mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-01 00:12:50 +01:00
169eb89854
Use it to avoid repeating ourselves too often. Also store MVT::SimpleValueType in the TTI tables so they can be statically initialized, MVT's constructors create bloated initialization code otherwise. llvm-svn: 188095
531 lines
20 KiB
C++
531 lines
20 KiB
C++
//===-- ARMTargetTransformInfo.cpp - ARM specific TTI pass ----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
/// This file implements a TargetTransformInfo analysis pass specific to the
|
|
/// ARM target machine. It uses the target's detailed information to provide
|
|
/// more precise answers to certain TTI queries, while letting the target
|
|
/// independent and default TTI implementations handle the rest.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "armtti"
|
|
#include "ARM.h"
|
|
#include "ARMTargetMachine.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/Target/CostTable.h"
|
|
using namespace llvm;
|
|
|
|
// Declare the pass initialization routine locally as target-specific passes
|
|
// don't havve a target-wide initialization entry point, and so we rely on the
|
|
// pass constructor initialization.
|
|
namespace llvm {
|
|
void initializeARMTTIPass(PassRegistry &);
|
|
}
|
|
|
|
namespace {
|
|
|
|
class ARMTTI : public ImmutablePass, public TargetTransformInfo {
|
|
const ARMBaseTargetMachine *TM;
|
|
const ARMSubtarget *ST;
|
|
const ARMTargetLowering *TLI;
|
|
|
|
/// Estimate the overhead of scalarizing an instruction. Insert and Extract
|
|
/// are set if the result needs to be inserted and/or extracted from vectors.
|
|
unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
|
|
|
|
public:
|
|
ARMTTI() : ImmutablePass(ID), TM(0), ST(0), TLI(0) {
|
|
llvm_unreachable("This pass cannot be directly constructed");
|
|
}
|
|
|
|
ARMTTI(const ARMBaseTargetMachine *TM)
|
|
: ImmutablePass(ID), TM(TM), ST(TM->getSubtargetImpl()),
|
|
TLI(TM->getTargetLowering()) {
|
|
initializeARMTTIPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
virtual void initializePass() {
|
|
pushTTIStack(this);
|
|
}
|
|
|
|
virtual void finalizePass() {
|
|
popTTIStack();
|
|
}
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
TargetTransformInfo::getAnalysisUsage(AU);
|
|
}
|
|
|
|
/// Pass identification.
|
|
static char ID;
|
|
|
|
/// Provide necessary pointer adjustments for the two base classes.
|
|
virtual void *getAdjustedAnalysisPointer(const void *ID) {
|
|
if (ID == &TargetTransformInfo::ID)
|
|
return (TargetTransformInfo*)this;
|
|
return this;
|
|
}
|
|
|
|
/// \name Scalar TTI Implementations
|
|
/// @{
|
|
|
|
virtual unsigned getIntImmCost(const APInt &Imm, Type *Ty) const;
|
|
|
|
/// @}
|
|
|
|
|
|
/// \name Vector TTI Implementations
|
|
/// @{
|
|
|
|
unsigned getNumberOfRegisters(bool Vector) const {
|
|
if (Vector) {
|
|
if (ST->hasNEON())
|
|
return 16;
|
|
return 0;
|
|
}
|
|
|
|
if (ST->isThumb1Only())
|
|
return 8;
|
|
return 16;
|
|
}
|
|
|
|
unsigned getRegisterBitWidth(bool Vector) const {
|
|
if (Vector) {
|
|
if (ST->hasNEON())
|
|
return 128;
|
|
return 0;
|
|
}
|
|
|
|
return 32;
|
|
}
|
|
|
|
unsigned getMaximumUnrollFactor() const {
|
|
// These are out of order CPUs:
|
|
if (ST->isCortexA15() || ST->isSwift())
|
|
return 2;
|
|
return 1;
|
|
}
|
|
|
|
unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
|
|
int Index, Type *SubTp) const;
|
|
|
|
unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
|
|
Type *Src) const;
|
|
|
|
unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) const;
|
|
|
|
unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) const;
