|
ie = RegisterSets.end(); it != ie; ++it) {
|
|
if (!it->count(CGR.TheDef))
|
|
continue;
|
|
|
|
if (ContainingSet.empty()) {
|
|
ContainingSet = *it;
|
|
} else {
|
|
std::set<Record*> Tmp;
|
|
std::swap(Tmp, ContainingSet);
|
|
std::insert_iterator< std::set<Record*> > II(ContainingSet,
|
|
ContainingSet.begin());
|
|
std::set_intersection(Tmp.begin(), Tmp.end(), it->begin(), it->end(),
|
|
II);
|
|
}
|
|
}
|
|
|
|
if (!ContainingSet.empty()) {
|
|
RegisterSets.insert(ContainingSet);
|
|
RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
|
|
}
|
|
}
|
|
|
|
// Construct the register classes.
|
|
std::map<std::set<Record*>, ClassInfo*> RegisterSetClasses;
|
|
unsigned Index = 0;
|
|
for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
|
|
ie = RegisterSets.end(); it != ie; ++it, ++Index) {
|
|
ClassInfo *CI = new ClassInfo();
|
|
CI->Kind = ClassInfo::RegisterClass0 + Index;
|
|
CI->ClassName = "Reg" + utostr(Index);
|
|
CI->Name = "MCK_Reg" + utostr(Index);
|
|
CI->ValueName = "";
|
|
CI->PredicateMethod = ""; // unused
|
|
CI->RenderMethod = "addRegOperands";
|
|
CI->Registers = *it;
|
|
Classes.push_back(CI);
|
|
RegisterSetClasses.insert(std::make_pair(*it, CI));
|
|
}
|
|
|
|
// Find the superclasses; we could compute only the subgroup lattice edges,
|
|
// but there isn't really a point.
|
|
for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
|
|
ie = RegisterSets.end(); it != ie; ++it) {
|
|
ClassInfo *CI = RegisterSetClasses[*it];
|
|
for (std::set< std::set<Record*> >::iterator it2 = RegisterSets.begin(),
|
|
ie2 = RegisterSets.end(); it2 != ie2; ++it2)
|
|
if (*it != *it2 &&
|
|
std::includes(it2->begin(), it2->end(), it->begin(), it->end()))
|
|
CI->SuperClasses.push_back(RegisterSetClasses[*it2]);
|
|
}
|
|
|
|
// Name the register classes which correspond to a user defined RegisterClass.
|
|
for (std::vector<CodeGenRegisterClass>::iterator it = RegisterClasses.begin(),
|
|
ie = RegisterClasses.end(); it != ie; ++it) {
|
|
ClassInfo *CI = RegisterSetClasses[std::set<Record*>(it->Elements.begin(),
|
|
it->Elements.end())];
|
|
if (CI->ValueName.empty()) {
|
|
CI->ClassName = it->getName();
|
|
CI->Name = "MCK_" + it->getName();
|
|
CI->ValueName = it->getName();
|
|
} else
|
|
CI->ValueName = CI->ValueName + "," + it->getName();
|
|
|
|
RegisterClassClasses.insert(std::make_pair(it->TheDef, CI));
|
|
}
|
|
|
|
// Populate the map for individual registers.
|
|
for (std::map<Record*, std::set<Record*> >::iterator it = RegisterMap.begin(),
|
|
ie = RegisterMap.end(); it != ie; ++it)
|
|
this->RegisterClasses[it->first] = RegisterSetClasses[it->second];
|
|
|
|
// Name the register classes which correspond to singleton registers.
|
|
for (std::set<std::string>::iterator it = SingletonRegisterNames.begin(),
|
|
ie = SingletonRegisterNames.end(); it != ie; ++it) {
|
|
if (Record *Rec = getRegisterRecord(Target, *it)) {
|
|
ClassInfo *CI = this->RegisterClasses[Rec];
|
|
assert(CI && "Missing singleton register class info!");
|
|
|
|
if (CI->ValueName.empty()) {
|
|
CI->ClassName = Rec->getName();
|
|
CI->Name = "MCK_" + Rec->getName();
|
|
CI->ValueName = Rec->getName();
|
|
} else
|
|
CI->ValueName = CI->ValueName + "," + Rec->getName();
|
|
}
|
|
}
|
|
}
|
|
|
|
void AsmMatcherInfo::BuildOperandClasses(CodeGenTarget &Target) {
|
|
std::vector<Record*> AsmOperands;
|
|
AsmOperands = Records.getAllDerivedDefinitions("AsmOperandClass");
|
|
|
|
// Pre-populate AsmOperandClasses map.
|
|
for (std::vector<Record*>::iterator it = AsmOperands.begin(),
|
|
ie = AsmOperands.end(); it != ie; ++it)
|
|
AsmOperandClasses[*it] = new ClassInfo();
|
|
|
|
unsigned Index = 0;
|
|
for (std::vector<Record*>::iterator it = AsmOperands.begin(),
|
|
ie = AsmOperands.end(); it != ie; ++it, ++Index) {
|
|
ClassInfo *CI = AsmOperandClasses[*it];
|
|
CI->Kind = ClassInfo::UserClass0 + Index;
|
|
|
|
ListInit *Supers = (*it)->getValueAsListInit("SuperClasses");
|
|
for (unsigned i = 0, e = Supers->getSize(); i != e; ++i) {
|
|
DefInit *DI = dynamic_cast<DefInit*>(Supers->getElement(i));
|
|
if (!DI) {
|
|
PrintError((*it)->getLoc(), "Invalid super class reference!");
|
|
continue;
|
|
}
|
|
|
|
ClassInfo *SC = AsmOperandClasses[DI->getDef()];
|
|
if (!SC)
|
|
PrintError((*it)->getLoc(), "Invalid super class reference!");
|
|
else
|
|
CI->SuperClasses.push_back(SC);
|
|
}
|
|
CI->ClassName = (*it)->getValueAsString("Name");
|
|
CI->Name = "MCK_" + CI->ClassName;
|
|
CI->ValueName = (*it)->getName();
|
|
|
|
// Get or construct the predicate method name.
