1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 03:02:36 +01:00
llvm-mirror/tools/obj2yaml/elf2yaml.cpp
Alexander Yermolovich d12ae1eaf8 [LLD][LLVM] CG Graph profile using relocations
Currently when .llvm.call-graph-profile is created by llvm it explicitly encodes the symbol indices. This section is basically a black box for post processing tools. For example, if we run strip -s on the object files the symbol table changes, but indices in that section do not. In non-visible behavior indices point to wrong symbols. The visible behavior indices point outside of Symbol table: "invalid symbol index".

This patch changes the format by using R_*_NONE relocations to indicate the from/to symbols. The Frequency (Weight) will still be in the .llvm.call-graph-profile, but symbol information will be in relocation section. In LLD information from both sections is used to reconstruct call graph profile. Relocations themselves will never be applied.

With this approach post processing tools that handle relocations correctly work for this section also. Tools can add/remove symbols and as long as they handle relocation sections with this approach information stays correct.

Doing a quick experiment with clang-13.
The size went up from 107KB to 322KB, aggregate of all the input sections. Size of clang-13 binary is ~118MB. For users of -fprofile-use/-fprofile-sample-use the size of object files will go up slightly, it will not impact final binary size.

Reviewed By: jhenderson, MaskRay

Differential Revision: https://reviews.llvm.org/D104080
2021-06-24 09:09:33 -07:00

1596 lines
54 KiB
C++

//===------ utils/elf2yaml.cpp - obj2yaml conversion tool -------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "obj2yaml.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Twine.h"
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/ObjectYAML/DWARFYAML.h"
#include "llvm/ObjectYAML/ELFYAML.h"
#include "llvm/Support/DataExtractor.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/YAMLTraits.h"
using namespace llvm;
namespace {
template <class ELFT>
class ELFDumper {
LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
ArrayRef<Elf_Shdr> Sections;
ArrayRef<Elf_Sym> SymTable;
DenseMap<StringRef, uint32_t> UsedSectionNames;
std::vector<std::string> SectionNames;
Optional<uint32_t> ShStrTabIndex;
DenseMap<StringRef, uint32_t> UsedSymbolNames;
std::vector<std::string> SymbolNames;
BumpPtrAllocator StringAllocator;
Expected<StringRef> getUniquedSectionName(const Elf_Shdr &Sec);
Expected<StringRef> getUniquedSymbolName(const Elf_Sym *Sym,
StringRef StrTable,
const Elf_Shdr *SymTab);
Expected<StringRef> getSymbolName(uint32_t SymtabNdx, uint32_t SymbolNdx);
const object::ELFFile<ELFT> &Obj;
std::unique_ptr<DWARFContext> DWARFCtx;
DenseMap<const Elf_Shdr *, ArrayRef<Elf_Word>> ShndxTables;
Expected<std::vector<ELFYAML::ProgramHeader>>
dumpProgramHeaders(ArrayRef<std::unique_ptr<ELFYAML::Chunk>> Sections);
Optional<DWARFYAML::Data>
dumpDWARFSections(std::vector<std::unique_ptr<ELFYAML::Chunk>> &Sections);
Error dumpSymbols(const Elf_Shdr *Symtab,
Optional<std::vector<ELFYAML::Symbol>> &Symbols);
Error dumpSymbol(const Elf_Sym *Sym, const Elf_Shdr *SymTab,
StringRef StrTable, ELFYAML::Symbol &S);
Expected<std::vector<std::unique_ptr<ELFYAML::Chunk>>> dumpSections();
Error dumpCommonSection(const Elf_Shdr *Shdr, ELFYAML::Section &S);
Error dumpCommonRelocationSection(const Elf_Shdr *Shdr,
ELFYAML::RelocationSection &S);
template <class RelT>
Error dumpRelocation(const RelT *Rel, const Elf_Shdr *SymTab,
ELFYAML::Relocation &R);
Expected<ELFYAML::AddrsigSection *> dumpAddrsigSection(const Elf_Shdr *Shdr);
Expected<ELFYAML::LinkerOptionsSection *>
dumpLinkerOptionsSection(const Elf_Shdr *Shdr);
Expected<ELFYAML::DependentLibrariesSection *>
dumpDependentLibrariesSection(const Elf_Shdr *Shdr);
Expected<ELFYAML::CallGraphProfileSection *>
dumpCallGraphProfileSection(const Elf_Shdr *Shdr);
Expected<ELFYAML::DynamicSection *> dumpDynamicSection(const Elf_Shdr *Shdr);
Expected<ELFYAML::RelocationSection *> dumpRelocSection(const Elf_Shdr *Shdr);
Expected<ELFYAML::RelrSection *> dumpRelrSection(const Elf_Shdr *Shdr);
Expected<ELFYAML::RawContentSection *>
dumpContentSection(const Elf_Shdr *Shdr);
Expected<ELFYAML::SymtabShndxSection *>
dumpSymtabShndxSection(const Elf_Shdr *Shdr);
Expected<ELFYAML::NoBitsSection *> dumpNoBitsSection(const Elf_Shdr *Shdr);
Expected<ELFYAML::HashSection *> dumpHashSection(const Elf_Shdr *Shdr);
Expected<ELFYAML::NoteSection *> dumpNoteSection(const Elf_Shdr *Shdr);
Expected<ELFYAML::GnuHashSection *> dumpGnuHashSection(const Elf_Shdr *Shdr);
Expected<ELFYAML::VerdefSection *> dumpVerdefSection(const Elf_Shdr *Shdr);
Expected<ELFYAML::SymverSection *> dumpSymverSection(const Elf_Shdr *Shdr);
Expected<ELFYAML::VerneedSection *> dumpVerneedSection(const Elf_Shdr *Shdr);
Expected<ELFYAML::GroupSection *> dumpGroupSection(const Elf_Shdr *Shdr);
Expected<ELFYAML::ARMIndexTableSection *>
dumpARMIndexTableSection(const Elf_Shdr *Shdr);
Expected<ELFYAML::MipsABIFlags *> dumpMipsABIFlags(const Elf_Shdr *Shdr);
Expected<ELFYAML::StackSizesSection *>
dumpStackSizesSection(const Elf_Shdr *Shdr);
Expected<ELFYAML::BBAddrMapSection *>
dumpBBAddrMapSection(const Elf_Shdr *Shdr);
Expected<ELFYAML::RawContentSection *>
dumpPlaceholderSection(const Elf_Shdr *Shdr);
bool shouldPrintSection(const ELFYAML::Section &S, const Elf_Shdr &SHdr,
Optional<DWARFYAML::Data> DWARF);
public:
ELFDumper(const object::ELFFile<ELFT> &O, std::unique_ptr<DWARFContext> DCtx);
Expected<ELFYAML::Object *> dump();
};
}
template <class ELFT>
ELFDumper<ELFT>::ELFDumper(const object::ELFFile<ELFT> &O,
std::unique_ptr<DWARFContext> DCtx)
: Obj(O), DWARFCtx(std::move(DCtx)) {}
template <class ELFT>
Expected<StringRef>
ELFDumper<ELFT>::getUniquedSectionName(const Elf_Shdr &Sec) {
unsigned SecIndex = &Sec - &Sections[0];
if (!SectionNames[SecIndex].empty())
return SectionNames[SecIndex];
auto NameOrErr = Obj.getSectionName(Sec);
if (!NameOrErr)
return NameOrErr;
StringRef Name = *NameOrErr;
// In some specific cases we might have more than one section without a
// name (sh_name == 0). It normally doesn't happen, but when we have this case
// it doesn't make sense to uniquify their names and add noise to the output.
if (Name.empty())
return "";
std::string &Ret = SectionNames[SecIndex];
auto It = UsedSectionNames.insert({Name, 0});
if (!It.second)
Ret = ELFYAML::appendUniqueSuffix(Name, Twine(++It.first->second));
else
Ret = std::string(Name);
return Ret;
}
template <class ELFT>
Expected<StringRef>
ELFDumper<ELFT>::getUniquedSymbolName(const Elf_Sym *Sym, StringRef StrTable,
const Elf_Shdr *SymTab) {
Expected<StringRef> SymbolNameOrErr = Sym->getName(StrTable);
if (!SymbolNameOrErr)
return SymbolNameOrErr;
StringRef Name = *SymbolNameOrErr;
if (Name.empty() && Sym->getType() == ELF::STT_SECTION) {
Expected<const Elf_Shdr *> ShdrOrErr =
Obj.getSection(*Sym, SymTab, ShndxTables.lookup(SymTab));
if (!ShdrOrErr)
return ShdrOrErr.takeError();
// The null section has no name.