|
|
|
|
unsigned getAddressComputationCost(Type *Val, bool IsComplex) const;
|
|
|
|
unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty,
|
|
OperandValueKind Op1Info = OK_AnyValue,
|
|
OperandValueKind Op2Info = OK_AnyValue) const;
|
|
/// @}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
INITIALIZE_AG_PASS(ARMTTI, TargetTransformInfo, "armtti",
|
|
"ARM Target Transform Info", true, true, false)
|
|
char ARMTTI::ID = 0;
|
|
|
|
ImmutablePass *
|
|
llvm::createARMTargetTransformInfoPass(const ARMBaseTargetMachine *TM) {
|
|
return new ARMTTI(TM);
|
|
}
|
|
|
|
|
|
unsigned ARMTTI::getIntImmCost(const APInt &Imm, Type *Ty) const {
|
|
assert(Ty->isIntegerTy());
|
|
|
|
unsigned Bits = Ty->getPrimitiveSizeInBits();
|
|
if (Bits == 0 || Bits > 32)
|
|
return 4;
|
|
|
|
int32_t SImmVal = Imm.getSExtValue();
|
|
uint32_t ZImmVal = Imm.getZExtValue();
|
|
if (!ST->isThumb()) {
|
|
if ((SImmVal >= 0 && SImmVal < 65536) ||
|
|
(ARM_AM::getSOImmVal(ZImmVal) != -1) ||
|
|
(ARM_AM::getSOImmVal(~ZImmVal) != -1))
|
|
return 1;
|
|
return ST->hasV6T2Ops() ? 2 : 3;
|
|
} else if (ST->isThumb2()) {
|
|
if ((SImmVal >= 0 && SImmVal < 65536) ||
|
|
(ARM_AM::getT2SOImmVal(ZImmVal) != -1) ||
|
|
(ARM_AM::getT2SOImmVal(~ZImmVal) != -1))
|
|
return 1;
|
|
return ST->hasV6T2Ops() ? 2 : 3;
|
|
} else /*Thumb1*/ {
|
|
if (SImmVal >= 0 && SImmVal < 256)
|
|
return 1;
|
|
if ((~ZImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal))
|
|
return 2;
|
|
// Load from constantpool.
|
|
return 3;
|
|
}
|
|
return 2;
|
|
}
|
|
|
|
unsigned ARMTTI::getCastInstrCost(unsigned Opcode, Type *Dst,
|
|
Type *Src) const {
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
assert(ISD && "Invalid opcode");
|
|
|
|
// Single to/from double precision conversions.
|
|
static const CostTblEntry<MVT::SimpleValueType> NEONFltDblTbl[] = {
|
|
// Vector fptrunc/fpext conversions.
|
|
{ ISD::FP_ROUND, MVT::v2f64, 2 },
|
|
{ ISD::FP_EXTEND, MVT::v2f32, 2 },
|
|
{ ISD::FP_EXTEND, MVT::v4f32, 4 }
|
|
};
|
|
|
|
if (Src->isVectorTy() && ST->hasNEON() && (ISD == ISD::FP_ROUND ||
|
|
ISD == ISD::FP_EXTEND)) {
|
|
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
|
|
int Idx = CostTableLookup(NEONFltDblTbl, ISD, LT.second);
|
|
if (Idx != -1)
|
|
return LT.first * NEONFltDblTbl[Idx].Cost;
|
|
}
|
|
|
|
EVT SrcTy = TLI->getValueType(Src);
|
|
EVT DstTy = TLI->getValueType(Dst);
|
|
|
|
if (!SrcTy.isSimple() || !DstTy.isSimple())
|
|
return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
|
|
|
|
// Some arithmetic, load and store operations have specific instructions
|
|
// to cast up/down their types automatically at no extra cost.
|
|
// TODO: Get these tables to know at least what the related operations are.
|
|
static const TypeConversionCostTblEntry<MVT::SimpleValueType>
|
|
NEONVectorConversionTbl[] = {
|
|
{ ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
|
|
{ ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
|
|
{ ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
|
|
{ ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 },
|
|
{ ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 },
|
|
|
|
// The number of vmovl instructions for the extension.
|
|
{ ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
|
|
{ ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
|
|
{ ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
|
|
|
|
// Operations that we legalize using splitting.
|
|
{ ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 },
|
|
{ ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 },
|
|
|
|
// Vector float <-> i32 conversions.