|
|
Init *PMName = (*it)->getValueInit("PredicateMethod");
|
|
if (StringInit *SI = dynamic_cast<StringInit*>(PMName)) {
|
|
CI->PredicateMethod = SI->getValue();
|
|
} else {
|
|
assert(dynamic_cast<UnsetInit*>(PMName) &&
|
|
"Unexpected PredicateMethod field!");
|
|
CI->PredicateMethod = "is" + CI->ClassName;
|
|
}
|
|
|
|
// Get or construct the render method name.
|
|
Init *RMName = (*it)->getValueInit("RenderMethod");
|
|
if (StringInit *SI = dynamic_cast<StringInit*>(RMName)) {
|
|
CI->RenderMethod = SI->getValue();
|
|
} else {
|
|
assert(dynamic_cast<UnsetInit*>(RMName) &&
|
|
"Unexpected RenderMethod field!");
|
|
CI->RenderMethod = "add" + CI->ClassName + "Operands";
|
|
}
|
|
|
|
AsmOperandClasses[*it] = CI;
|
|
Classes.push_back(CI);
|
|
}
|
|
}
|
|
|
|
AsmMatcherInfo::AsmMatcherInfo(Record *_AsmParser)
|
|
: AsmParser(_AsmParser),
|
|
CommentDelimiter(AsmParser->getValueAsString("CommentDelimiter")),
|
|
RegisterPrefix(AsmParser->getValueAsString("RegisterPrefix"))
|
|
{
|
|
}
|
|
|
|
void AsmMatcherInfo::BuildInfo(CodeGenTarget &Target) {
|
|
// Parse the instructions; we need to do this first so that we can gather the
|
|
// singleton register classes.
|
|
std::set<std::string> SingletonRegisterNames;
|
|
|
|
const std::vector<const CodeGenInstruction*> &InstrList =
|
|
Target.getInstructionsByEnumValue();
|
|
|
|
for (unsigned i = 0, e = InstrList.size(); i != e; ++i) {
|
|
const CodeGenInstruction &CGI = *InstrList[i];
|
|
|
|
if (!StringRef(CGI.TheDef->getName()).startswith(MatchPrefix))
|
|
continue;
|
|
|
|
OwningPtr<InstructionInfo> II(new InstructionInfo());
|
|
|
|
II->InstrName = CGI.TheDef->getName();
|
|
II->Instr = &CGI;
|
|
II->AsmString = FlattenVariants(CGI.AsmString, 0);
|
|
|
|
// Remove comments from the asm string.
|
|
if (!CommentDelimiter.empty()) {
|
|
size_t Idx = StringRef(II->AsmString).find(CommentDelimiter);
|
|
if (Idx != StringRef::npos)
|
|
II->AsmString = II->AsmString.substr(0, Idx);
|
|
}
|
|
|
|
TokenizeAsmString(II->AsmString, II->Tokens);
|
|
|
|
// Ignore instructions which shouldn't be matched.
|
|
if (!IsAssemblerInstruction(CGI.TheDef->getName(), CGI, II->Tokens))
|
|
continue;
|
|
|
|
// Collect singleton registers, if used.
|
|
if (!RegisterPrefix.empty()) {
|
|
for (unsigned i = 0, e = II->Tokens.size(); i != e; ++i) {
|
|
if (II->Tokens[i].startswith(RegisterPrefix)) {
|
|
StringRef RegName = II->Tokens[i].substr(RegisterPrefix.size());
|
|
Record *Rec = getRegisterRecord(Target, RegName);
|
|
|
|
if (!Rec) {
|
|
std::string Err = "unable to find register for '" + RegName.str() +
|
|
"' (which matches register prefix)";
|
|
throw TGError(CGI.TheDef->getLoc(), Err);
|
|
}
|
|
|
|
SingletonRegisterNames.insert(RegName);
|
|
}
|
|
}
|
|
}
|
|
|
|
Instructions.push_back(II.take());
|
|
}
|
|
|
|
// Build info for the register classes.
|
|
BuildRegisterClasses(Target, SingletonRegisterNames);
|
|
|
|
// Build info for the user defined assembly operand classes.
|
|
BuildOperandClasses(Target);
|
|
|
|
// Build the instruction information.
|
|
for (std::vector<InstructionInfo*>::iterator it = Instructions.begin(),
|
|
ie = Instructions.end(); it != ie; ++it) {
|
|
InstructionInfo *II = *it;
|
|
|
|
for (unsigned i = 0, e = II->Tokens.size(); i != e; ++i) {
|
|
StringRef Token = II->Tokens[i];
|
|
|
|
// Check for singleton registers.
|
|
if (!RegisterPrefix.empty() && Token.startswith(RegisterPrefix)) {
|
|
StringRef RegName = II->Tokens[i].substr(RegisterPrefix.size());
|
|
InstructionInfo::Operand Op;
|
|
Op.Class = RegisterClasses[getRegisterRecord(Target, RegName)];
|
|
Op.OperandInfo = 0;
|
|
assert(Op.Class && Op.Class->Registers.size() == 1 &&
|
|
"Unexpected class for singleton register");
|
|
II->Operands.push_back(Op);
|
|
continue;
|
|
}
|
|
|
|
// Check for simple tokens.