return (*ShdrOrErr == nullptr) ? "" : getUniquedSectionName(**ShdrOrErr);
}
// Symbols in .symtab can have duplicate names. For example, it is a common
// situation for local symbols in a relocatable object. Here we assign unique
// suffixes for such symbols so that we can differentiate them.
if (SymTab->sh_type == ELF::SHT_SYMTAB) {
unsigned Index = Sym - SymTable.data();
if (!SymbolNames[Index].empty())
return SymbolNames[Index];
auto It = UsedSymbolNames.insert({Name, 0});
if (!It.second)
SymbolNames[Index] =
ELFYAML::appendUniqueSuffix(Name, Twine(++It.first->second));
else
SymbolNames[Index] = std::string(Name);
return SymbolNames[Index];
}
return Name;
}
template <class ELFT>
bool ELFDumper<ELFT>::shouldPrintSection(const ELFYAML::Section &S,
const Elf_Shdr &SHdr,
Optional<DWARFYAML::Data> DWARF) {
// We only print the SHT_NULL section at index 0 when it
// has at least one non-null field, because yaml2obj
// normally creates the zero section at index 0 implicitly.
if (S.Type == ELF::SHT_NULL && (&SHdr == &Sections[0])) {
const uint8_t *Begin = reinterpret_cast<const uint8_t *>(&SHdr);
const uint8_t *End = Begin + sizeof(Elf_Shdr);
return std::any_of(Begin, End, [](uint8_t V) { return V != 0; });
}
// Normally we use "DWARF:" to describe contents of DWARF sections. Sometimes
// the content of DWARF sections can be successfully parsed into the "DWARF:"
// entry but their section headers may have special flags, entry size, address
// alignment, etc. We will preserve the header for them under such
// circumstances.
StringRef SecName = S.Name.substr(1);
if (DWARF && DWARF->getNonEmptySectionNames().count(SecName)) {
if (const ELFYAML::RawContentSection *RawSec =
dyn_cast<const ELFYAML::RawContentSection>(&S)) {
if (RawSec->Type != ELF::SHT_PROGBITS || RawSec->Link || RawSec->Info ||
RawSec->AddressAlign != 1 || RawSec->Address || RawSec->EntSize)
return true;
ELFYAML::ELF_SHF ShFlags = RawSec->Flags.getValueOr(ELFYAML::ELF_SHF(0));
if (SecName == "debug_str")
return ShFlags != ELFYAML::ELF_SHF(ELF::SHF_MERGE | ELF::SHF_STRINGS);
return ShFlags != 0;
}
}
// Normally we use "Symbols:" and "DynamicSymbols:" to describe contents of
// symbol tables. We also build and emit corresponding string tables
// implicitly. But sometimes it is important to preserve positions and virtual
// addresses of allocatable sections, e.g. for creating program headers.
// Generally we are trying to reduce noise in the YAML output. Because
// of that we do not print non-allocatable versions of such sections and
// assume they are placed at the end.
// We also dump symbol tables when the Size field is set. It happens when they
// are empty, which should not normally happen.
if (S.Type == ELF::SHT_STRTAB || S.Type == ELF::SHT_SYMTAB ||
S.Type == ELF::SHT_DYNSYM) {
return S.Size || S.Flags.getValueOr(ELFYAML::ELF_SHF(0)) & ELF::SHF_ALLOC;
}
return true;
}
template <class ELFT>
static void dumpSectionOffsets(const typename ELFT::Ehdr &Header,
ArrayRef<ELFYAML::ProgramHeader> Phdrs,
std::vector<std::unique_ptr<ELFYAML::Chunk>> &V,
ArrayRef<typename ELFT::Shdr> S) {
if (V.empty())
return;
uint64_t ExpectedOffset;
if (Header.e_phoff > 0)
ExpectedOffset = Header.e_phoff + Header.e_phentsize * Header.e_phnum;
else
ExpectedOffset = sizeof(typename ELFT::Ehdr);
for (const std::unique_ptr<ELFYAML::Chunk> &C :
makeArrayRef(V).drop_front()) {
ELFYAML::Section &Sec = *cast<ELFYAML::Section>(C.get());
const typename ELFT::Shdr &SecHdr = S[Sec.OriginalSecNdx];
ExpectedOffset = alignTo(ExpectedOffset,
SecHdr.sh_addralign ? SecHdr.sh_addralign : 1uLL);
// We only set the "Offset" field when it can't be naturally derived
// from the offset and size of the previous section. This reduces
// the noise in the YAML output.
if (SecHdr.sh_offset != ExpectedOffset)
Sec.Offset = (yaml::Hex64)SecHdr.sh_offset;
if (Sec.Type == ELF::SHT_NOBITS &&
!ELFYAML::shouldAllocateFileSpace(Phdrs,
*cast<ELFYAML::NoBitsSection>(&Sec)))
ExpectedOffset = SecHdr.sh_offset;
else
ExpectedOffset = SecHdr.sh_offset + SecHdr.sh_size;
}
}
template <class ELFT> Expected<ELFYAML::Object *> ELFDumper<ELFT>::dump() {
auto Y = std::make_unique<ELFYAML::Object>();
// Dump header. We do not dump EPh* and ESh* fields. When not explicitly set,
// the values are set by yaml2obj automatically and there is no need to dump
// them here.
Y->Header.Class = ELFYAML::ELF_ELFCLASS(Obj.getHeader().getFileClass());
Y->Header.Data = ELFYAML::ELF_ELFDATA(Obj.getHeader().getDataEncoding());
Y->Header.OSABI = Obj.getHeader().e_ident[ELF::EI_OSABI];
Y->Header.ABIVersion = Obj.getHeader().e_ident[ELF::EI_ABIVERSION];
Y->Header.Type = Obj.getHeader().e_type;
if (Obj.getHeader().e_machine != 0)
Y->Header.Machine = ELFYAML::ELF_EM(Obj.getHeader().e_machine);
Y->Header.Flags = Obj.getHeader().e_flags;
Y->Header.Entry = Obj.getHeader().e_entry;
// Dump sections
auto SectionsOrErr = Obj.sections();
if (!SectionsOrErr)
return SectionsOrErr.takeError();
Sections = *SectionsOrErr;
SectionNames.resize(Sections.size());
if (Sections.size() > 0) {
ShStrTabIndex = Obj.getHeader().e_shstrndx;
if (*ShStrTabIndex == ELF::SHN_XINDEX)
ShStrTabIndex = Sections[0].sh_link;
// TODO: Set EShStrndx if the value doesn't represent a real section.
}
// Normally an object that does not have sections has e_shnum == 0.
// Also, e_shnum might be 0, when the the number of entries in the section
// header table is larger than or equal to SHN_LORESERVE (0xff00). In this
// case the real number of entries is held in the sh_size member of the
// initial entry. We have a section header table when `e_shoff` is not 0.
if (Obj.getHeader().e_shoff != 0 && Obj.getHeader().e_shnum == 0)
Y->Header.EShNum = 0;
// Dump symbols. We need to do this early because other sections might want
// to access the deduplicated symbol names that we also create here.
const Elf_Shdr *SymTab = nullptr;
const Elf_Shdr *DynSymTab = nullptr;
for (const Elf_Shdr &Sec : Sections) {
if (Sec.sh_type == ELF::SHT_SYMTAB) {
SymTab = &Sec;
} else if (Sec.sh_type == ELF::SHT_DYNSYM) {
DynSymTab = &Sec;
} else if (Sec.sh_type == ELF::SHT_SYMTAB_SHNDX) {
// We need to locate SHT_SYMTAB_SHNDX sections early, because they
// might be needed for dumping symbols.
if (Expected<ArrayRef<Elf_Word>> TableOrErr = Obj.getSHNDXTable(Sec)) {
// The `getSHNDXTable` calls the `getSection` internally when validates
// the symbol table section linked to the SHT_SYMTAB_SHNDX section.
const Elf_Shdr *LinkedSymTab = cantFail(Obj.getSection(Sec.sh_link));
if (!ShndxTables.insert({LinkedSymTab, *TableOrErr}).second)
return createStringError(
errc::invalid_argument,
"multiple SHT_SYMTAB_SHNDX sections are "
"linked to the same symbol table with index " +
Twine(Sec.sh_link));
} else {
return createStringError(errc::invalid_argument,
"unable to read extended section indexes: " +
toString(TableOrErr.takeError()));
}
}
}
if (SymTab)
if (Error E = dumpSymbols(SymTab, Y->Symbols))
return std::move(E);
if (DynSymTab)
if (Error E = dumpSymbols(DynSymTab, Y->DynamicSymbols))
return std::move(E);
// We dump all sections first. It is simple and allows us to verify that all
// sections are valid and also to generalize the code. But we are not going to
// keep all of them in the final output (see comments for
// 'shouldPrintSection()'). Undesired chunks will be removed later.