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
|
|
|
|
{ ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
|
|
{ ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
|
|
{ ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 },
|
|
{ ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 },
|
|
{ ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 },
|
|
{ ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 },
|
|
|
|
{ ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
|
|
{ ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 3 },
|
|
{ ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 3 },
|
|
{ ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
|
|
|
|
// Vector double <-> i32 conversions.
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
|
|
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
|
|
|
|
{ ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f32, 4 },
|
|
{ ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f32, 4 },
|
|
{ ISD::FP_TO_SINT, MVT::v16i16, MVT::v16f32, 8 },
|
|
{ ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f32, 8 }
|
|
};
|
|
|
|
if (SrcTy.isVector() && ST->hasNEON()) {
|
|
int Idx = ConvertCostTableLookup(NEONVectorConversionTbl, ISD,
|
|
DstTy.getSimpleVT(), SrcTy.getSimpleVT());
|
|
if (Idx != -1)
|
|
return NEONVectorConversionTbl[Idx].Cost;
|
|
}
|
|
|
|
// Scalar float to integer conversions.
|
|
static const TypeConversionCostTblEntry<MVT::SimpleValueType>
|
|
NEONFloatConversionTbl[] = {
|
|
{ ISD::FP_TO_SINT, MVT::i1, MVT::f32, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::i1, MVT::f32, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::i1, MVT::f64, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::i1, MVT::f64, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::i8, MVT::f32, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::i8, MVT::f32, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::i8, MVT::f64, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::i8, MVT::f64, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::i16, MVT::f32, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::i16, MVT::f32, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::i16, MVT::f64, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::i16, MVT::f64, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::i32, MVT::f32, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::i32, MVT::f32, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::i32, MVT::f64, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::i32, MVT::f64, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::i64, MVT::f32, 10 },
|
|
{ ISD::FP_TO_UINT, MVT::i64, MVT::f32, 10 },
|
|
{ ISD::FP_TO_SINT, MVT::i64, MVT::f64, 10 },
|
|
{ ISD::FP_TO_UINT, MVT::i64, MVT::f64, 10 }
|
|
};
|
|
if (SrcTy.isFloatingPoint() && ST->hasNEON()) {
|
|
int Idx = ConvertCostTableLookup(NEONFloatConversionTbl, ISD,
|
|
DstTy.getSimpleVT(), SrcTy.getSimpleVT());
|
|
if (Idx != -1)
|
|
return NEONFloatConversionTbl[Idx].Cost;
|
|
}
|
|
|
|
// Scalar integer to float conversions.
|
|
static const TypeConversionCostTblEntry<MVT::SimpleValueType>
|
|
NEONIntegerConversionTbl[] = {
|
|
{ ISD::SINT_TO_FP, MVT::f32, MVT::i1, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::f32, MVT::i1, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::f64, MVT::i1, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::f64, MVT::i1, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::f32, MVT::i8, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::f32, MVT::i8, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::f64, MVT::i8, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::f64, MVT::i8, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::f32, MVT::i16, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::f32, MVT::i16, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::f64, MVT::i16, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::f64, MVT::i16, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::f32, MVT::i32, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::f32, MVT::i32, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::f64, MVT::i32, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::f64, MVT::i32, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::f32, MVT::i64, 10 },
|
|
{ ISD::UINT_TO_FP, MVT::f32, MVT::i64, 10 },
|
|
{ ISD::SINT_TO_FP, MVT::f64, MVT::i64, 10 },
|
|
{ ISD::UINT_TO_FP, MVT::f64, MVT::i64, 10 }
|
|
};
|
|
|
|
if (SrcTy.isInteger() && ST->hasNEON()) {
|
|
int Idx = ConvertCostTableLookup(NEONIntegerConversionTbl, ISD,
|
|
DstTy.getSimpleVT(), SrcTy.getSimpleVT());
|
|
if (Idx != -1)
|
|
return NEONIntegerConversionTbl[Idx].Cost;
|
|
}
|
|
|
|
// Scalar integer conversion costs.
