1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-20 03:23:01 +02:00
llvm-mirror/lib/Target/Hexagon/HexagonFixupHwLoops.cpp
Chandler Carruth eb66b33867 Sort the remaining #include lines in include/... and lib/....
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.

I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.

This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.

Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).

llvm-svn: 304787
2017-06-06 11:49:48 +00:00

194 lines
6.4 KiB
C++

//===---- HexagonFixupHwLoops.cpp - Fixup HW loops too far from LOOPn. ----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
// The loop start address in the LOOPn instruction is encoded as a distance
// from the LOOPn instruction itself. If the start address is too far from
// the LOOPn instruction, the instruction needs to use a constant extender.
// This pass will identify and convert such LOOPn instructions to a proper
// form.
//===----------------------------------------------------------------------===//
#include "Hexagon.h"
#include "HexagonTargetMachine.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/PassSupport.h"
#include "llvm/Target/TargetInstrInfo.h"
using namespace llvm;
static cl::opt<unsigned> MaxLoopRange(
"hexagon-loop-range", cl::Hidden, cl::init(200),
cl::desc("Restrict range of loopN instructions (testing only)"));
namespace llvm {
FunctionPass *createHexagonFixupHwLoops();
void initializeHexagonFixupHwLoopsPass(PassRegistry&);
}
namespace {
struct HexagonFixupHwLoops : public MachineFunctionPass {
public:
static char ID;
HexagonFixupHwLoops() : MachineFunctionPass(ID) {
initializeHexagonFixupHwLoopsPass(*PassRegistry::getPassRegistry());
}
bool runOnMachineFunction(MachineFunction &MF) override;
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::NoVRegs);
}
StringRef getPassName() const override {
return "Hexagon Hardware Loop Fixup";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
private:
/// \brief Check the offset between each loop instruction and
/// the loop basic block to determine if we can use the LOOP instruction
/// or if we need to set the LC/SA registers explicitly.
bool fixupLoopInstrs(MachineFunction &MF);
/// \brief Replace loop instruction with the constant extended
/// version if the loop label is too far from the loop instruction.
void useExtLoopInstr(MachineFunction &MF,
MachineBasicBlock::iterator &MII);
};
char HexagonFixupHwLoops::ID = 0;
}
INITIALIZE_PASS(HexagonFixupHwLoops, "hwloopsfixup",
"Hexagon Hardware Loops Fixup", false, false)
FunctionPass *llvm::createHexagonFixupHwLoops() {
return new HexagonFixupHwLoops();
}
/// \brief Returns true if the instruction is a hardware loop instruction.
static bool isHardwareLoop(const MachineInstr &MI) {
return MI.getOpcode() == Hexagon::J2_loop0r ||
MI.getOpcode() == Hexagon::J2_loop0i ||
MI.getOpcode() == Hexagon::J2_loop1r ||
MI.getOpcode() == Hexagon::J2_loop1i;
}
bool HexagonFixupHwLoops::runOnMachineFunction(MachineFunction &MF) {
if (skipFunction(*MF.getFunction()))
return false;
return fixupLoopInstrs(MF);
}
/// \brief For Hexagon, if the loop label is to far from the
/// loop instruction then we need to set the LC0 and SA0 registers
/// explicitly instead of using LOOP(start,count). This function
/// checks the distance, and generates register assignments if needed.
///
/// This function makes two passes over the basic blocks. The first
/// pass computes the offset of the basic block from the start.
/// The second pass checks all the loop instructions.
bool HexagonFixupHwLoops::fixupLoopInstrs(MachineFunction &MF) {
// Offset of the current instruction from the start.
unsigned InstOffset = 0;
// Map for each basic block to it's first instruction.
DenseMap<const MachineBasicBlock *, unsigned> BlockToInstOffset;
const HexagonInstrInfo *HII =
static_cast<const HexagonInstrInfo *>(MF.getSubtarget().getInstrInfo());
// First pass - compute the offset of each basic block.
for (const MachineBasicBlock &MBB : MF) {
if (MBB.getAlignment()) {
// Although we don't know the exact layout of the final code, we need
// to account for alignment padding somehow. This heuristic pads each
// aligned basic block according to the alignment value.
int ByteAlign = (1u << MBB.getAlignment()) - 1;
InstOffset = (InstOffset + ByteAlign) & ~(ByteAlign);
}
BlockToInstOffset[&MBB] = InstOffset;
for (const MachineInstr &MI : MBB)
InstOffset += HII->getSize(MI);
}
// Second pass - check each loop instruction to see if it needs to be
// converted.
bool Changed = false;
for (MachineBasicBlock &MBB : MF) {
InstOffset = BlockToInstOffset[&MBB];
// Loop over all the instructions.
MachineBasicBlock::iterator MII = MBB.begin();
MachineBasicBlock::iterator MIE = MBB.end();
while (MII != MIE) {
InstOffset += HII->getSize(*MII);
if (MII->isDebugValue()) {
++MII;
continue;
}
if (isHardwareLoop(*MII)) {
assert(MII->getOperand(0).isMBB() &&
"Expect a basic block as loop operand");
int diff = InstOffset - BlockToInstOffset[MII->getOperand(0).getMBB()];
if ((unsigned)abs(diff) > MaxLoopRange) {
useExtLoopInstr(MF, MII);
MII = MBB.erase(MII);
Changed = true;
} else {
++MII;
}
} else {
++MII;
}
}
}
return Changed;
}
/// \brief Replace loop instructions with the constant extended version.
void HexagonFixupHwLoops::useExtLoopInstr(MachineFunction &MF,
MachineBasicBlock::iterator &MII) {
const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
MachineBasicBlock *MBB = MII->getParent();
DebugLoc DL = MII->getDebugLoc();
MachineInstrBuilder MIB;
unsigned newOp;
switch (MII->getOpcode()) {
case Hexagon::J2_loop0r:
newOp = Hexagon::J2_loop0rext;
break;
case Hexagon::J2_loop0i:
newOp = Hexagon::J2_loop0iext;
break;
case Hexagon::J2_loop1r:
newOp = Hexagon::J2_loop1rext;
break;
case Hexagon::J2_loop1i:
newOp = Hexagon::J2_loop1iext;
break;
default:
llvm_unreachable("Invalid Hardware Loop Instruction.");
}
MIB = BuildMI(*MBB, MII, DL, TII->get(newOp));
for (unsigned i = 0; i < MII->getNumOperands(); ++i)
MIB.add(MII->getOperand(i));
}