1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 03:33:20 +01:00
llvm-mirror/test/Transforms/RewriteStatepointsForGC/relocation.ll
Daniel Neilson e06efee0cc [RewriteStatepoints] Fix stale parse points
Summary:
RewriteStatepointsForGC collects parse points for further processing.
During the collection if a callsite is found in an unreachable block
(DominatorTree::isReachableFromEntry()) then all unreachable blocks are
removed by removeUnreachableBlocks(). Some of the removed blocks could
have been reachable according to DominatorTree::isReachableFromEntry().
In this case the collected parse points became stale and resulted in a
crash when accessed.

The fix is to unconditionally canonicalize the IR to
removeUnreachableBlocks and then collect the parse points.

The added test crashes with the old version and passes with this patch.

Patch by Yevgeny Rouban!

Reviewed by: Anna

Differential Revision: https://reviews.llvm.org/D43929

llvm-svn: 326748
2018-03-05 22:27:30 +00:00

287 lines
10 KiB
LLVM

; RUN: opt < %s -rewrite-statepoints-for-gc -spp-rematerialization-threshold=0 -S | FileCheck %s
; RUN: opt < %s -passes=rewrite-statepoints-for-gc -spp-rematerialization-threshold=0 -S | FileCheck %s
declare void @foo()
declare void @use(...) "gc-leaf-function"
define i64 addrspace(1)* @test1(i64 addrspace(1)* %obj, i64 addrspace(1)* %obj2, i1 %condition) gc "statepoint-example" {
; CHECK-LABEL: @test1
; CHECK-DAG: %obj.relocated
; CHECK-DAG: %obj2.relocated
entry:
call void @foo() [ "deopt"() ]
br label %joint
joint: ; preds = %joint2, %entry
; CHECK-LABEL: joint:
; CHECK: %phi1 = phi i64 addrspace(1)* [ %obj.relocated.casted, %entry ], [ %obj3, %joint2 ]
%phi1 = phi i64 addrspace(1)* [ %obj, %entry ], [ %obj3, %joint2 ]
br i1 %condition, label %use, label %joint2
use: ; preds = %joint
br label %joint2
joint2: ; preds = %use, %joint
; CHECK-LABEL: joint2:
; CHECK: %phi2 = phi i64 addrspace(1)* [ %obj.relocated.casted, %use ], [ %obj2.relocated.casted, %joint ]
; CHECK: %obj3 = getelementptr i64, i64 addrspace(1)* %obj2.relocated.casted, i32 1
%phi2 = phi i64 addrspace(1)* [ %obj, %use ], [ %obj2, %joint ]
%obj3 = getelementptr i64, i64 addrspace(1)* %obj2, i32 1
br label %joint
}
declare i64 addrspace(1)* @generate_obj() "gc-leaf-function"
declare void @consume_obj(i64 addrspace(1)*) "gc-leaf-function"
declare i1 @rt() "gc-leaf-function"
define void @test2() gc "statepoint-example" {
; CHECK-LABEL: @test2
entry:
%obj_init = call i64 addrspace(1)* @generate_obj()
%obj = getelementptr i64, i64 addrspace(1)* %obj_init, i32 42
br label %loop
loop: ; preds = %loop.backedge, %entry
; CHECK: loop:
; CHECK-DAG: [ %obj_init.relocated.casted, %loop.backedge ]
; CHECK-DAG: [ %obj_init, %entry ]
; CHECK-DAG: [ %obj.relocated.casted, %loop.backedge ]
; CHECK-DAG: [ %obj, %entry ]
; CHECK-NOT: %location = getelementptr i64, i64 addrspace(1)* %obj, i32 %index
%index = phi i32 [ 0, %entry ], [ %index.inc, %loop.backedge ]
%location = getelementptr i64, i64 addrspace(1)* %obj, i32 %index
call void @consume_obj(i64 addrspace(1)* %location)
%index.inc = add i32 %index, 1
%condition = call i1 @rt()
br i1 %condition, label %loop_x, label %loop_y
loop_x: ; preds = %loop
br label %loop.backedge
loop.backedge: ; preds = %loop_y, %loop_x
call void @do_safepoint() [ "deopt"() ]
br label %loop
loop_y: ; preds = %loop
br label %loop.backedge
}
