mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-23 03:02:36 +01:00
f85d255ec0
A ConstantStruct is renamed when the LLVM context sees a new one. This makes global variable initializers appear different when they aren't. Instead, check the ConstantStruct for equivalence. Differential Revision: https://reviews.llvm.org/D104734
845 lines
26 KiB
C++
845 lines
26 KiB
C++
//===-- DifferenceEngine.cpp - Structural function/module comparison ------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This header defines the implementation of the LLVM difference
|
|
// engine, which structurally compares global values within a module.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "DifferenceEngine.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringSet.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Support/type_traits.h"
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
/// A priority queue, implemented as a heap.
|
|
template <class T, class Sorter, unsigned InlineCapacity>
|
|
class PriorityQueue {
|
|
Sorter Precedes;
|
|
llvm::SmallVector<T, InlineCapacity> Storage;
|
|
|
|
public:
|
|
PriorityQueue(const Sorter &Precedes) : Precedes(Precedes) {}
|
|
|
|
/// Checks whether the heap is empty.
|
|
bool empty() const { return Storage.empty(); }
|
|
|
|
/// Insert a new value on the heap.
|
|
void insert(const T &V) {
|
|
unsigned Index = Storage.size();
|
|
Storage.push_back(V);
|
|
if (Index == 0) return;
|
|
|
|
T *data = Storage.data();
|
|
while (true) {
|
|
unsigned Target = (Index + 1) / 2 - 1;
|
|
if (!Precedes(data[Index], data[Target])) return;
|
|
std::swap(data[Index], data[Target]);
|
|
if (Target == 0) return;
|
|
Index = Target;
|
|
}
|
|
}
|
|
|
|
/// Remove the minimum value in the heap. Only valid on a non-empty heap.
|
|
T remove_min() {
|
|
assert(!empty());
|
|
T tmp = Storage[0];
|
|
|
|
unsigned NewSize = Storage.size() - 1;
|
|
if (NewSize) {
|
|
// Move the slot at the end to the beginning.
|
|
if (std::is_trivially_copyable<T>::value)
|
|
Storage[0] = Storage[NewSize];
|
|
else
|
|
std::swap(Storage[0], Storage[NewSize]);
|
|
|
|
// Bubble the root up as necessary.
|
|
unsigned Index = 0;
|
|
while (true) {
|
|
// With a 1-based index, the children would be Index*2 and Index*2+1.
|
|
unsigned R = (Index + 1) * 2;
|
|
unsigned L = R - 1;
|
|
|
|
// If R is out of bounds, we're done after this in any case.
|
|
if (R >= NewSize) {
|
|
// If L is also out of bounds, we're done immediately.
|
|
if (L >= NewSize) break;
|
|
|
|
// Otherwise, test whether we should swap L and Index.
|
|
if (Precedes(Storage[L], Storage[Index]))
|
|
std::swap(Storage[L], Storage[Index]);
|
|
break;
|
|
}
|
|
|
|
// Otherwise, we need to compare with the smaller of L and R.
|
|
// Prefer R because it's closer to the end of the array.
|
|
unsigned IndexToTest = (Precedes(Storage[L], Storage[R]) ? L : R);
|
|
|
|
// If Index is >= the min of L and R, then heap ordering is restored.
|
|
if (!Precedes(Storage[IndexToTest], Storage[Index]))
|
|
break;
|
|
|
|
// Otherwise, keep bubbling up.
|
|
std::swap(Storage[IndexToTest], Storage[Index]);
|
|
Index = IndexToTest;
|
|
}
|
|
}
|
|
Storage.pop_back();
|
|
|
|
return tmp;
|
|
}
|
|
};
|
|
|
|
/// A function-scope difference engine.
|
|
class FunctionDifferenceEngine {
|
|
DifferenceEngine &Engine;
|
|
|
|
// Some initializers may reference the variable we're currently checking. This
|
|
// can cause an infinite loop. The Saved[LR]HS ivars can be checked to prevent
|
|
// recursing.
|
|
const Value *SavedLHS;
|
|
const Value *SavedRHS;
|
|
|
|
/// The current mapping from old local values to new local values.
|
|
DenseMap<const Value *, const Value *> Values;
|
|
|
|
/// The current mapping from old blocks to new blocks.
