1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 19:52:54 +01:00
llvm-mirror/include/llvm/ADT/Twine.h
Chris Lattner b9f858943a Implement rdar://7415680 - Twine integer support lacks greatness
Microoptimize Twine's with unsigned and int to not pin their value to
the stack.  This saves stack space in common cases and allows mem2reg
in the caller.  A simple example is:

void foo(const Twine &);
void bar(int x) {
  foo("xyz: " + Twine(x));
}

Before:

__Z3bari:
	subq	$40, %rsp
	movl	%edi, 36(%rsp)
	leaq	L_.str3(%rip), %rax
	leaq	36(%rsp), %rcx
	leaq	8(%rsp), %rdi
	movq	%rax, 8(%rsp)
	movq	%rcx, 16(%rsp)
	movb	$3, 24(%rsp)
	movb	$7, 25(%rsp)
	callq	__Z3fooRKN4llvm5TwineE
	addq	$40, %rsp
	ret

After:

__Z3bari:
	subq	$24, %rsp
	leaq	L_.str3(%rip), %rax
	movq	%rax, (%rsp)
	movslq	%edi, %rax
	movq	%rax, 8(%rsp)
	movb	$3, 16(%rsp)
	movb	$7, 17(%rsp)
	leaq	(%rsp), %rdi
	callq	__Z3fooRKN4llvm5TwineE
	addq	$24, %rsp
	ret

It saves 16 bytes of stack and one instruction in this case.