declare void @some_call(i8 addrspace(1)*) "gc-leaf-function"
define void @relocate_merge(i1 %cnd, i8 addrspace(1)* %arg) gc "statepoint-example" {
; CHECK-LABEL: @relocate_merge
bci_0:
br i1 %cnd, label %if_branch, label %else_branch
if_branch: ; preds = %bci_0
; CHECK-LABEL: if_branch:
; CHECK: gc.statepoint
; CHECK: gc.relocate
call void @foo() [ "deopt"() ]
br label %join
else_branch: ; preds = %bci_0
; CHECK-LABEL: else_branch:
; CHECK: gc.statepoint
; CHECK: gc.relocate
; We need to end up with a single relocation phi updated from both paths
call void @foo() [ "deopt"() ]
br label %join
join: ; preds = %else_branch, %if_branch
; CHECK-LABEL: join:
; CHECK: phi i8 addrspace(1)*
; CHECK-DAG: [ %arg.relocated, %if_branch ]
; CHECK-DAG: [ %arg.relocated2, %else_branch ]
; CHECK-NOT: phi
call void @some_call(i8 addrspace(1)* %arg)
ret void
}
declare void @goo(i64)
declare i32 @moo(i64 addrspace(1)*)
; Make sure a use in a statepoint gets properly relocated at a previous one.
; This is basically just making sure that statepoints aren't accidentally
; treated specially.
define void @test3(i64 addrspace(1)* %obj) gc "statepoint-example" {
; CHECK-LABEL: @test3
; CHECK: gc.statepoint
; CHECK-NEXT: gc.relocate
; CHECK-NEXT: bitcast
; CHECK-NEXT: gc.statepoint
entry:
call void @goo(i64 undef) [ "deopt"(i32 0, i32 -1, i32 0, i32 0, i32 0) ]
%0 = call i32 @moo(i64 addrspace(1)* %obj) [ "deopt"(i32 0, i32 -1, i32 0, i32 0, i32 0) ]
ret void
}
declare i8 addrspace(1)* @boo()
; Check specifically for the case where the result of a statepoint needs to
; be relocated itself
define void @test4() gc "statepoint-example" {
; CHECK-LABEL: @test4
; CHECK: gc.statepoint
; CHECK: gc.result
; CHECK: gc.statepoint
; CHECK: [[RELOCATED:%[^ ]+]] = call {{.*}}gc.relocate
; CHECK: @use(i8 addrspace(1)* [[RELOCATED]])
%1 = call i8 addrspace(1)* @boo() [ "deopt"() ]
%2 = call i8 addrspace(1)* @boo() [ "deopt"() ]
call void (...) @use(i8 addrspace(1)* %1)
ret void
}
; Test updating a phi where not all inputs are live to begin with
define void @test5(i8 addrspace(1)* %arg) gc "statepoint-example" {
; CHECK-LABEL: test5
entry:
%0 = call i8 addrspace(1)* @boo() [ "deopt"() ]
switch i32 undef, label %kill [
i32 10, label %merge
i32 13, label %merge
]
kill: ; preds = %entry
br label %merge
merge: ; preds = %kill, %entry, %entry
; CHECK: merge:
; CHECK: %test = phi i8 addrspace(1)
; CHECK-DAG: [ null, %kill ]
; CHECK-DAG: [ %arg.relocated, %entry ]
; CHECK-DAG: [ %arg.relocated, %entry ]
%test = phi i8 addrspace(1)* [ null, %kill ], [ %arg, %entry ], [ %arg, %entry ]
call void (...) @use(i8 addrspace(1)* %test)
ret void
}
; Check to make sure we handle values live over an entry statepoint
define void @test6(i8 addrspace(1)* %arg1, i8 addrspace(1)* %arg2, i8 addrspace(1)* %arg3) gc "statepoint-example" {
; CHECK-LABEL: @test6
entry:
br i1 undef, label %gc.safepoint_poll.exit2, label %do_safepoint
do_safepoint: ; preds = %entry
; CHECK-LABEL: do_safepoint:
; CHECK: gc.statepoint
; CHECK: arg1.relocated =
; CHECK: arg2.relocated =
; CHECK: arg3.relocated =
call void @foo() [ "deopt"(i8 addrspace(1)* %arg1, i8 addrspace(1)* %arg2, i8 addrspace(1)* %arg3) ]
br label %gc.safepoint_poll.exit2
gc.safepoint_poll.exit2: ; preds = %do_safepoint, %entry
; CHECK-LABEL: gc.safepoint_poll.exit2:
; CHECK: phi i8 addrspace(1)*
; CHECK-DAG: [ %arg3, %entry ]