|
|
if (Token[0] != '$') {
|
|
InstructionInfo::Operand Op;
|
|
Op.Class = getTokenClass(Token);
|
|
Op.OperandInfo = 0;
|
|
II->Operands.push_back(Op);
|
|
continue;
|
|
}
|
|
|
|
// Otherwise this is an operand reference.
|
|
StringRef OperandName;
|
|
if (Token[1] == '{')
|
|
OperandName = Token.substr(2, Token.size() - 3);
|
|
else
|
|
OperandName = Token.substr(1);
|
|
|
|
// Map this token to an operand. FIXME: Move elsewhere.
|
|
unsigned Idx;
|
|
try {
|
|
Idx = II->Instr->getOperandNamed(OperandName);
|
|
} catch(...) {
|
|
throw std::string("error: unable to find operand: '" +
|
|
OperandName.str() + "'");
|
|
}
|
|
|
|
// FIXME: This is annoying, the named operand may be tied (e.g.,
|
|
// XCHG8rm). What we want is the untied operand, which we now have to
|
|
// grovel for. Only worry about this for single entry operands, we have to
|
|
// clean this up anyway.
|
|
const CodeGenInstruction::OperandInfo *OI = &II->Instr->OperandList[Idx];
|
|
if (OI->Constraints[0].isTied()) {
|
|
unsigned TiedOp = OI->Constraints[0].getTiedOperand();
|
|
|
|
// The tied operand index is an MIOperand index, find the operand that
|
|
// contains it.
|
|
for (unsigned i = 0, e = II->Instr->OperandList.size(); i != e; ++i) {
|
|
if (II->Instr->OperandList[i].MIOperandNo == TiedOp) {
|
|
OI = &II->Instr->OperandList[i];
|
|
break;
|
|
}
|
|
}
|
|
|
|
assert(OI && "Unable to find tied operand target!");
|
|
}
|
|
|
|
InstructionInfo::Operand Op;
|
|
Op.Class = getOperandClass(Token, *OI);
|
|
Op.OperandInfo = OI;
|
|
II->Operands.push_back(Op);
|
|
}
|
|
}
|
|
|
|
// Reorder classes so that classes preceed super classes.
|
|
std::sort(Classes.begin(), Classes.end(), less_ptr<ClassInfo>());
|
|
}
|
|
|
|
static std::pair<unsigned, unsigned> *
|
|
GetTiedOperandAtIndex(SmallVectorImpl<std::pair<unsigned, unsigned> > &List,
|
|
unsigned Index) {
|
|
for (unsigned i = 0, e = List.size(); i != e; ++i)
|
|
if (Index == List[i].first)
|
|
return &List[i];
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void EmitConvertToMCInst(CodeGenTarget &Target,
|
|
std::vector<InstructionInfo*> &Infos,
|
|
raw_ostream &OS) {
|
|
// Write the convert function to a separate stream, so we can drop it after
|
|
// the enum.
|
|
std::string ConvertFnBody;
|
|
raw_string_ostream CvtOS(ConvertFnBody);
|
|
|
|
// Function we have already generated.
|
|
std::set<std::string> GeneratedFns;
|
|
|
|
// Start the unified conversion function.
|
|
|
|
CvtOS << "static void ConvertToMCInst(ConversionKind Kind, MCInst &Inst, "
|
|
<< "unsigned Opcode,\n"
|
|
<< " const SmallVectorImpl<MCParsedAsmOperand*"
|
|
<< "> &Operands) {\n";
|
|
CvtOS << " Inst.setOpcode(Opcode);\n";
|
|
CvtOS << " switch (Kind) {\n";
|
|
CvtOS << " default:\n";
|
|
|
|
// Start the enum, which we will generate inline.
|
|
|
|
OS << "// Unified function for converting operants to MCInst instances.\n\n";
|
|
OS << "enum ConversionKind {\n";
|
|
|
|
// TargetOperandClass - This is the target's operand class, like X86Operand.
|
|
std::string TargetOperandClass = Target.getName() + "Operand";
|
|
|
|
for (std::vector<InstructionInfo*>::const_iterator it = Infos.begin(),
|
|
ie = Infos.end(); it != ie; ++it) {
|
|
InstructionInfo &II = **it;
|
|
|
|
// Order the (class) operands by the order to convert them into an MCInst.
|
|
SmallVector<std::pair<unsigned, unsigned>, 4> MIOperandList;
|
|
for (unsigned i = 0, e = II.Operands.size(); i != e; ++i) {
|
|
InstructionInfo::Operand &Op = II.Operands[i];
|
|
if (Op.OperandInfo)
|
|
MIOperandList.push_back(std::make_pair(Op.OperandInfo->MIOperandNo, i));
|
|
}
|
|
|
|
// Find any tied operands.
|
|
SmallVector<std::pair<unsigned, unsigned>, 4> TiedOperands;
|
|
for (unsigned i = 0, e = II.Instr->OperandList.size(); i != e; ++i) {
|
|
const CodeGenInstruction::OperandInfo &OpInfo = II.Instr->OperandList[i];
|
|
for (unsigned j = 0, e = OpInfo.Constraints.size(); j != e; ++j) {
|
|
const CodeGenInstruction::ConstraintInfo &CI = OpInfo.Constraints[j];
|
|
if (CI.isTied())
|
|
TiedOperands.push_back(std::make_pair(OpInfo.MIOperandNo + j,
|
|
CI.getTiedOperand()));
|
|
}
|
|
}
|
|
|
|
std::sort(MIOperandList.begin(), MIOperandList.end());
|
|
|
|
// Compute the total number of operands.