|
|
static const TypeConversionCostTblEntry<MVT::SimpleValueType>
|
|
ARMIntegerConversionTbl[] = {
|
|
// i16 -> i64 requires two dependent operations.
|
|
{ ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 },
|
|
|
|
// Truncates on i64 are assumed to be free.
|
|
{ ISD::TRUNCATE, MVT::i32, MVT::i64, 0 },
|
|
{ ISD::TRUNCATE, MVT::i16, MVT::i64, 0 },
|
|
{ ISD::TRUNCATE, MVT::i8, MVT::i64, 0 },
|
|
{ ISD::TRUNCATE, MVT::i1, MVT::i64, 0 }
|
|
};
|
|
|
|
if (SrcTy.isInteger()) {
|
|
int Idx = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD,
|
|
DstTy.getSimpleVT(), SrcTy.getSimpleVT());
|
|
if (Idx != -1)
|
|
return ARMIntegerConversionTbl[Idx].Cost;
|
|
}
|
|
|
|
return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
|
|
}
|
|
|
|
unsigned ARMTTI::getVectorInstrCost(unsigned Opcode, Type *ValTy,
|
|
unsigned Index) const {
|
|
// Penalize inserting into an D-subregister. We end up with a three times
|
|
// lower estimated throughput on swift.
|
|
if (ST->isSwift() &&
|
|
Opcode == Instruction::InsertElement &&
|
|
ValTy->isVectorTy() &&
|
|
ValTy->getScalarSizeInBits() <= 32)
|
|
return 3;
|
|
|
|
return TargetTransformInfo::getVectorInstrCost(Opcode, ValTy, Index);
|
|
}
|
|
|
|
unsigned ARMTTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
|
|
Type *CondTy) const {
|
|
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
// On NEON a a vector select gets lowered to vbsl.
|
|
if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT) {
|
|
// Lowering of some vector selects is currently far from perfect.
|
|
static const TypeConversionCostTblEntry<MVT::SimpleValueType>
|
|
NEONVectorSelectTbl[] = {
|
|
{ ISD::SELECT, MVT::v16i1, MVT::v16i16, 2*16 + 1 + 3*1 + 4*1 },
|
|
{ ISD::SELECT, MVT::v8i1, MVT::v8i32, 4*8 + 1*3 + 1*4 + 1*2 },
|
|
{ ISD::SELECT, MVT::v16i1, MVT::v16i32, 4*16 + 1*6 + 1*8 + 1*4 },
|
|
{ ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 },
|
|
{ ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 },
|
|
{ ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 }
|
|
};
|
|
|
|
EVT SelCondTy = TLI->getValueType(CondTy);
|
|
EVT SelValTy = TLI->getValueType(ValTy);
|
|
if (SelCondTy.isSimple() && SelValTy.isSimple()) {
|
|
int Idx = ConvertCostTableLookup(NEONVectorSelectTbl, ISD,
|
|
SelCondTy.getSimpleVT(),
|
|
SelValTy.getSimpleVT());
|
|
if (Idx != -1)
|
|
return NEONVectorSelectTbl[Idx].Cost;
|
|
}
|
|
|
|
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
|
|
return LT.first;
|
|
}
|
|
|
|
return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy);
|
|
}
|
|
|
|
unsigned ARMTTI::getAddressComputationCost(Type *Ty, bool IsComplex) const {
|
|
// Address computations in vectorized code with non-consecutive addresses will
|
|
// likely result in more instructions compared to scalar code where the
|
|
// computation can more often be merged into the index mode. The resulting
|
|
// extra micro-ops can significantly decrease throughput.
|
|
unsigned NumVectorInstToHideOverhead = 10;
|
|
|
|
if (Ty->isVectorTy() && IsComplex)
|
|
return NumVectorInstToHideOverhead;
|
|
|
|
// In many cases the address computation is not merged into the instruction
|
|
// addressing mode.