Expected<std::vector<std::unique_ptr<ELFYAML::Chunk>>> ChunksOrErr =
dumpSections();
if (!ChunksOrErr)
return ChunksOrErr.takeError();
std::vector<std::unique_ptr<ELFYAML::Chunk>> Chunks = std::move(*ChunksOrErr);
std::vector<ELFYAML::Section *> OriginalOrder;
if (!Chunks.empty())
for (const std::unique_ptr<ELFYAML::Chunk> &C :
makeArrayRef(Chunks).drop_front())
OriginalOrder.push_back(cast<ELFYAML::Section>(C.get()));
// Sometimes the order of sections in the section header table does not match
// their actual order. Here we sort sections by the file offset.
llvm::stable_sort(Chunks, [&](const std::unique_ptr<ELFYAML::Chunk> &A,
const std::unique_ptr<ELFYAML::Chunk> &B) {
return Sections[cast<ELFYAML::Section>(A.get())->OriginalSecNdx].sh_offset <
Sections[cast<ELFYAML::Section>(B.get())->OriginalSecNdx].sh_offset;
});
// Dump program headers.
Expected<std::vector<ELFYAML::ProgramHeader>> PhdrsOrErr =
dumpProgramHeaders(Chunks);
if (!PhdrsOrErr)
return PhdrsOrErr.takeError();
Y->ProgramHeaders = std::move(*PhdrsOrErr);
dumpSectionOffsets<ELFT>(Obj.getHeader(), Y->ProgramHeaders, Chunks,
Sections);
// Dump DWARF sections.
Y->DWARF = dumpDWARFSections(Chunks);
// We emit the "SectionHeaderTable" key when the order of sections in the
// sections header table doesn't match the file order.
const bool SectionsSorted =
llvm::is_sorted(Chunks, [&](const std::unique_ptr<ELFYAML::Chunk> &A,
const std::unique_ptr<ELFYAML::Chunk> &B) {
return cast<ELFYAML::Section>(A.get())->OriginalSecNdx <
cast<ELFYAML::Section>(B.get())->OriginalSecNdx;
});
if (!SectionsSorted) {
std::unique_ptr<ELFYAML::SectionHeaderTable> SHT =
std::make_unique<ELFYAML::SectionHeaderTable>(/*IsImplicit=*/false);
SHT->Sections.emplace();
for (ELFYAML::Section *S : OriginalOrder)
SHT->Sections->push_back({S->Name});
Chunks.push_back(std::move(SHT));
}
llvm::erase_if(Chunks, [this, &Y](const std::unique_ptr<ELFYAML::Chunk> &C) {
if (isa<ELFYAML::SectionHeaderTable>(*C.get()))
return false;
const ELFYAML::Section &S = cast<ELFYAML::Section>(*C.get());
return !shouldPrintSection(S, Sections[S.OriginalSecNdx], Y->DWARF);
});
// The section header string table by default is assumed to be called
// ".shstrtab" and be in its own unique section. However, it's possible for it
// to be called something else and shared with another section. If the name
// isn't the default, provide this in the YAML.
if (ShStrTabIndex && *ShStrTabIndex != ELF::SHN_UNDEF &&
*ShStrTabIndex < Sections.size()) {
StringRef ShStrtabName;
if (SymTab && SymTab->sh_link == *ShStrTabIndex) {
// Section header string table is shared with the symbol table. Use that
// section's name (usually .strtab).
ShStrtabName = cantFail(Obj.getSectionName(Sections[SymTab->sh_link]));
} else if (DynSymTab && DynSymTab->sh_link == *ShStrTabIndex) {
// Section header string table is shared with the dynamic symbol table.
// Use that section's name (usually .dynstr).
ShStrtabName = cantFail(Obj.getSectionName(Sections[DynSymTab->sh_link]));
} else {
// Otherwise, the section name potentially needs uniquifying.
ShStrtabName = cantFail(getUniquedSectionName(Sections[*ShStrTabIndex]));
}
if (ShStrtabName != ".shstrtab")
Y->Header.SectionHeaderStringTable = ShStrtabName;
}
Y->Chunks = std::move(Chunks);
return Y.release();
}
template <class ELFT>
static bool isInSegment(const ELFYAML::Section &Sec,
const typename ELFT::Shdr &SHdr,
const typename ELFT::Phdr &Phdr) {
if (Sec.Type == ELF::SHT_NULL)
return false;
// A section is within a segment when its location in a file is within the
// [p_offset, p_offset + p_filesz] region.
bool FileOffsetsMatch =
SHdr.sh_offset >= Phdr.p_offset &&
(SHdr.sh_offset + SHdr.sh_size <= Phdr.p_offset + Phdr.p_filesz);
bool VirtualAddressesMatch = SHdr.sh_addr >= Phdr.p_vaddr &&
SHdr.sh_addr <= Phdr.p_vaddr + Phdr.p_memsz;
if (FileOffsetsMatch) {
// An empty section on the edges of a program header can be outside of the
// virtual address space of the segment. This means it is not included in
// the segment and we should ignore it.
if (SHdr.sh_size == 0 && (SHdr.sh_offset == Phdr.p_offset ||
SHdr.sh_offset == Phdr.p_offset + Phdr.p_filesz))
return VirtualAddressesMatch;
return true;
}
// SHT_NOBITS sections usually occupy no physical space in a file. Such
// sections belong to a segment when they reside in the segment's virtual
// address space.
if (Sec.Type != ELF::SHT_NOBITS)
return false;
return VirtualAddressesMatch;
}
template <class ELFT>
Expected<std::vector<ELFYAML::ProgramHeader>>
ELFDumper<ELFT>::dumpProgramHeaders(
ArrayRef<std::unique_ptr<ELFYAML::Chunk>> Chunks) {
std::vector<ELFYAML::ProgramHeader> Ret;
Expected<typename ELFT::PhdrRange> PhdrsOrErr = Obj.program_headers();
if (!PhdrsOrErr)
return PhdrsOrErr.takeError();
for (const typename ELFT::Phdr &Phdr : *PhdrsOrErr) {
ELFYAML::ProgramHeader PH;
PH.Type = Phdr.p_type;
PH.Flags = Phdr.p_flags;
PH.VAddr = Phdr.p_vaddr;
PH.PAddr = Phdr.p_paddr;
// yaml2obj sets the alignment of a segment to 1 by default.
// We do not print the default alignment to reduce noise in the output.
if (Phdr.p_align != 1)
PH.Align = static_cast<llvm::yaml::Hex64>(Phdr.p_align);
// Here we match sections with segments.