|
|
unsigned NumMIOperands = 0;
|
|
for (unsigned i = 0, e = II.Instr->OperandList.size(); i != e; ++i) {
|
|
const CodeGenInstruction::OperandInfo &OI = II.Instr->OperandList[i];
|
|
NumMIOperands = std::max(NumMIOperands,
|
|
OI.MIOperandNo + OI.MINumOperands);
|
|
}
|
|
|
|
// Build the conversion function signature.
|
|
std::string Signature = "Convert";
|
|
unsigned CurIndex = 0;
|
|
for (unsigned i = 0, e = MIOperandList.size(); i != e; ++i) {
|
|
InstructionInfo::Operand &Op = II.Operands[MIOperandList[i].second];
|
|
assert(CurIndex <= Op.OperandInfo->MIOperandNo &&
|
|
"Duplicate match for instruction operand!");
|
|
|
|
// Skip operands which weren't matched by anything, this occurs when the
|
|
// .td file encodes "implicit" operands as explicit ones.
|
|
//
|
|
// FIXME: This should be removed from the MCInst structure.
|
|
for (; CurIndex != Op.OperandInfo->MIOperandNo; ++CurIndex) {
|
|
std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
|
|
CurIndex);
|
|
if (!Tie)
|
|
Signature += "__Imp";
|
|
else
|
|
Signature += "__Tie" + utostr(Tie->second);
|
|
}
|
|
|
|
Signature += "__";
|
|
|
|
// Registers are always converted the same, don't duplicate the conversion
|
|
// function based on them.
|
|
//
|
|
// FIXME: We could generalize this based on the render method, if it
|
|
// mattered.
|
|
if (Op.Class->isRegisterClass())
|
|
Signature += "Reg";
|
|
else
|
|
Signature += Op.Class->ClassName;
|
|
Signature += utostr(Op.OperandInfo->MINumOperands);
|
|
Signature += "_" + utostr(MIOperandList[i].second);
|
|
|
|
CurIndex += Op.OperandInfo->MINumOperands;
|
|
}
|
|
|
|
// Add any trailing implicit operands.
|
|
for (; CurIndex != NumMIOperands; ++CurIndex) {
|
|
std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
|
|
CurIndex);
|
|
if (!Tie)
|
|
Signature += "__Imp";
|
|
else
|
|
Signature += "__Tie" + utostr(Tie->second);
|
|
}
|
|
|
|
II.ConversionFnKind = Signature;
|
|
|
|
// Check if we have already generated this signature.
|
|
if (!GeneratedFns.insert(Signature).second)
|
|
continue;
|
|
|
|
// If not, emit it now.
|
|
|
|
// Add to the enum list.
|
|
OS << " " << Signature << ",\n";
|
|
|
|
// And to the convert function.
|
|
CvtOS << " case " << Signature << ":\n";
|
|
CurIndex = 0;
|
|
for (unsigned i = 0, e = MIOperandList.size(); i != e; ++i) {
|
|
InstructionInfo::Operand &Op = II.Operands[MIOperandList[i].second];
|
|
|
|
// Add the implicit operands.
|
|
for (; CurIndex != Op.OperandInfo->MIOperandNo; ++CurIndex) {
|
|
// See if this is a tied operand.
|
|
std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
|
|
CurIndex);
|
|
|
|
if (!Tie) {
|
|
// If not, this is some implicit operand. Just assume it is a register
|
|
// for now.
|
|
CvtOS << " Inst.addOperand(MCOperand::CreateReg(0));\n";
|
|
} else {
|
|
// Copy the tied operand.
|
|
assert(Tie->first>Tie->second && "Tied operand preceeds its target!");
|
|
CvtOS << " Inst.addOperand(Inst.getOperand("
|
|
<< Tie->second << "));\n";
|
|
}
|
|
}
|
|
|
|
CvtOS << " ((" << TargetOperandClass << "*)Operands["
|
|
<< MIOperandList[i].second
|
|
<< "])->" << Op.Class->RenderMethod
|
|
<< "(Inst, " << Op.OperandInfo->MINumOperands << ");\n";
|
|
CurIndex += Op.OperandInfo->MINumOperands;
|
|
}
|
|
|
|
// And add trailing implicit operands.
|
|
for (; CurIndex != NumMIOperands; ++CurIndex) {
|
|
std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
|
|
CurIndex);
|
|
|
|
if (!Tie) {
|
|
// If not, this is some implicit operand. Just assume it is a register
|
|
// for now.
|
|
CvtOS << " Inst.addOperand(MCOperand::CreateReg(0));\n";
|
|
} else {
|
|
// Copy the tied operand.
|
|
assert(Tie->first>Tie->second && "Tied operand preceeds its target!");
|
|
CvtOS << " Inst.addOperand(Inst.getOperand("
|
|
<< Tie->second << "));\n";
|
|
}
|
|
}
|
|
|
|
CvtOS << " return;\n";
|
|
}
|
|
|
|
// Finish the convert function.
|
|
|
|
CvtOS << " }\n";
|
|
CvtOS << "}\n\n";
|
|
|
|
// Finish the enum, and drop the convert function after it.
|
|
|
|
OS << " NumConversionVariants\n";
|
|
OS << "};\n\n";
|
|
|
|
OS << CvtOS.str();
|
|
}
|
|
|
|
/// EmitMatchClassEnumeration - Emit the enumeration for match class kinds.