|
|
return 1;
|
|
}
|
|
|
|
unsigned ARMTTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
|
|
Type *SubTp) const {
|
|
// We only handle costs of reverse shuffles for now.
|
|
if (Kind != SK_Reverse)
|
|
return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
|
|
|
|
static const CostTblEntry<MVT::SimpleValueType> NEONShuffleTbl[] = {
|
|
// Reverse shuffle cost one instruction if we are shuffling within a double
|
|
// word (vrev) or two if we shuffle a quad word (vrev, vext).
|
|
{ ISD::VECTOR_SHUFFLE, MVT::v2i32, 1 },
|
|
{ ISD::VECTOR_SHUFFLE, MVT::v2f32, 1 },
|
|
{ ISD::VECTOR_SHUFFLE, MVT::v2i64, 1 },
|
|
{ ISD::VECTOR_SHUFFLE, MVT::v2f64, 1 },
|
|
|
|
{ ISD::VECTOR_SHUFFLE, MVT::v4i32, 2 },
|
|
{ ISD::VECTOR_SHUFFLE, MVT::v4f32, 2 },
|
|
{ ISD::VECTOR_SHUFFLE, MVT::v8i16, 2 },
|
|
{ ISD::VECTOR_SHUFFLE, MVT::v16i8, 2 }
|
|
};
|
|
|
|
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp);
|
|
|
|
int Idx = CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
|
|
if (Idx == -1)
|
|
return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
|
|
|
|
return LT.first * NEONShuffleTbl[Idx].Cost;
|
|
}
|
|
|
|
unsigned ARMTTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind Op1Info,
|
|
OperandValueKind Op2Info) const {
|
|
|
|
int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode);
|
|
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
|
|
|
|
const unsigned FunctionCallDivCost = 20;
|
|
const unsigned ReciprocalDivCost = 10;
|
|
static const CostTblEntry<MVT::SimpleValueType> CostTbl[] = {
|
|
// Division.
|
|
// These costs are somewhat random. Choose a cost of 20 to indicate that
|
|
// vectorizing devision (added function call) is going to be very expensive.
|
|
// Double registers types.
|
|
{ ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost},
|
|
{ ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost},
|
|
{ ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost},
|
|
{ ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost},
|
|
{ ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost},
|
|
{ ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost},
|
|
{ ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost},
|
|
{ ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost},
|
|
{ ISD::SDIV, MVT::v4i16, ReciprocalDivCost},
|
|
{ ISD::UDIV, MVT::v4i16, ReciprocalDivCost},
|
|
{ ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost},
|
|
{ ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost},
|
|
{ ISD::SDIV, MVT::v8i8, ReciprocalDivCost},
|
|
{ ISD::UDIV, MVT::v8i8, ReciprocalDivCost},
|
|
{ ISD::SREM, MVT::v8i8, 8 * FunctionCallDivCost},
|
|
{ ISD::UREM, MVT::v8i8, 8 * FunctionCallDivCost},
|
|
// Quad register types.
|
|
{ ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost},
|
|
{ ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost},
|
|
{ ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost},
|
|
{ ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost},
|
|
{ ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost},
|
|
{ ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost},
|
|
{ ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost},
|
|
{ ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost},
|
|
{ ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost},
|
|
{ ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost},
|
|
{ ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost},
|
|
{ ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost},
|
|
{ ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost},
|
|
{ ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost},
|
|
{ ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost},
|
|
{ ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost},
|
|
// Multiplication.
|
|
};
|
|
|
|
int Idx = -1;
|
|
|
|
if (ST->hasNEON())
|
|
Idx = CostTableLookup(CostTbl, ISDOpcode, LT.second);
|
|
|
|
if (Idx != -1)
|
|
return LT.first * CostTbl[Idx].Cost;
|
|
|
|
|
|
return TargetTransformInfo::getArithmeticInstrCost(Opcode, Ty, Op1Info,
|
|
Op2Info);
|
|
}
|
|
|