|
|
DenseMap<const BasicBlock *, const BasicBlock *> Blocks;
|
|
|
|
DenseSet<std::pair<const Value *, const Value *>> TentativeValues;
|
|
|
|
unsigned getUnprocPredCount(const BasicBlock *Block) const {
|
|
unsigned Count = 0;
|
|
for (const_pred_iterator I = pred_begin(Block), E = pred_end(Block); I != E;
|
|
++I)
|
|
if (!Blocks.count(*I)) Count++;
|
|
return Count;
|
|
}
|
|
|
|
typedef std::pair<const BasicBlock *, const BasicBlock *> BlockPair;
|
|
|
|
/// A type which sorts a priority queue by the number of unprocessed
|
|
/// predecessor blocks it has remaining.
|
|
///
|
|
/// This is actually really expensive to calculate.
|
|
struct QueueSorter {
|
|
const FunctionDifferenceEngine &fde;
|
|
explicit QueueSorter(const FunctionDifferenceEngine &fde) : fde(fde) {}
|
|
|
|
bool operator()(BlockPair &Old, BlockPair &New) {
|
|
return fde.getUnprocPredCount(Old.first)
|
|
< fde.getUnprocPredCount(New.first);
|
|
}
|
|
};
|
|
|
|
/// A queue of unified blocks to process.
|
|
PriorityQueue<BlockPair, QueueSorter, 20> Queue;
|
|
|
|
/// Try to unify the given two blocks. Enqueues them for processing
|
|
/// if they haven't already been processed.
|
|
///
|
|
/// Returns true if there was a problem unifying them.
|
|
bool tryUnify(const BasicBlock *L, const BasicBlock *R) {
|
|
const BasicBlock *&Ref = Blocks[L];
|
|
|
|
if (Ref) {
|
|
if (Ref == R) return false;
|
|
|
|
Engine.logf("successor %l cannot be equivalent to %r; "
|
|
"it's already equivalent to %r")
|
|
<< L << R << Ref;
|
|
return true;
|
|
}
|
|
|
|
Ref = R;
|
|
Queue.insert(BlockPair(L, R));
|
|
return false;
|
|
}
|
|
|
|
/// Unifies two instructions, given that they're known not to have
|
|
/// structural differences.
|
|
void unify(const Instruction *L, const Instruction *R) {
|
|
DifferenceEngine::Context C(Engine, L, R);
|
|
|
|
bool Result = diff(L, R, true, true);
|
|
assert(!Result && "structural differences second time around?");
|
|
(void) Result;
|
|
if (!L->use_empty())
|
|
Values[L] = R;
|
|
}
|
|
|
|
void processQueue() {
|
|
while (!Queue.empty()) {
|
|
BlockPair Pair = Queue.remove_min();
|
|
diff(Pair.first, Pair.second);
|
|
}
|
|
}
|
|
|
|
void diff(const BasicBlock *L, const BasicBlock *R) {
|
|
DifferenceEngine::Context C(Engine, L, R);
|
|
|
|
BasicBlock::const_iterator LI = L->begin(), LE = L->end();
|
|
BasicBlock::const_iterator RI = R->begin();
|
|
|
|
do {
|
|
assert(LI != LE && RI != R->end());
|
|
const Instruction *LeftI = &*LI, *RightI = &*RI;
|
|
|
|
// If the instructions differ, start the more sophisticated diff
|
|
// algorithm at the start of the block.
|
|
if (diff(LeftI, RightI, false, false)) {
|
|
TentativeValues.clear();
|
|
return runBlockDiff(L->begin(), R->begin());
|
|
}
|
|
|
|
// Otherwise, tentatively unify them.
|
|
if (!LeftI->use_empty())
|
|
TentativeValues.insert(std::make_pair(LeftI, RightI));
|
|
|
|
++LI;
|
|
++RI;
|
|
} while (LI != LE); // This is sufficient: we can't get equality of
|
|
// terminators if there are residual instructions.
|
|
|
|
// Unify everything in the block, non-tentatively this time.