|
|
static void EmitMatchClassEnumeration(CodeGenTarget &Target,
|
|
std::vector<ClassInfo*> &Infos,
|
|
raw_ostream &OS) {
|
|
OS << "namespace {\n\n";
|
|
|
|
OS << "/// MatchClassKind - The kinds of classes which participate in\n"
|
|
<< "/// instruction matching.\n";
|
|
OS << "enum MatchClassKind {\n";
|
|
OS << " InvalidMatchClass = 0,\n";
|
|
for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
|
|
ie = Infos.end(); it != ie; ++it) {
|
|
ClassInfo &CI = **it;
|
|
OS << " " << CI.Name << ", // ";
|
|
if (CI.Kind == ClassInfo::Token) {
|
|
OS << "'" << CI.ValueName << "'\n";
|
|
} else if (CI.isRegisterClass()) {
|
|
if (!CI.ValueName.empty())
|
|
OS << "register class '" << CI.ValueName << "'\n";
|
|
else
|
|
OS << "derived register class\n";
|
|
} else {
|
|
OS << "user defined class '" << CI.ValueName << "'\n";
|
|
}
|
|
}
|
|
OS << " NumMatchClassKinds\n";
|
|
OS << "};\n\n";
|
|
|
|
OS << "}\n\n";
|
|
}
|
|
|
|
/// EmitClassifyOperand - Emit the function to classify an operand.
|
|
static void EmitClassifyOperand(CodeGenTarget &Target,
|
|
AsmMatcherInfo &Info,
|
|
raw_ostream &OS) {
|
|
OS << "static MatchClassKind ClassifyOperand(MCParsedAsmOperand *GOp) {\n"
|
|
<< " " << Target.getName() << "Operand &Operand = *("
|
|
<< Target.getName() << "Operand*)GOp;\n";
|
|
|
|
// Classify tokens.
|
|
OS << " if (Operand.isToken())\n";
|
|
OS << " return MatchTokenString(Operand.getToken());\n\n";
|
|
|
|
// Classify registers.
|
|
//
|
|
// FIXME: Don't hardcode isReg, getReg.
|
|
OS << " if (Operand.isReg()) {\n";
|
|
OS << " switch (Operand.getReg()) {\n";
|
|
OS << " default: return InvalidMatchClass;\n";
|
|
for (std::map<Record*, ClassInfo*>::iterator
|
|
it = Info.RegisterClasses.begin(), ie = Info.RegisterClasses.end();
|
|
it != ie; ++it)
|
|
OS << " case " << Target.getName() << "::"
|
|
<< it->first->getName() << ": return " << it->second->Name << ";\n";
|
|
OS << " }\n";
|
|
OS << " }\n\n";
|
|
|
|
// Classify user defined operands.
|
|
for (std::vector<ClassInfo*>::iterator it = Info.Classes.begin(),
|
|
ie = Info.Classes.end(); it != ie; ++it) {
|
|
ClassInfo &CI = **it;
|
|
|
|
if (!CI.isUserClass())
|
|
continue;
|
|
|
|
OS << " // '" << CI.ClassName << "' class";
|
|
if (!CI.SuperClasses.empty()) {
|
|
OS << ", subclass of ";
|
|
for (unsigned i = 0, e = CI.SuperClasses.size(); i != e; ++i) {
|
|
if (i) OS << ", ";
|
|
OS << "'" << CI.SuperClasses[i]->ClassName << "'";
|
|
assert(CI < *CI.SuperClasses[i] && "Invalid class relation!");
|
|
}
|
|
}
|
|
OS << "\n";
|
|
|
|
OS << " if (Operand." << CI.PredicateMethod << "()) {\n";
|
|
|
|
// Validate subclass relationships.
|
|
if (!CI.SuperClasses.empty()) {
|
|
for (unsigned i = 0, e = CI.SuperClasses.size(); i != e; ++i)
|
|
OS << " assert(Operand." << CI.SuperClasses[i]->PredicateMethod
|
|
<< "() && \"Invalid class relationship!\");\n";
|
|
}
|
|
|
|
OS << " return " << CI.Name << ";\n";
|
|
OS << " }\n\n";
|
|
}
|
|
OS << " return InvalidMatchClass;\n";
|
|
OS << "}\n\n";
|
|
}
|
|
|
|
/// EmitIsSubclass - Emit the subclass predicate function.
|
|
static void EmitIsSubclass(CodeGenTarget &Target,
|
|
std::vector<ClassInfo*> &Infos,
|
|
raw_ostream &OS) {
|
|
OS << "/// IsSubclass - Compute whether \\arg A is a subclass of \\arg B.\n";
|
|
OS << "static bool IsSubclass(MatchClassKind A, MatchClassKind B) {\n";
|
|
OS << " if (A == B)\n";
|
|
OS << " return true;\n\n";
|
|
|
|
OS << " switch (A) {\n";
|
|
OS << " default:\n";
|
|
OS << " return false;\n";
|
|
for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
|
|
ie = Infos.end(); it != ie; ++it) {
|
|
ClassInfo &A = **it;
|
|
|
|
if (A.Kind != ClassInfo::Token) {
|
|
std::vector<StringRef> SuperClasses;
|
|
for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
|
|
ie = Infos.end(); it != ie; ++it) {
|
|
ClassInfo &B = **it;
|
|
|
|
if (&A != &B && A.isSubsetOf(B))
|
|
SuperClasses.push_back(B.Name);
|
|
}
|
|
|
|
if (SuperClasses.empty())
|
|
continue;
|
|
|
|
OS << "\n case " << A.Name << ":\n";
|
|
|
|
if (SuperClasses.size() == 1) {
|
|
OS << " return B == " << SuperClasses.back() << ";\n";
|
|
continue;
|
|
}
|
|
|
|
OS << " switch (B) {\n";
|
|
OS << " default: return false;\n";
|
|
for (unsigned i = 0, e = SuperClasses.size(); i != e; ++i)
|
|
OS << " case " << SuperClasses[i] << ": return true;\n";
|
|
OS << " }\n";
|
|
}
|
|
}
|
|
OS << " }\n";
|
|
OS << "}\n\n";
|
|
}
|
|
|
|
typedef std::pair<std::string, std::string> StringPair;
|
|
|
|
/// FindFirstNonCommonLetter - Find the first character in the keys of the
|
|
/// string pairs that is not shared across the whole set of strings. All
|
|
/// strings are assumed to have the same length.