// It is not possible to have a non-Section chunk, because
// obj2yaml does not create Fill chunks.
for (const std::unique_ptr<ELFYAML::Chunk> &C : Chunks) {
ELFYAML::Section &S = cast<ELFYAML::Section>(*C.get());
if (isInSegment<ELFT>(S, Sections[S.OriginalSecNdx], Phdr)) {
if (!PH.FirstSec)
PH.FirstSec = S.Name;
PH.LastSec = S.Name;
PH.Chunks.push_back(C.get());
}
}
Ret.push_back(PH);
}
return Ret;
}
template <class ELFT>
Optional<DWARFYAML::Data> ELFDumper<ELFT>::dumpDWARFSections(
std::vector<std::unique_ptr<ELFYAML::Chunk>> &Sections) {
DWARFYAML::Data DWARF;
for (std::unique_ptr<ELFYAML::Chunk> &C : Sections) {
if (!C->Name.startswith(".debug_"))
continue;
if (ELFYAML::RawContentSection *RawSec =
dyn_cast<ELFYAML::RawContentSection>(C.get())) {
// FIXME: The dumpDebug* functions should take the content as stored in
// RawSec. Currently, they just use the last section with the matching
// name, which defeats this attempt to skip reading a section header
// string table with the same name as a DWARF section.
if (ShStrTabIndex && RawSec->OriginalSecNdx == *ShStrTabIndex)
continue;
Error Err = Error::success();
cantFail(std::move(Err));
if (RawSec->Name == ".debug_aranges")
Err = dumpDebugARanges(*DWARFCtx.get(), DWARF);
else if (RawSec->Name == ".debug_str")
Err = dumpDebugStrings(*DWARFCtx.get(), DWARF);
else if (RawSec->Name == ".debug_ranges")
Err = dumpDebugRanges(*DWARFCtx.get(), DWARF);
else if (RawSec->Name == ".debug_addr")
Err = dumpDebugAddr(*DWARFCtx.get(), DWARF);
else
continue;
// If the DWARF section cannot be successfully parsed, emit raw content
// instead of an entry in the DWARF section of the YAML.
if (Err)
consumeError(std::move(Err));
else
RawSec->Content.reset();
}
}
if (DWARF.getNonEmptySectionNames().empty())
return None;
return DWARF;
}
template <class ELFT>
Expected<ELFYAML::RawContentSection *>
ELFDumper<ELFT>::dumpPlaceholderSection(const Elf_Shdr *Shdr) {
auto S = std::make_unique<ELFYAML::RawContentSection>();
if (Error E = dumpCommonSection(Shdr, *S.get()))
return std::move(E);
// Normally symbol tables should not be empty. We dump the "Size"
// key when they are.
if ((Shdr->sh_type == ELF::SHT_SYMTAB || Shdr->sh_type == ELF::SHT_DYNSYM) &&
!Shdr->sh_size)
S->Size.emplace();
return S.release();
}
template <class ELFT>
Expected<std::vector<std::unique_ptr<ELFYAML::Chunk>>>
ELFDumper<ELFT>::dumpSections() {
std::vector<std::unique_ptr<ELFYAML::Chunk>> Ret;
auto Add = [&](Expected<ELFYAML::Chunk *> SecOrErr) -> Error {
if (!SecOrErr)
return SecOrErr.takeError();
Ret.emplace_back(*SecOrErr);
return Error::success();
};
auto GetDumper = [this](unsigned Type)
-> std::function<Expected<ELFYAML::Chunk *>(const Elf_Shdr *)> {
if (Obj.getHeader().e_machine == ELF::EM_ARM && Type == ELF::SHT_ARM_EXIDX)
return [this](const Elf_Shdr *S) { return dumpARMIndexTableSection(S); };
if (Obj.getHeader().e_machine == ELF::EM_MIPS &&
Type == ELF::SHT_MIPS_ABIFLAGS)
return [this](const Elf_Shdr *S) { return dumpMipsABIFlags(S); };
switch (Type) {
case ELF::SHT_DYNAMIC:
return [this](const Elf_Shdr *S) { return dumpDynamicSection(S); };
case ELF::SHT_SYMTAB_SHNDX:
return [this](const Elf_Shdr *S) { return dumpSymtabShndxSection(S); };
case ELF::SHT_REL:
case ELF::SHT_RELA:
return [this](const Elf_Shdr *S) { return dumpRelocSection(S); };
case ELF::SHT_RELR:
return [this](const Elf_Shdr *S) { return dumpRelrSection(S); };
case ELF::SHT_GROUP:
return [this](const Elf_Shdr *S) { return dumpGroupSection(S); };
case ELF::SHT_NOBITS:
return [this](const Elf_Shdr *S) { return dumpNoBitsSection(S); };
case ELF::SHT_NOTE:
return [this](const Elf_Shdr *S) { return dumpNoteSection(S); };
case ELF::SHT_HASH:
return [this](const Elf_Shdr *S) { return dumpHashSection(S); };
case ELF::SHT_GNU_HASH:
return [this](const Elf_Shdr *S) { return dumpGnuHashSection(S); };
case ELF::SHT_GNU_verdef:
return [this](const Elf_Shdr *S) { return dumpVerdefSection(S); };
case ELF::SHT_GNU_versym:
return [this](const Elf_Shdr *S) { return dumpSymverSection(S); };
case ELF::SHT_GNU_verneed:
return [this](const Elf_Shdr *S) { return dumpVerneedSection(S); };
case ELF::SHT_LLVM_ADDRSIG:
return [this](const Elf_Shdr *S) { return dumpAddrsigSection(S); };
case ELF::SHT_LLVM_LINKER_OPTIONS:
return [this](const Elf_Shdr *S) { return dumpLinkerOptionsSection(S); };
case ELF::SHT_LLVM_DEPENDENT_LIBRARIES:
return [this](const Elf_Shdr *S) {
return dumpDependentLibrariesSection(S);
};
case ELF::SHT_LLVM_CALL_GRAPH_PROFILE:
return
[this](const Elf_Shdr *S) { return dumpCallGraphProfileSection(S); };
case ELF::SHT_LLVM_BB_ADDR_MAP:
return [this](const Elf_Shdr *S) { return dumpBBAddrMapSection(S); };
case ELF::SHT_STRTAB:
case ELF::SHT_SYMTAB:
case ELF::SHT_DYNSYM:
// The contents of these sections are described by other parts of the YAML
// file. But we still want to dump them, because their properties can be
// important. See comments for 'shouldPrintSection()' for more details.
return [this](const Elf_Shdr *S) { return dumpPlaceholderSection(S); };
default:
return nullptr;
}
};
for (const Elf_Shdr &Sec : Sections) {
// We have dedicated dumping functions for most of the section types.
// Try to use one of them first.
if (std::function<Expected<ELFYAML::Chunk *>(const Elf_Shdr *)> DumpFn =
GetDumper(Sec.sh_type)) {
if (Error E = Add(DumpFn(&Sec)))
return std::move(E);
continue;
}
// Recognize some special SHT_PROGBITS sections by name.
if (Sec.sh_type == ELF::SHT_PROGBITS) {
auto NameOrErr = Obj.getSectionName(Sec);
if (!NameOrErr)
return NameOrErr.takeError();
if (ELFYAML::StackSizesSection::nameMatches(*NameOrErr)) {
if (Error E = Add(dumpStackSizesSection(&Sec)))
return std::move(E);
continue;
}
}
if (Error E = Add(dumpContentSection(&Sec)))
return std::move(E);
}
return std::move(Ret);
}
template <class ELFT>
Error ELFDumper<ELFT>::dumpSymbols(
const Elf_Shdr *Symtab, Optional<std::vector<ELFYAML::Symbol>> &Symbols) {
if (!Symtab)
return Error::success();
auto SymtabOrErr = Obj.symbols(Symtab);
if (!SymtabOrErr)
return SymtabOrErr.takeError();
if (SymtabOrErr->empty())
return Error::success();
auto StrTableOrErr = Obj.getStringTableForSymtab(*Symtab);
if (!StrTableOrErr)
return StrTableOrErr.takeError();
if (Symtab->sh_type == ELF::SHT_SYMTAB) {
SymTable = *SymtabOrErr;
SymbolNames.resize(SymTable.size());
}
Symbols.emplace();
for (const auto &Sym : (*SymtabOrErr).drop_front()) {
ELFYAML::Symbol S;
if (auto EC = dumpSymbol(&Sym, Symtab, *StrTableOrErr, S))
return EC;
Symbols->push_back(S);
}
return Error::success();
}
template <class ELFT>
Error ELFDumper<ELFT>::dumpSymbol(const Elf_Sym *Sym, const Elf_Shdr *SymTab,
StringRef StrTable, ELFYAML::Symbol &S) {
S.Type = Sym->getType();
if (Sym->st_value)
S.Value = (yaml::Hex64)Sym->st_value;
if (Sym->st_size)
S.Size = (yaml::Hex64)Sym->st_size;
S.Other = Sym->st_other;
S.Binding = Sym->getBinding();
Expected<StringRef> SymbolNameOrErr =
getUniquedSymbolName(Sym, StrTable, SymTab);
if (!SymbolNameOrErr)
return SymbolNameOrErr.takeError();
S.Name = SymbolNameOrErr.get();
if (Sym->st_shndx >= ELF::SHN_LORESERVE) {
S.Index = (ELFYAML::ELF_SHN)Sym->st_shndx;
return Error::success();
}
auto ShdrOrErr = Obj.getSection(*Sym, SymTab, ShndxTables.lookup(SymTab));
if (!ShdrOrErr)
return ShdrOrErr.takeError();
const Elf_Shdr *Shdr = *ShdrOrErr;
if (!Shdr)
return Error::success();
auto NameOrErr = getUniquedSectionName(*Shdr);
if (!NameOrErr)
return NameOrErr.takeError();
S.Section = NameOrErr.get();
return Error::success();
}
template <class ELFT>
template <class RelT>
Error ELFDumper<ELFT>::dumpRelocation(const RelT *Rel, const Elf_Shdr *SymTab,
ELFYAML::Relocation &R) {
R.Type = Rel->getType(Obj.isMips64EL());
R.Offset = Rel->r_offset;
R.Addend = 0;
auto SymOrErr = Obj.getRelocationSymbol(*Rel, SymTab);
if (!SymOrErr)
return SymOrErr.takeError();
// We have might have a relocation with symbol index 0,
// e.g. R_X86_64_NONE or R_X86_64_GOTPC32.