|
|
TentativeValues.clear();
|
|
for (LI = L->begin(), RI = R->begin(); LI != LE; ++LI, ++RI)
|
|
unify(&*LI, &*RI);
|
|
}
|
|
|
|
bool matchForBlockDiff(const Instruction *L, const Instruction *R);
|
|
void runBlockDiff(BasicBlock::const_iterator LI,
|
|
BasicBlock::const_iterator RI);
|
|
|
|
bool diffCallSites(const CallBase &L, const CallBase &R, bool Complain) {
|
|
// FIXME: call attributes
|
|
if (!equivalentAsOperands(L.getCalledOperand(), R.getCalledOperand())) {
|
|
if (Complain) Engine.log("called functions differ");
|
|
return true;
|
|
}
|
|
if (L.arg_size() != R.arg_size()) {
|
|
if (Complain) Engine.log("argument counts differ");
|
|
return true;
|
|
}
|
|
for (unsigned I = 0, E = L.arg_size(); I != E; ++I)
|
|
if (!equivalentAsOperands(L.getArgOperand(I), R.getArgOperand(I))) {
|
|
if (Complain)
|
|
Engine.logf("arguments %l and %r differ")
|
|
<< L.getArgOperand(I) << R.getArgOperand(I);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool diff(const Instruction *L, const Instruction *R, bool Complain,
|
|
bool TryUnify) {
|
|
// FIXME: metadata (if Complain is set)
|
|
|
|
// Different opcodes always imply different operations.
|
|
if (L->getOpcode() != R->getOpcode()) {
|
|
if (Complain) Engine.log("different instruction types");
|
|
return true;
|
|
}
|
|
|
|
if (isa<CmpInst>(L)) {
|
|
if (cast<CmpInst>(L)->getPredicate()
|
|
!= cast<CmpInst>(R)->getPredicate()) {
|
|
if (Complain) Engine.log("different predicates");
|
|
return true;
|
|
}
|
|
} else if (isa<CallInst>(L)) {
|
|
return diffCallSites(cast<CallInst>(*L), cast<CallInst>(*R), Complain);
|
|
} else if (isa<PHINode>(L)) {
|
|
// FIXME: implement.
|
|
|
|
// This is really weird; type uniquing is broken?
|
|
if (L->getType() != R->getType()) {
|
|
if (!L->getType()->isPointerTy() || !R->getType()->isPointerTy()) {
|
|
if (Complain) Engine.log("different phi types");
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
|
|
// Terminators.
|
|
} else if (isa<InvokeInst>(L)) {
|
|
const InvokeInst &LI = cast<InvokeInst>(*L);
|
|
const InvokeInst &RI = cast<InvokeInst>(*R);
|
|
if (diffCallSites(LI, RI, Complain))
|
|
return true;
|
|
|
|
if (TryUnify) {
|
|
tryUnify(LI.getNormalDest(), RI.getNormalDest());
|
|
tryUnify(LI.getUnwindDest(), RI.getUnwindDest());
|
|
}
|
|
return false;
|
|
|
|
} else if (isa<CallBrInst>(L)) {
|
|
const CallBrInst &LI = cast<CallBrInst>(*L);
|
|
const CallBrInst &RI = cast<CallBrInst>(*R);
|
|
if (LI.getNumIndirectDests() != RI.getNumIndirectDests()) {
|
|
if (Complain)
|
|
Engine.log("callbr # of indirect destinations differ");
|
|
return true;
|
|
}
|
|
|
|
// Perform the "try unify" step so that we can equate the indirect
|
|
// destinations before checking the call site.