; CHECK-DAG: [ %arg3.relocated, %do_safepoint ]
; CHECK: phi i8 addrspace(1)*
; CHECK-DAG: [ %arg2, %entry ]
; CHECK-DAG: [ %arg2.relocated, %do_safepoint ]
; CHECK: phi i8 addrspace(1)*
; CHECK-DAG: [ %arg1, %entry ]
; CHECK-DAG: [ %arg1.relocated, %do_safepoint ]
call void (...) @use(i8 addrspace(1)* %arg1, i8 addrspace(1)* %arg2, i8 addrspace(1)* %arg3)
ret void
}
; Check relocation in a loop nest where a relocation happens in the outer
; but not the inner loop
define void @test_outer_loop(i8 addrspace(1)* %arg1, i8 addrspace(1)* %arg2, i1 %cmp) gc "statepoint-example" {
; CHECK-LABEL: @test_outer_loop
bci_0:
br label %outer-loop
outer-loop: ; preds = %outer-inc, %bci_0
; CHECK-LABEL: outer-loop:
; CHECK: phi i8 addrspace(1)* [ %arg2, %bci_0 ], [ %arg2.relocated, %outer-inc ]
; CHECK: phi i8 addrspace(1)* [ %arg1, %bci_0 ], [ %arg1.relocated, %outer-inc ]
br label %inner-loop
inner-loop: ; preds = %inner-loop, %outer-loop
br i1 %cmp, label %inner-loop, label %outer-inc
outer-inc: ; preds = %inner-loop
; CHECK-LABEL: outer-inc:
; CHECK: %arg1.relocated
; CHECK: %arg2.relocated
call void @foo() [ "deopt"(i8 addrspace(1)* %arg1, i8 addrspace(1)* %arg2) ]
br label %outer-loop
}
; Check that both inner and outer loops get phis when relocation is in
; inner loop
define void @test_inner_loop(i8 addrspace(1)* %arg1, i8 addrspace(1)* %arg2, i1 %cmp) gc "statepoint-example" {
; CHECK-LABEL: @test_inner_loop
bci_0:
br label %outer-loop
outer-loop: ; preds = %outer-inc, %bci_0
; CHECK-LABEL: outer-loop:
; CHECK: phi i8 addrspace(1)* [ %arg2, %bci_0 ], [ %arg2.relocated, %outer-inc ]
; CHECK: phi i8 addrspace(1)* [ %arg1, %bci_0 ], [ %arg1.relocated, %outer-inc ]
br label %inner-loop
; CHECK-LABEL: inner-loop
; CHECK: phi i8 addrspace(1)*
; CHECK-DAG: %outer-loop ]
; CHECK-DAG: [ %arg2.relocated, %inner-loop ]
; CHECK: phi i8 addrspace(1)*
; CHECK-DAG: %outer-loop ]
; CHECK-DAG: [ %arg1.relocated, %inner-loop ]
; CHECK: gc.statepoint
; CHECK: %arg1.relocated
; CHECK: %arg2.relocated
inner-loop: ; preds = %inner-loop, %outer-loop
call void @foo() [ "deopt"(i8 addrspace(1)* %arg1, i8 addrspace(1)* %arg2) ]
br i1 %cmp, label %inner-loop, label %outer-inc
outer-inc: ; preds = %inner-loop
; CHECK-LABEL: outer-inc:
; This test shows why updating just those uses of the original value being
; relocated dominated by the inserted relocation is not always sufficient.
br label %outer-loop
}
define i64 addrspace(1)* @test7(i64 addrspace(1)* %obj, i64 addrspace(1)* %obj2, i1 %condition) gc "statepoint-example" {
; CHECK-LABEL: @test7
entry:
br i1 %condition, label %branch2, label %join
branch2: ; preds = %entry
br i1 %condition, label %callbb, label %join2
callbb: ; preds = %branch2
call void @foo() [ "deopt"(i32 0, i32 -1, i32 0, i32 0, i32 0) ]
br label %join
join: ; preds = %callbb, %entry
; CHECK-LABEL: join:
; CHECK: phi i64 addrspace(1)* [ %obj.relocated.casted, %callbb ], [ %obj, %entry ]
; CHECK: phi i64 addrspace(1)*
; CHECK-DAG: [ %obj, %entry ]
; CHECK-DAG: [ %obj2.relocated.casted, %callbb ]
%phi1 = phi i64 addrspace(1)* [ %obj, %entry ], [ %obj2, %callbb ]
br label %join2
join2: ; preds = %join, %branch2
; CHECK-LABEL: join2:
; CHECK: phi2 = phi i64 addrspace(1)*
; CHECK-DAG: %join ]
; CHECK-DAG: [ %obj2, %branch2 ]
%phi2 = phi i64 addrspace(1)* [ %obj, %join ], [ %obj2, %branch2 ]
ret i64 addrspace(1)* %phi2
}
declare void @do_safepoint()