const Elf_Sym *Sym = *SymOrErr;
if (!Sym)
return Error::success();
auto StrTabSec = Obj.getSection(SymTab->sh_link);
if (!StrTabSec)
return StrTabSec.takeError();
auto StrTabOrErr = Obj.getStringTable(**StrTabSec);
if (!StrTabOrErr)
return StrTabOrErr.takeError();
Expected<StringRef> NameOrErr =
getUniquedSymbolName(Sym, *StrTabOrErr, SymTab);
if (!NameOrErr)
return NameOrErr.takeError();
R.Symbol = NameOrErr.get();
return Error::success();
}
template <class ELFT>
Error ELFDumper<ELFT>::dumpCommonSection(const Elf_Shdr *Shdr,
ELFYAML::Section &S) {
// Dump fields. We do not dump the ShOffset field. When not explicitly
// set, the value is set by yaml2obj automatically.
S.Type = Shdr->sh_type;
if (Shdr->sh_flags)
S.Flags = static_cast<ELFYAML::ELF_SHF>(Shdr->sh_flags);
if (Shdr->sh_addr)
S.Address = static_cast<uint64_t>(Shdr->sh_addr);
S.AddressAlign = Shdr->sh_addralign;
S.OriginalSecNdx = Shdr - &Sections[0];
Expected<StringRef> NameOrErr = getUniquedSectionName(*Shdr);
if (!NameOrErr)
return NameOrErr.takeError();
S.Name = NameOrErr.get();
if (Shdr->sh_entsize != ELFYAML::getDefaultShEntSize<ELFT>(
Obj.getHeader().e_machine, S.Type, S.Name))
S.EntSize = static_cast<llvm::yaml::Hex64>(Shdr->sh_entsize);
if (Shdr->sh_link != ELF::SHN_UNDEF) {
Expected<const Elf_Shdr *> LinkSection = Obj.getSection(Shdr->sh_link);
if (!LinkSection)
return make_error<StringError>(
"unable to resolve sh_link reference in section '" + S.Name +
"': " + toString(LinkSection.takeError()),
inconvertibleErrorCode());
NameOrErr = getUniquedSectionName(**LinkSection);
if (!NameOrErr)
return NameOrErr.takeError();
S.Link = NameOrErr.get();
}
return Error::success();
}
template <class ELFT>
Error ELFDumper<ELFT>::dumpCommonRelocationSection(
const Elf_Shdr *Shdr, ELFYAML::RelocationSection &S) {
if (Error E = dumpCommonSection(Shdr, S))
return E;
// Having a zero sh_info field is normal: .rela.dyn is a dynamic
// relocation section that normally has no value in this field.
if (!Shdr->sh_info)
return Error::success();
auto InfoSection = Obj.getSection(Shdr->sh_info);
if (!InfoSection)
return InfoSection.takeError();
Expected<StringRef> NameOrErr = getUniquedSectionName(**InfoSection);
if (!NameOrErr)
return NameOrErr.takeError();
S.RelocatableSec = NameOrErr.get();
return Error::success();
}
template <class ELFT>
Expected<ELFYAML::StackSizesSection *>
ELFDumper<ELFT>::dumpStackSizesSection(const Elf_Shdr *Shdr) {
auto S = std::make_unique<ELFYAML::StackSizesSection>();
if (Error E = dumpCommonSection(Shdr, *S))
return std::move(E);
auto ContentOrErr = Obj.getSectionContents(*Shdr);
if (!ContentOrErr)
return ContentOrErr.takeError();
ArrayRef<uint8_t> Content = *ContentOrErr;
DataExtractor Data(Content, Obj.isLE(), ELFT::Is64Bits ? 8 : 4);
std::vector<ELFYAML::StackSizeEntry> Entries;
DataExtractor::Cursor Cur(0);
while (Cur && Cur.tell() < Content.size()) {
uint64_t Address = Data.getAddress(Cur);
uint64_t Size = Data.getULEB128(Cur);
Entries.push_back({Address, Size});
}
if (Content.empty() || !Cur) {
// If .stack_sizes cannot be decoded, we dump it as an array of bytes.
consumeError(Cur.takeError());
S->Content = yaml::BinaryRef(Content);
} else {
S->Entries = std::move(Entries);
}
return S.release();
}
template <class ELFT>
Expected<ELFYAML::BBAddrMapSection *>
ELFDumper<ELFT>::dumpBBAddrMapSection(const Elf_Shdr *Shdr) {
auto S = std::make_unique<ELFYAML::BBAddrMapSection>();
if (Error E = dumpCommonSection(Shdr, *S))
return std::move(E);
auto ContentOrErr = Obj.getSectionContents(*Shdr);
if (!ContentOrErr)
return ContentOrErr.takeError();
ArrayRef<uint8_t> Content = *ContentOrErr;
if (Content.empty())
return S.release();
DataExtractor Data(Content, Obj.isLE(), ELFT::Is64Bits ? 8 : 4);
std::vector<ELFYAML::BBAddrMapEntry> Entries;
DataExtractor::Cursor Cur(0);
while (Cur && Cur.tell() < Content.size()) {
uint64_t Address = Data.getAddress(Cur);
uint64_t NumBlocks = Data.getULEB128(Cur);
std::vector<ELFYAML::BBAddrMapEntry::BBEntry> BBEntries;
// Read the specified number of BB entries, or until decoding fails.
for (uint64_t BlockID = 0; Cur && BlockID < NumBlocks; ++BlockID) {
uint64_t Offset = Data.getULEB128(Cur);
uint64_t Size = Data.getULEB128(Cur);
uint64_t Metadata = Data.getULEB128(Cur);
BBEntries.push_back({Offset, Size, Metadata});
}
Entries.push_back({Address, /*NumBlocks=*/{}, BBEntries});
}
if (!Cur) {
// If the section cannot be decoded, we dump it as an array of bytes.