|
|
for (unsigned I = 0; I < LI.getNumIndirectDests(); I++)
|
|
tryUnify(LI.getIndirectDest(I), RI.getIndirectDest(I));
|
|
|
|
if (diffCallSites(LI, RI, Complain))
|
|
return true;
|
|
|
|
if (TryUnify)
|
|
tryUnify(LI.getDefaultDest(), RI.getDefaultDest());
|
|
return false;
|
|
|
|
} else if (isa<BranchInst>(L)) {
|
|
const BranchInst *LI = cast<BranchInst>(L);
|
|
const BranchInst *RI = cast<BranchInst>(R);
|
|
if (LI->isConditional() != RI->isConditional()) {
|
|
if (Complain) Engine.log("branch conditionality differs");
|
|
return true;
|
|
}
|
|
|
|
if (LI->isConditional()) {
|
|
if (!equivalentAsOperands(LI->getCondition(), RI->getCondition())) {
|
|
if (Complain) Engine.log("branch conditions differ");
|
|
return true;
|
|
}
|
|
if (TryUnify) tryUnify(LI->getSuccessor(1), RI->getSuccessor(1));
|
|
}
|
|
if (TryUnify) tryUnify(LI->getSuccessor(0), RI->getSuccessor(0));
|
|
return false;
|
|
|
|
} else if (isa<IndirectBrInst>(L)) {
|
|
const IndirectBrInst *LI = cast<IndirectBrInst>(L);
|
|
const IndirectBrInst *RI = cast<IndirectBrInst>(R);
|
|
if (LI->getNumDestinations() != RI->getNumDestinations()) {
|
|
if (Complain) Engine.log("indirectbr # of destinations differ");
|
|
return true;
|
|
}
|
|
|
|
if (!equivalentAsOperands(LI->getAddress(), RI->getAddress())) {
|
|
if (Complain) Engine.log("indirectbr addresses differ");
|
|
return true;
|
|
}
|
|
|
|
if (TryUnify) {
|
|
for (unsigned i = 0; i < LI->getNumDestinations(); i++) {
|
|
tryUnify(LI->getDestination(i), RI->getDestination(i));
|
|
}
|
|
}
|
|
return false;
|
|
|
|
} else if (isa<SwitchInst>(L)) {
|
|
const SwitchInst *LI = cast<SwitchInst>(L);
|
|
const SwitchInst *RI = cast<SwitchInst>(R);
|
|
if (!equivalentAsOperands(LI->getCondition(), RI->getCondition())) {
|
|
if (Complain) Engine.log("switch conditions differ");
|
|
return true;
|
|
}
|
|
if (TryUnify) tryUnify(LI->getDefaultDest(), RI->getDefaultDest());
|
|
|
|
bool Difference = false;
|
|
|
|
DenseMap<const ConstantInt *, const BasicBlock *> LCases;
|
|
for (auto Case : LI->cases())
|
|
LCases[Case.getCaseValue()] = Case.getCaseSuccessor();
|
|
|
|
for (auto Case : RI->cases()) {
|
|
const ConstantInt *CaseValue = Case.getCaseValue();
|
|
const BasicBlock *LCase = LCases[CaseValue];
|
|
if (LCase) {
|
|
if (TryUnify)
|
|
tryUnify(LCase, Case.getCaseSuccessor());
|
|
LCases.erase(CaseValue);
|
|
} else if (Complain || !Difference) {
|
|
if (Complain)
|
|
Engine.logf("right switch has extra case %r") << CaseValue;
|
|
Difference = true;
|
|
}
|
|
}
|
|
if (!Difference)
|
|
for (DenseMap<const ConstantInt *, const BasicBlock *>::iterator
|
|
I = LCases.begin(),
|
|
E = LCases.end();
|
|
I != E; ++I) {
|
|
if (Complain)
|
|
Engine.logf("left switch has extra case %l") << I->first;
|
|
Difference = true;
|
|
}
|
|
return Difference;
|
|
} else if (isa<UnreachableInst>(L)) {
|
|
return false;
|
|
}
|
|
|
|
if (L->getNumOperands() != R->getNumOperands()) {
|
|
if (Complain) Engine.log("instructions have different operand counts");
|
|
return true;
|
|
}
|
|
|
|
for (unsigned I = 0, E = L->getNumOperands(); I != E; ++I) {
|
|
Value *LO = L->getOperand(I), *RO = R->getOperand(I);
|
|
if (!equivalentAsOperands(LO, RO)) {
|
|
if (Complain) Engine.logf("operands %l and %r differ") << LO << RO;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
public:
|
|
bool equivalentAsOperands(const Constant *L, const Constant *R) {
|
|
// Use equality as a preliminary filter.
|
|
if (L == R)
|
|
return true;
|
|
|
|
if (L->getValueID() != R->getValueID())
|
|
return false;
|
|
|
|
// Ask the engine about global values.
|
|
if (isa<GlobalValue>(L))
|
|
return Engine.equivalentAsOperands(cast<GlobalValue>(L),
|
|
cast<GlobalValue>(R));
|
|
|
|
// Compare constant expressions structurally.
|
|
if (isa<ConstantExpr>(L))
|
|
return equivalentAsOperands(cast<ConstantExpr>(L),
|
|
cast<ConstantExpr>(R));
|
|
|
|
// Constants of the "same type" don't always actually have the same
|
|
// type; I don't know why. Just white-list them.