|
|
static unsigned
|
|
FindFirstNonCommonLetter(const std::vector<const StringPair*> &Matches) {
|
|
assert(!Matches.empty());
|
|
for (unsigned i = 0, e = Matches[0]->first.size(); i != e; ++i) {
|
|
// Check to see if letter i is the same across the set.
|
|
char Letter = Matches[0]->first[i];
|
|
|
|
for (unsigned str = 0, e = Matches.size(); str != e; ++str)
|
|
if (Matches[str]->first[i] != Letter)
|
|
return i;
|
|
}
|
|
|
|
return Matches[0]->first.size();
|
|
}
|
|
|
|
/// EmitStringMatcherForChar - Given a set of strings that are known to be the
|
|
/// same length and whose characters leading up to CharNo are the same, emit
|
|
/// code to verify that CharNo and later are the same.
|
|
///
|
|
/// \return - True if control can leave the emitted code fragment.
|
|
static bool EmitStringMatcherForChar(const std::string &StrVariableName,
|
|
const std::vector<const StringPair*> &Matches,
|
|
unsigned CharNo, unsigned IndentCount,
|
|
raw_ostream &OS) {
|
|
assert(!Matches.empty() && "Must have at least one string to match!");
|
|
std::string Indent(IndentCount*2+4, ' ');
|
|
|
|
// If we have verified that the entire string matches, we're done: output the
|
|
// matching code.
|
|
if (CharNo == Matches[0]->first.size()) {
|
|
assert(Matches.size() == 1 && "Had duplicate keys to match on");
|
|
|
|
// FIXME: If Matches[0].first has embeded \n, this will be bad.
|
|
OS << Indent << Matches[0]->second << "\t // \"" << Matches[0]->first
|
|
<< "\"\n";
|
|
return false;
|
|
}
|
|
|
|
// Bucket the matches by the character we are comparing.
|
|
std::map<char, std::vector<const StringPair*> > MatchesByLetter;
|
|
|
|
for (unsigned i = 0, e = Matches.size(); i != e; ++i)
|
|
MatchesByLetter[Matches[i]->first[CharNo]].push_back(Matches[i]);
|
|
|
|
|
|
// If we have exactly one bucket to match, see how many characters are common
|
|
// across the whole set and match all of them at once.
|
|
if (MatchesByLetter.size() == 1) {
|
|
unsigned FirstNonCommonLetter = FindFirstNonCommonLetter(Matches);
|
|
unsigned NumChars = FirstNonCommonLetter-CharNo;
|
|
|
|
// Emit code to break out if the prefix doesn't match.
|
|
if (NumChars == 1) {
|
|
// Do the comparison with if (Str[1] != 'f')
|
|
// FIXME: Need to escape general characters.
|
|
OS << Indent << "if (" << StrVariableName << "[" << CharNo << "] != '"
|
|
<< Matches[0]->first[CharNo] << "')\n";
|
|
OS << Indent << " break;\n";
|
|
} else {
|
|
// Do the comparison with if (Str.substr(1,3) != "foo").
|
|
// FIXME: Need to escape general strings.
|
|
OS << Indent << "if (" << StrVariableName << ".substr(" << CharNo << ","
|
|
<< NumChars << ") != \"";
|
|
OS << Matches[0]->first.substr(CharNo, NumChars) << "\")\n";
|
|
OS << Indent << " break;\n";
|
|
}
|
|
|
|
return EmitStringMatcherForChar(StrVariableName, Matches,
|
|
FirstNonCommonLetter, IndentCount, OS);
|
|
}
|
|
|
|
// Otherwise, we have multiple possible things, emit a switch on the
|
|
// character.
|
|
OS << Indent << "switch (" << StrVariableName << "[" << CharNo << "]) {\n";
|
|
OS << Indent << "default: break;\n";
|
|
|
|
for (std::map<char, std::vector<const StringPair*> >::iterator LI =
|
|
MatchesByLetter.begin(), E = MatchesByLetter.end(); LI != E; ++LI) {
|
|
// TODO: escape hard stuff (like \n) if we ever care about it.
|
|
OS << Indent << "case '" << LI->first << "':\t // "
|
|
<< LI->second.size() << " strings to match.\n";
|
|
if (EmitStringMatcherForChar(StrVariableName, LI->second, CharNo+1,
|
|
IndentCount+1, OS))
|
|
OS << Indent << " break;\n";
|
|
}
|
|
|
|
OS << Indent << "}\n";
|
|
return true;
|
|
}
|
|
|
|
|
|
/// EmitStringMatcher - Given a list of strings and code to execute when they
|
|
/// match, output a simple switch tree to classify the input string.
|
|
///
|
|
/// If a match is found, the code in Vals[i].second is executed; control must
|
|
/// not exit this code fragment. If nothing matches, execution falls through.