consumeError(Cur.takeError());
S->Content = yaml::BinaryRef(Content);
} else {
S->Entries = std::move(Entries);
}
return S.release();
}
template <class ELFT>
Expected<ELFYAML::AddrsigSection *>
ELFDumper<ELFT>::dumpAddrsigSection(const Elf_Shdr *Shdr) {
auto S = std::make_unique<ELFYAML::AddrsigSection>();
if (Error E = dumpCommonSection(Shdr, *S))
return std::move(E);
auto ContentOrErr = Obj.getSectionContents(*Shdr);
if (!ContentOrErr)
return ContentOrErr.takeError();
ArrayRef<uint8_t> Content = *ContentOrErr;
DataExtractor::Cursor Cur(0);
DataExtractor Data(Content, Obj.isLE(), /*AddressSize=*/0);
std::vector<ELFYAML::YAMLFlowString> Symbols;
while (Cur && Cur.tell() < Content.size()) {
uint64_t SymNdx = Data.getULEB128(Cur);
if (!Cur)
break;
Expected<StringRef> SymbolName = getSymbolName(Shdr->sh_link, SymNdx);
if (!SymbolName || SymbolName->empty()) {
consumeError(SymbolName.takeError());
Symbols.emplace_back(
StringRef(std::to_string(SymNdx)).copy(StringAllocator));
continue;
}
Symbols.emplace_back(*SymbolName);
}
if (Cur) {
S->Symbols = std::move(Symbols);
return S.release();
}
consumeError(Cur.takeError());
S->Content = yaml::BinaryRef(Content);
return S.release();
}
template <class ELFT>
Expected<ELFYAML::LinkerOptionsSection *>
ELFDumper<ELFT>::dumpLinkerOptionsSection(const Elf_Shdr *Shdr) {
auto S = std::make_unique<ELFYAML::LinkerOptionsSection>();
if (Error E = dumpCommonSection(Shdr, *S))
return std::move(E);
auto ContentOrErr = Obj.getSectionContents(*Shdr);
if (!ContentOrErr)
return ContentOrErr.takeError();
ArrayRef<uint8_t> Content = *ContentOrErr;
if (Content.empty() || Content.back() != 0) {
S->Content = Content;
return S.release();
}
SmallVector<StringRef, 16> Strings;
toStringRef(Content.drop_back()).split(Strings, '\0');
if (Strings.size() % 2 != 0) {
S->Content = Content;
return S.release();
}
S->Options.emplace();
for (size_t I = 0, E = Strings.size(); I != E; I += 2)
S->Options->push_back({Strings[I], Strings[I + 1]});
return S.release();
}
template <class ELFT>
Expected<ELFYAML::DependentLibrariesSection *>
ELFDumper<ELFT>::dumpDependentLibrariesSection(const Elf_Shdr *Shdr) {
auto DL = std::make_unique<ELFYAML::DependentLibrariesSection>();
if (Error E = dumpCommonSection(Shdr, *DL))
return std::move(E);
Expected<ArrayRef<uint8_t>> ContentOrErr = Obj.getSectionContents(*Shdr);
if (!ContentOrErr)
return ContentOrErr.takeError();
ArrayRef<uint8_t> Content = *ContentOrErr;
if (!Content.empty() && Content.back() != 0) {
DL->Content = Content;
return DL.release();
}
DL->Libs.emplace();
for (const uint8_t *I = Content.begin(), *E = Content.end(); I < E;) {
StringRef Lib((const char *)I);
DL->Libs->emplace_back(Lib);
I += Lib.size() + 1;
}
return DL.release();
}
template <class ELFT>
Expected<ELFYAML::CallGraphProfileSection *>
ELFDumper<ELFT>::dumpCallGraphProfileSection(const Elf_Shdr *Shdr) {
auto S = std::make_unique<ELFYAML::CallGraphProfileSection>();
if (Error E = dumpCommonSection(Shdr, *S))
return std::move(E);
Expected<ArrayRef<uint8_t>> ContentOrErr = Obj.getSectionContents(*Shdr);
if (!ContentOrErr)
return ContentOrErr.takeError();
ArrayRef<uint8_t> Content = *ContentOrErr;
const uint32_t SizeOfEntry = ELFYAML::getDefaultShEntSize<ELFT>(
Obj.getHeader().e_machine, S->Type, S->Name);
// Dump the section by using the Content key when it is truncated.
// There is no need to create either "Content" or "Entries" fields when the
// section is empty.
if (Content.empty() || Content.size() % SizeOfEntry != 0) {
if (!Content.empty())
S->Content = yaml::BinaryRef(Content);
return S.release();
}
std::vector<ELFYAML::CallGraphEntryWeight> Entries(Content.size() /
SizeOfEntry);
DataExtractor Data(Content, Obj.isLE(), /*AddressSize=*/0);
DataExtractor::Cursor Cur(0);
auto ReadEntry = [&](ELFYAML::CallGraphEntryWeight &E) {
E.Weight = Data.getU64(Cur);
if (!Cur) {
consumeError(Cur.takeError());
return false;
}
return true;
};
for (ELFYAML::CallGraphEntryWeight &E : Entries) {
if (ReadEntry(E))
continue;
S->Content = yaml::BinaryRef(Content);
return S.release();
}
S->Entries = std::move(Entries);
return S.release();
}
template <class ELFT>
Expected<ELFYAML::DynamicSection *>
ELFDumper<ELFT>::dumpDynamicSection(const Elf_Shdr *Shdr) {
auto S = std::make_unique<ELFYAML::DynamicSection>();
if (Error E = dumpCommonSection(Shdr, *S))
return std::move(E);
auto DynTagsOrErr = Obj.template getSectionContentsAsArray<Elf_Dyn>(*Shdr);
if (!DynTagsOrErr)
return DynTagsOrErr.takeError();
S->Entries.emplace();
for (const Elf_Dyn &Dyn : *DynTagsOrErr)
S->Entries->push_back({(ELFYAML::ELF_DYNTAG)Dyn.getTag(), Dyn.getVal()});
return S.release();
}
template <class ELFT>
Expected<ELFYAML::RelocationSection *>
ELFDumper<ELFT>::dumpRelocSection(const Elf_Shdr *Shdr) {
auto S = std::make_unique<ELFYAML::RelocationSection>();
if (auto E = dumpCommonRelocationSection(Shdr, *S))
return std::move(E);
auto SymTabOrErr = Obj.getSection(Shdr->sh_link);
if (!SymTabOrErr)
return SymTabOrErr.takeError();
if (Shdr->sh_size != 0)
S->Relocations.emplace();
if (Shdr->sh_type == ELF::SHT_REL) {
auto Rels = Obj.rels(*Shdr);
if (!Rels)
return Rels.takeError();
for (const Elf_Rel &Rel : *Rels) {
ELFYAML::Relocation R;
if (Error E = dumpRelocation(&Rel, *SymTabOrErr, R))
return std::move(E);
S->Relocations->push_back(R);
}
} else {
auto Rels = Obj.relas(*Shdr);
if (!Rels)
return Rels.takeError();
for (const Elf_Rela &Rel : *Rels) {
ELFYAML::Relocation R;
if (Error E = dumpRelocation(&Rel, *SymTabOrErr, R))
return std::move(E);
R.Addend = Rel.r_addend;
S->Relocations->push_back(R);
}
}
return S.release();
}
template <class ELFT>
Expected<ELFYAML::RelrSection *>
ELFDumper<ELFT>::dumpRelrSection(const Elf_Shdr *Shdr) {
auto S = std::make_unique<ELFYAML::RelrSection>();
if (auto E = dumpCommonSection(Shdr, *S))
return std::move(E);
if (Expected<ArrayRef<Elf_Relr>> Relrs = Obj.relrs(*Shdr)) {
S->Entries.emplace();
for (Elf_Relr Rel : *Relrs)
S->Entries->emplace_back(Rel);
return S.release();
} else {
// Ignore. We are going to dump the data as raw content below.