|
|
if (isa<ConstantPointerNull>(L) || isa<UndefValue>(L) || isa<ConstantAggregateZero>(L))
|
|
return true;
|
|
|
|
// Block addresses only match if we've already encountered the
|
|
// block. FIXME: tentative matches?
|
|
if (isa<BlockAddress>(L))
|
|
return Blocks[cast<BlockAddress>(L)->getBasicBlock()]
|
|
== cast<BlockAddress>(R)->getBasicBlock();
|
|
|
|
// If L and R are ConstantVectors, compare each element
|
|
if (isa<ConstantVector>(L)) {
|
|
const ConstantVector *CVL = cast<ConstantVector>(L);
|
|
const ConstantVector *CVR = cast<ConstantVector>(R);
|
|
if (CVL->getType()->getNumElements() != CVR->getType()->getNumElements())
|
|
return false;
|
|
for (unsigned i = 0; i < CVL->getType()->getNumElements(); i++) {
|
|
if (!equivalentAsOperands(CVL->getOperand(i), CVR->getOperand(i)))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// If L and R are ConstantArrays, compare the element count and types.
|
|
if (isa<ConstantArray>(L)) {
|
|
const ConstantArray *CAL = cast<ConstantArray>(L);
|
|
const ConstantArray *CAR = cast<ConstantArray>(R);
|
|
// Sometimes a type may be equivalent, but not uniquified---e.g. it may
|
|
// contain a GEP instruction. Do a deeper comparison of the types.
|
|
if (CAL->getType()->getNumElements() != CAR->getType()->getNumElements())
|
|
return false;
|
|
|
|
for (unsigned I = 0; I < CAL->getType()->getNumElements(); ++I) {
|
|
if (!equivalentAsOperands(CAL->getAggregateElement(I),
|
|
CAR->getAggregateElement(I)))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// If L and R are ConstantStructs, compare each field and type.
|
|
if (isa<ConstantStruct>(L)) {
|
|
const ConstantStruct *CSL = cast<ConstantStruct>(L);
|
|
const ConstantStruct *CSR = cast<ConstantStruct>(R);
|
|
|
|
const StructType *LTy = cast<StructType>(CSL->getType());
|
|
const StructType *RTy = cast<StructType>(CSR->getType());
|
|
|
|
// The StructTypes should have the same attributes. Don't use
|
|
// isLayoutIdentical(), because that just checks the element pointers,
|
|
// which may not work here.
|
|
if (LTy->getNumElements() != RTy->getNumElements() ||
|
|
LTy->isPacked() != RTy->isPacked())
|
|
return false;
|
|
|
|
for (unsigned I = 0; I < LTy->getNumElements(); I++) {
|
|
const Value *LAgg = CSL->getAggregateElement(I);
|
|
const Value *RAgg = CSR->getAggregateElement(I);
|
|
|
|
if (!equivalentAsOperands(LAgg, RAgg)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool equivalentAsOperands(const ConstantExpr *L, const ConstantExpr *R) {
|
|
if (L == R)
|
|
return true;
|
|
|
|
if (L->getOpcode() != R->getOpcode())
|
|
return false;
|
|
|
|
switch (L->getOpcode()) {
|
|
case Instruction::ICmp:
|
|
case Instruction::FCmp:
|
|
if (L->getPredicate() != R->getPredicate())
|
|
return false;
|
|
break;
|
|
|
|
case Instruction::GetElementPtr:
|
|
// FIXME: inbounds?
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (L->getNumOperands() != R->getNumOperands())
|
|
return false;
|
|
|
|
for (unsigned I = 0, E = L->getNumOperands(); I != E; ++I) {
|
|
const auto *LOp = L->getOperand(I);
|
|
const auto *ROp = R->getOperand(I);
|
|
|
|
if (LOp == SavedLHS || ROp == SavedRHS) {
|
|
if (LOp != SavedLHS || ROp != SavedRHS)
|
|
// If the left and right operands aren't both re-analyzing the
|
|
// variable, then the initialiers don't match, so report "false".
|
|
// Otherwise, we skip these operands..