|
|
///
|
|
/// \param StrVariableName - The name of the variable to test.
|
|
static void EmitStringMatcher(const std::string &StrVariableName,
|
|
const std::vector<StringPair> &Matches,
|
|
raw_ostream &OS) {
|
|
// First level categorization: group strings by length.
|
|
std::map<unsigned, std::vector<const StringPair*> > MatchesByLength;
|
|
|
|
for (unsigned i = 0, e = Matches.size(); i != e; ++i)
|
|
MatchesByLength[Matches[i].first.size()].push_back(&Matches[i]);
|
|
|
|
// Output a switch statement on length and categorize the elements within each
|
|
// bin.
|
|
OS << " switch (" << StrVariableName << ".size()) {\n";
|
|
OS << " default: break;\n";
|
|
|
|
for (std::map<unsigned, std::vector<const StringPair*> >::iterator LI =
|
|
MatchesByLength.begin(), E = MatchesByLength.end(); LI != E; ++LI) {
|
|
OS << " case " << LI->first << ":\t // " << LI->second.size()
|
|
<< " strings to match.\n";
|
|
if (EmitStringMatcherForChar(StrVariableName, LI->second, 0, 0, OS))
|
|
OS << " break;\n";
|
|
}
|
|
|
|
OS << " }\n";
|
|
}
|
|
|
|
|
|
/// EmitMatchTokenString - Emit the function to match a token string to the
|
|
/// appropriate match class value.
|
|
static void EmitMatchTokenString(CodeGenTarget &Target,
|
|
std::vector<ClassInfo*> &Infos,
|
|
raw_ostream &OS) {
|
|
// Construct the match list.
|
|
std::vector<StringPair> Matches;
|
|
for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
|
|
ie = Infos.end(); it != ie; ++it) {
|
|
ClassInfo &CI = **it;
|
|
|
|
if (CI.Kind == ClassInfo::Token)
|
|
Matches.push_back(StringPair(CI.ValueName, "return " + CI.Name + ";"));
|
|
}
|
|
|
|
OS << "static MatchClassKind MatchTokenString(StringRef Name) {\n";
|
|
|
|
EmitStringMatcher("Name", Matches, OS);
|
|
|
|
OS << " return InvalidMatchClass;\n";
|
|
OS << "}\n\n";
|
|
}
|
|
|
|
/// EmitMatchRegisterName - Emit the function to match a string to the target
|
|
/// specific register enum.
|
|
static void EmitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
|
|
raw_ostream &OS) {
|
|
// Construct the match list.
|
|
std::vector<StringPair> Matches;
|
|
for (unsigned i = 0, e = Target.getRegisters().size(); i != e; ++i) {
|
|
const CodeGenRegister &Reg = Target.getRegisters()[i];
|
|
if (Reg.TheDef->getValueAsString("AsmName").empty())
|
|
continue;
|
|
|
|
Matches.push_back(StringPair(Reg.TheDef->getValueAsString("AsmName"),
|
|
"return " + utostr(i + 1) + ";"));
|
|
}
|
|
|
|
OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
|
|
|
|
EmitStringMatcher("Name", Matches, OS);
|
|
|
|
OS << " return 0;\n";
|
|
OS << "}\n\n";
|
|
}
|
|
|
|
void AsmMatcherEmitter::run(raw_ostream &OS) {
|
|
CodeGenTarget Target;
|
|
Record *AsmParser = Target.getAsmParser();
|
|
std::string ClassName = AsmParser->getValueAsString("AsmParserClassName");
|
|
|
|
// Compute the information on the instructions to match.
|
|
AsmMatcherInfo Info(AsmParser);
|
|
Info.BuildInfo(Target);
|
|
|
|
// Sort the instruction table using the partial order on classes. We use
|
|
// stable_sort to ensure that ambiguous instructions are still
|
|
// deterministically ordered.
|
|
std::stable_sort(Info.Instructions.begin(), Info.Instructions.end(),
|
|
less_ptr<InstructionInfo>());
|
|
|
|
DEBUG_WITH_TYPE("instruction_info", {
|
|
for (std::vector<InstructionInfo*>::iterator
|
|
it = Info.Instructions.begin(), ie = Info.Instructions.end();
|
|
it != ie; ++it)
|
|
(*it)->dump();
|
|
});
|
|
|
|
// Check for ambiguous instructions.
|
|
unsigned NumAmbiguous = 0;
|
|
for (unsigned i = 0, e = Info.Instructions.size(); i != e; ++i) {
|
|
for (unsigned j = i + 1; j != e; ++j) {
|
|
InstructionInfo &A = *Info.Instructions[i];
|
|
InstructionInfo &B = *Info.Instructions[j];
|
|
|
|
if (A.CouldMatchAmiguouslyWith(B)) {
|
|
DEBUG_WITH_TYPE("ambiguous_instrs", {
|
|
errs() << "warning: ambiguous instruction match:\n";
|
|
A.dump();
|
|
errs() << "\nis incomparable with:\n";
|
|
B.dump();
|
|
errs() << "\n\n";
|
|
});
|
|
++NumAmbiguous;
|
|
}
|
|
}
|
|
}
|
|
if (NumAmbiguous)
|
|
DEBUG_WITH_TYPE("ambiguous_instrs", {
|
|
errs() << "warning: " << NumAmbiguous
|
|
<< " ambiguous instructions!\n";
|
|
});
|
|
|
|
// Write the output.
|
|
|
|
EmitSourceFileHeader("Assembly Matcher Source Fragment", OS);
|
|
|
|
// Emit the function to match a register name to number.