consumeError(Relrs.takeError());
}
Expected<ArrayRef<uint8_t>> ContentOrErr = Obj.getSectionContents(*Shdr);
if (!ContentOrErr)
return ContentOrErr.takeError();
S->Content = *ContentOrErr;
return S.release();
}
template <class ELFT>
Expected<ELFYAML::RawContentSection *>
ELFDumper<ELFT>::dumpContentSection(const Elf_Shdr *Shdr) {
auto S = std::make_unique<ELFYAML::RawContentSection>();
if (Error E = dumpCommonSection(Shdr, *S))
return std::move(E);
unsigned SecIndex = Shdr - &Sections[0];
if (SecIndex != 0 || Shdr->sh_type != ELF::SHT_NULL) {
auto ContentOrErr = Obj.getSectionContents(*Shdr);
if (!ContentOrErr)
return ContentOrErr.takeError();
ArrayRef<uint8_t> Content = *ContentOrErr;
if (!Content.empty())
S->Content = yaml::BinaryRef(Content);
} else {
S->Size = static_cast<llvm::yaml::Hex64>(Shdr->sh_size);
}
if (Shdr->sh_info)
S->Info = static_cast<llvm::yaml::Hex64>(Shdr->sh_info);
return S.release();
}
template <class ELFT>
Expected<ELFYAML::SymtabShndxSection *>
ELFDumper<ELFT>::dumpSymtabShndxSection(const Elf_Shdr *Shdr) {
auto S = std::make_unique<ELFYAML::SymtabShndxSection>();
if (Error E = dumpCommonSection(Shdr, *S))
return std::move(E);
auto EntriesOrErr = Obj.template getSectionContentsAsArray<Elf_Word>(*Shdr);
if (!EntriesOrErr)
return EntriesOrErr.takeError();
S->Entries.emplace();
for (const Elf_Word &E : *EntriesOrErr)
S->Entries->push_back(E);
return S.release();
}
template <class ELFT>
Expected<ELFYAML::NoBitsSection *>
ELFDumper<ELFT>::dumpNoBitsSection(const Elf_Shdr *Shdr) {
auto S = std::make_unique<ELFYAML::NoBitsSection>();
if (Error E = dumpCommonSection(Shdr, *S))
return std::move(E);
if (Shdr->sh_size)
S->Size = static_cast<llvm::yaml::Hex64>(Shdr->sh_size);
return S.release();
}
template <class ELFT>
Expected<ELFYAML::NoteSection *>
ELFDumper<ELFT>::dumpNoteSection(const Elf_Shdr *Shdr) {
auto S = std::make_unique<ELFYAML::NoteSection>();
if (Error E = dumpCommonSection(Shdr, *S))
return std::move(E);
auto ContentOrErr = Obj.getSectionContents(*Shdr);
if (!ContentOrErr)
return ContentOrErr.takeError();
std::vector<ELFYAML::NoteEntry> Entries;
ArrayRef<uint8_t> Content = *ContentOrErr;
while (!Content.empty()) {
if (Content.size() < sizeof(Elf_Nhdr)) {
S->Content = yaml::BinaryRef(*ContentOrErr);
return S.release();
}
const Elf_Nhdr *Header = reinterpret_cast<const Elf_Nhdr *>(Content.data());
if (Content.size() < Header->getSize()) {
S->Content = yaml::BinaryRef(*ContentOrErr);
return S.release();
}
Elf_Note Note(*Header);
Entries.push_back(
{Note.getName(), Note.getDesc(), (ELFYAML::ELF_NT)Note.getType()});
Content = Content.drop_front(Header->getSize());
}
S->Notes = std::move(Entries);
return S.release();
}
template <class ELFT>
Expected<ELFYAML::HashSection *>
ELFDumper<ELFT>::dumpHashSection(const Elf_Shdr *Shdr) {
auto S = std::make_unique<ELFYAML::HashSection>();
if (Error E = dumpCommonSection(Shdr, *S))
return std::move(E);
auto ContentOrErr = Obj.getSectionContents(*Shdr);
if (!ContentOrErr)
return ContentOrErr.takeError();
ArrayRef<uint8_t> Content = *ContentOrErr;
if (Content.size() % 4 != 0 || Content.size() < 8) {
S->Content = yaml::BinaryRef(Content);
return S.release();
}
DataExtractor::Cursor Cur(0);
DataExtractor Data(Content, Obj.isLE(), /*AddressSize=*/0);
uint64_t NBucket = Data.getU32(Cur);
uint64_t NChain = Data.getU32(Cur);
if (Content.size() != (2 + NBucket + NChain) * 4) {
S->Content = yaml::BinaryRef(Content);
if (Cur)
return S.release();
llvm_unreachable("entries were not read correctly");
}
S->Bucket.emplace(NBucket);
for (uint32_t &V : *S->Bucket)
V = Data.getU32(Cur);
S->Chain.emplace(NChain);
for (uint32_t &V : *S->Chain)
V = Data.getU32(Cur);
if (Cur)
return S.release();
llvm_unreachable("entries were not read correctly");
}
template <class ELFT>
Expected<ELFYAML::GnuHashSection *>
ELFDumper<ELFT>::dumpGnuHashSection(const Elf_Shdr *Shdr) {
auto S = std::make_unique<ELFYAML::GnuHashSection>();
if (Error E = dumpCommonSection(Shdr, *S))
return std::move(E);
auto ContentOrErr = Obj.getSectionContents(*Shdr);
if (!ContentOrErr)
return ContentOrErr.takeError();
unsigned AddrSize = ELFT::Is64Bits ? 8 : 4;
ArrayRef<uint8_t> Content = *ContentOrErr;
DataExtractor Data(Content, Obj.isLE(), AddrSize);
ELFYAML::GnuHashHeader Header;
DataExtractor::Cursor Cur(0);
uint64_t NBuckets = Data.getU32(Cur);
Header.SymNdx = Data.getU32(Cur);
uint64_t MaskWords = Data.getU32(Cur);
Header.Shift2 = Data.getU32(Cur);
// Set just the raw binary content if we were unable to read the header
// or when the section data is truncated or malformed.
uint64_t Size = Data.getData().size() - Cur.tell();
if (!Cur || (Size < MaskWords * AddrSize + NBuckets * 4) ||
(Size % 4 != 0)) {
consumeError(Cur.takeError());
S->Content = yaml::BinaryRef(Content);
return S.release();
}
S->Header = Header;
S->BloomFilter.emplace(MaskWords);
for (llvm::yaml::Hex64 &Val : *S->BloomFilter)
Val = Data.getAddress(Cur);
S->HashBuckets.emplace(NBuckets);
for (llvm::yaml::Hex32 &Val : *S->HashBuckets)
Val = Data.getU32(Cur);
S->HashValues.emplace((Data.getData().size() - Cur.tell()) / 4);
for (llvm::yaml::Hex32 &Val : *S->HashValues)
Val = Data.getU32(Cur);
if (Cur)
return S.release();
llvm_unreachable("GnuHashSection was not read correctly");
}
template <class ELFT>
Expected<ELFYAML::VerdefSection *>
ELFDumper<ELFT>::dumpVerdefSection(const Elf_Shdr *Shdr) {
auto S = std::make_unique<ELFYAML::VerdefSection>();
if (Error E = dumpCommonSection(Shdr, *S))
return std::move(E);
auto StringTableShdrOrErr = Obj.getSection(Shdr->sh_link);
if (!StringTableShdrOrErr)
return StringTableShdrOrErr.takeError();
auto StringTableOrErr = Obj.getStringTable(**StringTableShdrOrErr);
if (!StringTableOrErr)
return StringTableOrErr.takeError();
auto Contents = Obj.getSectionContents(*Shdr);
if (!Contents)
return Contents.takeError();
S->Entries.emplace();
llvm::ArrayRef<uint8_t> Data = *Contents;
const uint8_t *Buf = Data.data();
while (Buf) {
const Elf_Verdef *Verdef = reinterpret_cast<const Elf_Verdef *>(Buf);
ELFYAML::VerdefEntry Entry;
if (Verdef->vd_version != 1)
return createStringError(errc::invalid_argument,
"invalid SHT_GNU_verdef section version: " +
Twine(Verdef->vd_version));
if (Verdef->vd_flags != 0)
Entry.Flags = Verdef->vd_flags;
if (Verdef->vd_ndx != 0)
Entry.VersionNdx = Verdef->vd_ndx;
if (Verdef->vd_hash != 0)
Entry.Hash = Verdef->vd_hash;
const uint8_t *BufAux = Buf + Verdef->vd_aux;
while (BufAux) {
const Elf_Verdaux *Verdaux =
reinterpret_cast<const Elf_Verdaux *>(BufAux);
Entry.VerNames.push_back(
StringTableOrErr->drop_front(Verdaux->vda_name).data());