|
|
return false;
|
|
|
|
continue;
|
|
}
|
|
|
|
if (!equivalentAsOperands(LOp, ROp))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool equivalentAsOperands(const Value *L, const Value *R) {
|
|
// Fall out if the values have different kind.
|
|
// This possibly shouldn't take priority over oracles.
|
|
if (L->getValueID() != R->getValueID())
|
|
return false;
|
|
|
|
// Value subtypes: Argument, Constant, Instruction, BasicBlock,
|
|
// InlineAsm, MDNode, MDString, PseudoSourceValue
|
|
|
|
if (isa<Constant>(L))
|
|
return equivalentAsOperands(cast<Constant>(L), cast<Constant>(R));
|
|
|
|
if (isa<Instruction>(L))
|
|
return Values[L] == R || TentativeValues.count(std::make_pair(L, R));
|
|
|
|
if (isa<Argument>(L))
|
|
return Values[L] == R;
|
|
|
|
if (isa<BasicBlock>(L))
|
|
return Blocks[cast<BasicBlock>(L)] != R;
|
|
|
|
// Pretend everything else is identical.
|
|
return true;
|
|
}
|
|
|
|
// Avoid a gcc warning about accessing 'this' in an initializer.
|
|
FunctionDifferenceEngine *this_() { return this; }
|
|
|
|
public:
|
|
FunctionDifferenceEngine(DifferenceEngine &Engine,
|
|
const Value *SavedLHS = nullptr,
|
|
const Value *SavedRHS = nullptr)
|
|
: Engine(Engine), SavedLHS(SavedLHS), SavedRHS(SavedRHS),
|
|
Queue(QueueSorter(*this_())) {}
|
|
|
|
void diff(const Function *L, const Function *R) {
|
|
if (L->arg_size() != R->arg_size())
|
|
Engine.log("different argument counts");
|
|
|
|
// Map the arguments.
|
|
for (Function::const_arg_iterator LI = L->arg_begin(), LE = L->arg_end(),
|
|
RI = R->arg_begin(), RE = R->arg_end();
|
|
LI != LE && RI != RE; ++LI, ++RI)
|
|
Values[&*LI] = &*RI;
|
|
|
|
tryUnify(&*L->begin(), &*R->begin());
|
|
processQueue();
|
|
}
|
|
};
|
|
|
|
struct DiffEntry {
|
|
DiffEntry() : Cost(0) {}
|
|
|
|
unsigned Cost;
|
|
llvm::SmallVector<char, 8> Path; // actually of DifferenceEngine::DiffChange
|
|
};
|
|
|
|
bool FunctionDifferenceEngine::matchForBlockDiff(const Instruction *L,
|
|
const Instruction *R) {
|
|
return !diff(L, R, false, false);
|
|
}
|
|
|
|
void FunctionDifferenceEngine::runBlockDiff(BasicBlock::const_iterator LStart,
|
|
BasicBlock::const_iterator RStart) {
|
|
BasicBlock::const_iterator LE = LStart->getParent()->end();
|
|
BasicBlock::const_iterator RE = RStart->getParent()->end();
|
|
|
|
unsigned NL = std::distance(LStart, LE);
|
|
|
|
SmallVector<DiffEntry, 20> Paths1(NL+1);
|
|
SmallVector<DiffEntry, 20> Paths2(NL+1);
|
|
|
|
DiffEntry *Cur = Paths1.data();
|
|
DiffEntry *Next = Paths2.data();
|
|
|
|
const unsigned LeftCost = 2;
|
|
const unsigned RightCost = 2;
|
|
const unsigned MatchCost = 0;
|
|
|
|
assert(TentativeValues.empty());
|
|
|
|
// Initialize the first column.
|
|
for (unsigned I = 0; I != NL+1; ++I) {
|
|
Cur[I].Cost = I * LeftCost;
|
|
for (unsigned J = 0; J != I; ++J)
|
|
Cur[I].Path.push_back(DC_left);
|
|
}
|
|
|
|
for (BasicBlock::const_iterator RI = RStart; RI != RE; ++RI) {
|
|
// Initialize the first row.