|
|
EmitMatchRegisterName(Target, AsmParser, OS);
|
|
|
|
OS << "#ifndef REGISTERS_ONLY\n\n";
|
|
|
|
// Generate the unified function to convert operands into an MCInst.
|
|
EmitConvertToMCInst(Target, Info.Instructions, OS);
|
|
|
|
// Emit the enumeration for classes which participate in matching.
|
|
EmitMatchClassEnumeration(Target, Info.Classes, OS);
|
|
|
|
// Emit the routine to match token strings to their match class.
|
|
EmitMatchTokenString(Target, Info.Classes, OS);
|
|
|
|
// Emit the routine to classify an operand.
|
|
EmitClassifyOperand(Target, Info, OS);
|
|
|
|
// Emit the subclass predicate routine.
|
|
EmitIsSubclass(Target, Info.Classes, OS);
|
|
|
|
// Finally, build the match function.
|
|
|
|
size_t MaxNumOperands = 0;
|
|
for (std::vector<InstructionInfo*>::const_iterator it =
|
|
Info.Instructions.begin(), ie = Info.Instructions.end();
|
|
it != ie; ++it)
|
|
MaxNumOperands = std::max(MaxNumOperands, (*it)->Operands.size());
|
|
|
|
const std::string &MatchName =
|
|
AsmParser->getValueAsString("MatchInstructionName");
|
|
OS << "bool " << Target.getName() << ClassName << "::\n"
|
|
<< MatchName
|
|
<< "(const SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n";
|
|
OS.indent(MatchName.size() + 1);
|
|
OS << "MCInst &Inst) {\n";
|
|
|
|
// Emit the static match table; unused classes get initalized to 0 which is
|
|
// guaranteed to be InvalidMatchClass.
|
|
//
|
|
// FIXME: We can reduce the size of this table very easily. First, we change
|
|
// it so that store the kinds in separate bit-fields for each index, which
|
|
// only needs to be the max width used for classes at that index (we also need
|
|
// to reject based on this during classification). If we then make sure to
|
|
// order the match kinds appropriately (putting mnemonics last), then we
|
|
// should only end up using a few bits for each class, especially the ones
|
|
// following the mnemonic.
|
|
OS << " static const struct MatchEntry {\n";
|
|
OS << " unsigned Opcode;\n";
|
|
OS << " ConversionKind ConvertFn;\n";
|
|
OS << " MatchClassKind Classes[" << MaxNumOperands << "];\n";
|
|
OS << " } MatchTable[" << Info.Instructions.size() << "] = {\n";
|
|
|
|
for (std::vector<InstructionInfo*>::const_iterator it =
|
|
Info.Instructions.begin(), ie = Info.Instructions.end();
|
|
it != ie; ++it) {
|
|
InstructionInfo &II = **it;
|
|
|
|
OS << " { " << Target.getName() << "::" << II.InstrName
|
|
<< ", " << II.ConversionFnKind << ", { ";
|
|
for (unsigned i = 0, e = II.Operands.size(); i != e; ++i) {
|
|
InstructionInfo::Operand &Op = II.Operands[i];
|
|
|
|
if (i) OS << ", ";
|
|
OS << Op.Class->Name;
|
|
}
|
|
OS << " } },\n";
|
|
}
|
|
|
|
OS << " };\n\n";
|
|
|
|
// Emit code to compute the class list for this operand vector.
|
|
OS << " // Eliminate obvious mismatches.\n";
|
|
OS << " if (Operands.size() > " << MaxNumOperands << ")\n";
|
|
OS << " return true;\n\n";
|
|
|
|
OS << " // Compute the class list for this operand vector.\n";
|
|
OS << " MatchClassKind Classes[" << MaxNumOperands << "];\n";
|
|
OS << " for (unsigned i = 0, e = Operands.size(); i != e; ++i) {\n";
|
|
OS << " Classes[i] = ClassifyOperand(Operands[i]);\n\n";
|
|
|
|
OS << " // Check for invalid operands before matching.\n";
|
|
OS << " if (Classes[i] == InvalidMatchClass)\n";
|
|
OS << " return true;\n";
|
|
OS << " }\n\n";
|
|
|
|
OS << " // Mark unused classes.\n";
|
|
OS << " for (unsigned i = Operands.size(), e = " << MaxNumOperands << "; "
|
|
<< "i != e; ++i)\n";
|
|
OS << " Classes[i] = InvalidMatchClass;\n\n";
|
|
|
|
// Emit code to search the table.
|
|
OS << " // Search the table.\n";
|
|
OS << " for (const MatchEntry *it = MatchTable, "
|
|
<< "*ie = MatchTable + " << Info.Instructions.size()
|
|
<< "; it != ie; ++it) {\n";
|
|
for (unsigned i = 0; i != MaxNumOperands; ++i) {
|
|
OS << " if (!IsSubclass(Classes["
|
|
<< i << "], it->Classes[" << i << "]))\n";
|
|
OS << " continue;\n";
|
|
}
|
|
OS << "\n";
|
|
OS << " ConvertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n";
|
|
|
|
// Call the post-processing function, if used.
|
|
std::string InsnCleanupFn =
|
|
AsmParser->getValueAsString("AsmParserInstCleanup");
|
|
if (!InsnCleanupFn.empty())
|
|
OS << " " << InsnCleanupFn << "(Inst);\n";
|
|
|
|
OS << " return false;\n";
|
|
OS << " }\n\n";
|
|
|
|
OS << " return true;\n";
|
|
OS << "}\n\n";
|
|
|
|
OS << "#endif // REGISTERS_ONLY\n";
|
|
}
|