BufAux = Verdaux->vda_next ? BufAux + Verdaux->vda_next : nullptr;
}
S->Entries->push_back(Entry);
Buf = Verdef->vd_next ? Buf + Verdef->vd_next : nullptr;
}
if (Shdr->sh_info != S->Entries->size())
S->Info = (llvm::yaml::Hex64)Shdr->sh_info;
return S.release();
}
template <class ELFT>
Expected<ELFYAML::SymverSection *>
ELFDumper<ELFT>::dumpSymverSection(const Elf_Shdr *Shdr) {
auto S = std::make_unique<ELFYAML::SymverSection>();
if (Error E = dumpCommonSection(Shdr, *S))
return std::move(E);
auto VersionsOrErr = Obj.template getSectionContentsAsArray<Elf_Half>(*Shdr);
if (!VersionsOrErr)
return VersionsOrErr.takeError();
S->Entries.emplace();
for (const Elf_Half &E : *VersionsOrErr)
S->Entries->push_back(E);
return S.release();
}
template <class ELFT>
Expected<ELFYAML::VerneedSection *>
ELFDumper<ELFT>::dumpVerneedSection(const Elf_Shdr *Shdr) {
auto S = std::make_unique<ELFYAML::VerneedSection>();
if (Error E = dumpCommonSection(Shdr, *S))
return std::move(E);
auto Contents = Obj.getSectionContents(*Shdr);
if (!Contents)
return Contents.takeError();
auto StringTableShdrOrErr = Obj.getSection(Shdr->sh_link);
if (!StringTableShdrOrErr)
return StringTableShdrOrErr.takeError();
auto StringTableOrErr = Obj.getStringTable(**StringTableShdrOrErr);
if (!StringTableOrErr)
return StringTableOrErr.takeError();
S->VerneedV.emplace();
llvm::ArrayRef<uint8_t> Data = *Contents;
const uint8_t *Buf = Data.data();
while (Buf) {
const Elf_Verneed *Verneed = reinterpret_cast<const Elf_Verneed *>(Buf);
ELFYAML::VerneedEntry Entry;
Entry.Version = Verneed->vn_version;
Entry.File =
StringRef(StringTableOrErr->drop_front(Verneed->vn_file).data());
const uint8_t *BufAux = Buf + Verneed->vn_aux;
while (BufAux) {
const Elf_Vernaux *Vernaux =
reinterpret_cast<const Elf_Vernaux *>(BufAux);
ELFYAML::VernauxEntry Aux;
Aux.Hash = Vernaux->vna_hash;
Aux.Flags = Vernaux->vna_flags;
Aux.Other = Vernaux->vna_other;
Aux.Name =
StringRef(StringTableOrErr->drop_front(Vernaux->vna_name).data());
Entry.AuxV.push_back(Aux);
BufAux = Vernaux->vna_next ? BufAux + Vernaux->vna_next : nullptr;
}
S->VerneedV->push_back(Entry);
Buf = Verneed->vn_next ? Buf + Verneed->vn_next : nullptr;
}
if (Shdr->sh_info != S->VerneedV->size())
S->Info = (llvm::yaml::Hex64)Shdr->sh_info;
return S.release();
}
template <class ELFT>
Expected<StringRef> ELFDumper<ELFT>::getSymbolName(uint32_t SymtabNdx,
uint32_t SymbolNdx) {
auto SymtabOrErr = Obj.getSection(SymtabNdx);
if (!SymtabOrErr)
return SymtabOrErr.takeError();
const Elf_Shdr *Symtab = *SymtabOrErr;
auto SymOrErr = Obj.getSymbol(Symtab, SymbolNdx);
if (!SymOrErr)
return SymOrErr.takeError();
auto StrTabOrErr = Obj.getStringTableForSymtab(*Symtab);
if (!StrTabOrErr)
return StrTabOrErr.takeError();
return getUniquedSymbolName(*SymOrErr, *StrTabOrErr, Symtab);
}
template <class ELFT>
Expected<ELFYAML::GroupSection *>
ELFDumper<ELFT>::dumpGroupSection(const Elf_Shdr *Shdr) {
auto S = std::make_unique<ELFYAML::GroupSection>();
if (Error E = dumpCommonSection(Shdr, *S))
return std::move(E);
// Get symbol with index sh_info. This symbol's name is the signature of the group.
Expected<StringRef> SymbolName = getSymbolName(Shdr->sh_link, Shdr->sh_info);
if (!SymbolName)
return SymbolName.takeError();
S->Signature = *SymbolName;
auto MembersOrErr = Obj.template getSectionContentsAsArray<Elf_Word>(*Shdr);
if (!MembersOrErr)
return MembersOrErr.takeError();
S->Members.emplace();
for (Elf_Word Member : *MembersOrErr) {
if (Member == llvm::ELF::GRP_COMDAT) {
S->Members->push_back({"GRP_COMDAT"});
continue;
}
Expected<const Elf_Shdr *> SHdrOrErr = Obj.getSection(Member);
if (!SHdrOrErr)
return SHdrOrErr.takeError();
Expected<StringRef> NameOrErr = getUniquedSectionName(**SHdrOrErr);
if (!NameOrErr)
return NameOrErr.takeError();
S->Members->push_back({*NameOrErr});
}
return S.release();
}
template <class ELFT>
Expected<ELFYAML::ARMIndexTableSection *>
ELFDumper<ELFT>::dumpARMIndexTableSection(const Elf_Shdr *Shdr) {
auto S = std::make_unique<ELFYAML::ARMIndexTableSection>();
if (Error E = dumpCommonSection(Shdr, *S))
return std::move(E);
Expected<ArrayRef<uint8_t>> ContentOrErr = Obj.getSectionContents(*Shdr);
if (!ContentOrErr)
return ContentOrErr.takeError();
if (ContentOrErr->size() % (sizeof(Elf_Word) * 2) != 0) {
S->Content = yaml::BinaryRef(*ContentOrErr);
return S.release();
}
ArrayRef<Elf_Word> Words(
reinterpret_cast<const Elf_Word *>(ContentOrErr->data()),
ContentOrErr->size() / sizeof(Elf_Word));
S->Entries.emplace();
for (size_t I = 0, E = Words.size(); I != E; I += 2)
S->Entries->push_back({(yaml::Hex32)Words[I], (yaml::Hex32)Words[I + 1]});
return S.release();
}
template <class ELFT>
Expected<ELFYAML::MipsABIFlags *>
ELFDumper<ELFT>::dumpMipsABIFlags(const Elf_Shdr *Shdr) {
assert(Shdr->sh_type == ELF::SHT_MIPS_ABIFLAGS &&
"Section type is not SHT_MIPS_ABIFLAGS");
auto S = std::make_unique<ELFYAML::MipsABIFlags>();
if (Error E = dumpCommonSection(Shdr, *S))
return std::move(E);
auto ContentOrErr = Obj.getSectionContents(*Shdr);
if (!ContentOrErr)
return ContentOrErr.takeError();
auto *Flags = reinterpret_cast<const object::Elf_Mips_ABIFlags<ELFT> *>(
ContentOrErr.get().data());
S->Version = Flags->version;
S->ISALevel = Flags->isa_level;
S->ISARevision = Flags->isa_rev;
S->GPRSize = Flags->gpr_size;
S->CPR1Size = Flags->cpr1_size;
S->CPR2Size = Flags->cpr2_size;
S->FpABI = Flags->fp_abi;
S->ISAExtension = Flags->isa_ext;
S->ASEs = Flags->ases;
S->Flags1 = Flags->flags1;
S->Flags2 = Flags->flags2;
return S.release();
}
template <class ELFT>
static Error elf2yaml(raw_ostream &Out, const object::ELFFile<ELFT> &Obj,
std::unique_ptr<DWARFContext> DWARFCtx) {
ELFDumper<ELFT> Dumper(Obj, std::move(DWARFCtx));
Expected<ELFYAML::Object *> YAMLOrErr = Dumper.dump();
if (!YAMLOrErr)
return YAMLOrErr.takeError();
std::unique_ptr<ELFYAML::Object> YAML(YAMLOrErr.get());
yaml::Output Yout(Out);
Yout << *YAML;
return Error::success();
}
Error elf2yaml(raw_ostream &Out, const object::ObjectFile &Obj) {
std::unique_ptr<DWARFContext> DWARFCtx = DWARFContext::create(Obj);
if (const auto *ELFObj = dyn_cast<object::ELF32LEObjectFile>(&Obj))
return elf2yaml(Out, ELFObj->getELFFile(), std::move(DWARFCtx));
if (const auto *ELFObj = dyn_cast<object::ELF32BEObjectFile>(&Obj))
return elf2yaml(Out, ELFObj->getELFFile(), std::move(DWARFCtx));
if (const auto *ELFObj = dyn_cast<object::ELF64LEObjectFile>(&Obj))
return elf2yaml(Out, ELFObj->getELFFile(), std::move(DWARFCtx));
if (const auto *ELFObj = dyn_cast<object::ELF64BEObjectFile>(&Obj))
return elf2yaml(Out, ELFObj->getELFFile(), std::move(DWARFCtx));
llvm_unreachable("unknown ELF file format");
}