|
|
Next[0] = Cur[0];
|
|
Next[0].Cost += RightCost;
|
|
Next[0].Path.push_back(DC_right);
|
|
|
|
unsigned Index = 1;
|
|
for (BasicBlock::const_iterator LI = LStart; LI != LE; ++LI, ++Index) {
|
|
if (matchForBlockDiff(&*LI, &*RI)) {
|
|
Next[Index] = Cur[Index-1];
|
|
Next[Index].Cost += MatchCost;
|
|
Next[Index].Path.push_back(DC_match);
|
|
TentativeValues.insert(std::make_pair(&*LI, &*RI));
|
|
} else if (Next[Index-1].Cost <= Cur[Index].Cost) {
|
|
Next[Index] = Next[Index-1];
|
|
Next[Index].Cost += LeftCost;
|
|
Next[Index].Path.push_back(DC_left);
|
|
} else {
|
|
Next[Index] = Cur[Index];
|
|
Next[Index].Cost += RightCost;
|
|
Next[Index].Path.push_back(DC_right);
|
|
}
|
|
}
|
|
|
|
std::swap(Cur, Next);
|
|
}
|
|
|
|
// We don't need the tentative values anymore; everything from here
|
|
// on out should be non-tentative.
|
|
TentativeValues.clear();
|
|
|
|
SmallVectorImpl<char> &Path = Cur[NL].Path;
|
|
BasicBlock::const_iterator LI = LStart, RI = RStart;
|
|
|
|
DiffLogBuilder Diff(Engine.getConsumer());
|
|
|
|
// Drop trailing matches.
|
|
while (Path.size() && Path.back() == DC_match)
|
|
Path.pop_back();
|
|
|
|
// Skip leading matches.
|
|
SmallVectorImpl<char>::iterator
|
|
PI = Path.begin(), PE = Path.end();
|
|
while (PI != PE && *PI == DC_match) {
|
|
unify(&*LI, &*RI);
|
|
++PI;
|
|
++LI;
|
|
++RI;
|
|
}
|
|
|
|
for (; PI != PE; ++PI) {
|
|
switch (static_cast<DiffChange>(*PI)) {
|
|
case DC_match:
|
|
assert(LI != LE && RI != RE);
|
|
{
|
|
const Instruction *L = &*LI, *R = &*RI;
|
|
unify(L, R);
|
|
Diff.addMatch(L, R);
|
|
}
|
|
++LI; ++RI;
|
|
break;
|
|
|
|
case DC_left:
|
|
assert(LI != LE);
|
|
Diff.addLeft(&*LI);
|
|
++LI;
|
|
break;
|
|
|
|
case DC_right:
|
|
assert(RI != RE);
|
|
Diff.addRight(&*RI);
|
|
++RI;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Finishing unifying and complaining about the tails of the block,
|
|
// which should be matches all the way through.
|
|
while (LI != LE) {
|
|
assert(RI != RE);
|
|
unify(&*LI, &*RI);
|
|
++LI;
|
|
++RI;
|
|
}
|
|
|
|
// If the terminators have different kinds, but one is an invoke and the
|
|
// other is an unconditional branch immediately following a call, unify
|
|
// the results and the destinations.
|
|
const Instruction *LTerm = LStart->getParent()->getTerminator();
|
|
const Instruction *RTerm = RStart->getParent()->getTerminator();
|
|
if (isa<BranchInst>(LTerm) && isa<InvokeInst>(RTerm)) {
|
|
if (cast<BranchInst>(LTerm)->isConditional()) return;
|
|
BasicBlock::const_iterator I = LTerm->getIterator();
|
|
if (I == LStart->getParent()->begin()) return;
|
|
--I;
|
|
if (!isa<CallInst>(*I)) return;
|
|
const CallInst *LCall = cast<CallInst>(&*I);
|
|
const InvokeInst *RInvoke = cast<InvokeInst>(RTerm);
|
|
if (!equivalentAsOperands(LCall->getCalledOperand(),
|
|
RInvoke->getCalledOperand()))
|
|
return;
|
|
if (!LCall->use_empty())
|
|
Values[LCall] = RInvoke;
|
|
tryUnify(LTerm->getSuccessor(0), RInvoke->getNormalDest());
|
|
} else if (isa<InvokeInst>(LTerm) && isa<BranchInst>(RTerm)) {
|
|
if (cast<BranchInst>(RTerm)->isConditional()) return;
|
|
BasicBlock::const_iterator I = RTerm->getIterator();
|
|
if (I == RStart->getParent()->begin()) return;
|
|
--I;
|
|
if (!isa<CallInst>(*I)) return;
|
|
const CallInst *RCall = cast<CallInst>(I);
|
|
const InvokeInst *LInvoke = cast<InvokeInst>(LTerm);
|
|
if (!equivalentAsOperands(LInvoke->getCalledOperand(),
|
|
RCall->getCalledOperand()))
|
|
return;
|
|
if (!LInvoke->use_empty())
|
|
Values[LInvoke] = RCall;
|
|
tryUnify(LInvoke->getNormalDest(), RTerm->getSuccessor(0));
|
|
}
|
|
}
|
|
}
|
|
|
|
void DifferenceEngine::Oracle::anchor() { }
|
|
|
|
void DifferenceEngine::diff(const Function *L, const Function *R) {
|
|
Context C(*this, L, R);
|
|
|
|
// FIXME: types
|
|
// FIXME: attributes and CC
|
|
// FIXME: parameter attributes
|
|
|
|
// If both are declarations, we're done.
|
|
if (L->empty() && R->empty())
|
|
return;
|
|
else if (L->empty())
|
|
log("left function is declaration, right function is definition");
|
|
else if (R->empty())
|
|
log("right function is declaration, left function is definition");
|
|
else
|
|
FunctionDifferenceEngine(*this).diff(L, R);
|
|
}
|
|
|
|
void DifferenceEngine::diff(const Module *L, const Module *R) {
|
|
StringSet<> LNames;
|
|
SmallVector<std::pair<const Function *, const Function *>, 20> Queue;
|
|
|
|
unsigned LeftAnonCount = 0;
|
|
unsigned RightAnonCount = 0;
|
|
|
|
for (Module::const_iterator I = L->begin(), E = L->end(); I != E; ++I) {
|
|
const Function *LFn = &*I;
|
|
StringRef Name = LFn->getName();
|
|
if (Name.empty()) {
|
|
++LeftAnonCount;
|
|
continue;
|
|
}
|
|
|
|
LNames.insert(Name);
|
|
|
|
if (Function *RFn = R->getFunction(LFn->getName()))
|
|
Queue.push_back(std::make_pair(LFn, RFn));
|
|
else
|
|
logf("function %l exists only in left module") << LFn;
|
|
}
|
|
|
|
for (Module::const_iterator I = R->begin(), E = R->end(); I != E; ++I) {
|
|
const Function *RFn = &*I;
|
|
StringRef Name = RFn->getName();
|
|
if (Name.empty()) {
|
|
++RightAnonCount;
|
|
continue;
|
|
}
|
|
|
|
if (!LNames.count(Name))
|
|
logf("function %r exists only in right module") << RFn;
|
|
}
|
|
|
|
if (LeftAnonCount != 0 || RightAnonCount != 0) {
|
|
SmallString<32> Tmp;
|
|
logf(("not comparing " + Twine(LeftAnonCount) +
|
|
" anonymous functions in the left module and " +
|
|
Twine(RightAnonCount) + " in the right module")
|
|
.toStringRef(Tmp));
|
|
}
|
|
|
|
for (SmallVectorImpl<std::pair<const Function *, const Function *>>::iterator
|
|
I = Queue.begin(),
|
|
E = Queue.end();
|
|
I != E; ++I)
|
|
diff(I->first, I->second);
|
|
}
|
|
|
|
bool DifferenceEngine::equivalentAsOperands(const GlobalValue *L,
|
|
const GlobalValue *R) {
|
|
if (globalValueOracle) return (*globalValueOracle)(L, R);
|
|
|
|
if (isa<GlobalVariable>(L) && isa<GlobalVariable>(R)) {
|
|
const GlobalVariable *GVL = cast<GlobalVariable>(L);
|
|
const GlobalVariable *GVR = cast<GlobalVariable>(R);
|
|
if (GVL->hasLocalLinkage() && GVL->hasUniqueInitializer() &&
|
|
GVR->hasLocalLinkage() && GVR->hasUniqueInitializer())
|
|
return FunctionDifferenceEngine(*this, GVL, GVR)
|
|
.equivalentAsOperands(GVL->getInitializer(), GVR->getInitializer());
|
|
}
|
|
|
|
return L->getName() == R->getName();
|
|
}
|