llvm-svn: 103107
2010-05-05 18:40:33 +00:00

458 lines
15 KiB
C++

//===-- Twine.h - Fast Temporary String Concatenation -----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_TWINE_H
#define LLVM_ADT_TWINE_H
#include "llvm/ADT/StringRef.h"
#include "llvm/System/DataTypes.h"
#include <cassert>
#include <string>
namespace llvm {
template <typename T>
class SmallVectorImpl;
class StringRef;
class raw_ostream;
/// Twine - A lightweight data structure for efficiently representing the
/// concatenation of temporary values as strings.
///
/// A Twine is a kind of rope, it represents a concatenated string using a
/// binary-tree, where the string is the preorder of the nodes. Since the
/// Twine can be efficiently rendered into a buffer when its result is used,
/// it avoids the cost of generating temporary values for intermediate string
/// results -- particularly in cases when the Twine result is never
/// required. By explicitly tracking the type of leaf nodes, we can also avoid
/// the creation of temporary strings for conversions operations (such as
/// appending an integer to a string).
///
/// A Twine is not intended for use directly and should not be stored, its
/// implementation relies on the ability to store pointers to temporary stack
/// objects which may be deallocated at the end of a statement. Twines should
/// only be used accepted as const references in arguments, when an API wishes
/// to accept possibly-concatenated strings.
///
/// Twines support a special 'null' value, which always concatenates to form
/// itself, and renders as an empty string. This can be returned from APIs to
/// effectively nullify any concatenations performed on the result.
///
/// \b Implementation \n
///
/// Given the nature of a Twine, it is not possible for the Twine's
/// concatenation method to construct interior nodes; the result must be
/// represented inside the returned value. For this reason a Twine object
/// actually holds two values, the left- and right-hand sides of a
/// concatenation. We also have nullary Twine objects, which are effectively
/// sentinel values that represent empty strings.
///
/// Thus, a Twine can effectively have zero, one, or two children. The \see
/// isNullary(), \see isUnary(), and \see isBinary() predicates exist for
/// testing the number of children.
///
/// We maintain a number of invariants on Twine objects (FIXME: Why):
/// - Nullary twines are always represented with their Kind on the left-hand
/// side, and the Empty kind on the right-hand side.
/// - Unary twines are always represented with the value on the left-hand
/// side, and the Empty kind on the right-hand side.
/// - If a Twine has another Twine as a child, that child should always be
/// binary (otherwise it could have been folded into the parent).
///
/// These invariants are check by \see isValid().
///
/// \b Efficiency Considerations \n
///
/// The Twine is designed to yield efficient and small code for common
/// situations. For this reason, the concat() method is inlined so that
/// concatenations of leaf nodes can be optimized into stores directly into a
/// single stack allocated object.
///
/// In practice, not all compilers can be trusted to optimize concat() fully,
/// so we provide two additional methods (and accompanying operator+
/// overloads) to guarantee that particularly important cases (cstring plus
/// StringRef) codegen as desired.
class Twine {
/// NodeKind - Represent the type of an argument.
enum NodeKind {
/// An empty string; the result of concatenating anything with it is also
/// empty.
NullKind,
/// The empty string.
EmptyKind,
/// A pointer to a Twine instance.
TwineKind,
/// A pointer to a C string instance.
CStringKind,
/// A pointer to an std::string instance.
StdStringKind,
/// A pointer to a StringRef instance.
StringRefKind,
/// An unsigned int value reinterpreted as a pointer, to render as an
/// unsigned decimal integer.
DecUIKind,
/// An int value reinterpreted as a pointer, to render as a signed
/// decimal integer.
DecIKind,
/// A pointer to an unsigned long value, to render as an unsigned decimal
/// integer.
DecULKind,
/// A pointer to a long value, to render as a signed decimal integer.
DecLKind,
/// A pointer to an unsigned long long value, to render as an unsigned
/// decimal integer.
DecULLKind,
/// A pointer to a long long value, to render as a signed decimal integer.
DecLLKind,
/// A pointer to a uint64_t value, to render as an unsigned hexadecimal
/// integer.
UHexKind
};
private:
/// LHS - The prefix in the concatenation, which may be uninitialized for
/// Null or Empty kinds.
const void *LHS;
/// RHS - The suffix in the concatenation, which may be uninitialized for
/// Null or Empty kinds.
const void *RHS;
/// LHSKind - The NodeKind of the left hand side, \see getLHSKind().
unsigned char LHSKind;
/// RHSKind - The NodeKind of the left hand side, \see getLHSKind().
unsigned char RHSKind;
private:
/// Construct a nullary twine; the kind must be NullKind or EmptyKind.
explicit Twine(NodeKind Kind)
: LHSKind(Kind), RHSKind(EmptyKind) {
assert(isNullary() && "Invalid kind!");
}
/// Construct a binary twine.
explicit Twine(const Twine &_LHS, const Twine &_RHS)
: LHS(&_LHS), RHS(&_RHS), LHSKind(TwineKind), RHSKind(TwineKind) {
assert(isValid() && "Invalid twine!");
}
/// Construct a twine from explicit values.
explicit Twine(const void *_LHS, NodeKind _LHSKind,
const void *_RHS, NodeKind _RHSKind)
: LHS(_LHS), RHS(_RHS), LHSKind(_LHSKind), RHSKind(_RHSKind) {
assert(isValid() && "Invalid twine!");
}
/// isNull - Check for the null twine.
bool isNull() const {
return getLHSKind() == NullKind;
}
/// isEmpty - Check for the empty twine.
bool isEmpty() const {
return getLHSKind() == EmptyKind;
}
/// isNullary - Check if this is a nullary twine (null or empty).
bool isNullary() const {
return isNull() || isEmpty();
}
/// isUnary - Check if this is a unary twine.
bool isUnary() const {
return getRHSKind() == EmptyKind && !isNullary();
}
/// isBinary - Check if this is a binary twine.
bool isBinary() const {
return getLHSKind() != NullKind && getRHSKind() != EmptyKind;
}
/// isValid - Check if this is a valid twine (satisfying the invariants on
/// order and number of arguments).
bool isValid() const {
// Nullary twines always have Empty on the RHS.
if (isNullary() && getRHSKind() != EmptyKind)
return false;
// Null should never appear on the RHS.
if (getRHSKind() == NullKind)
return false;
// The RHS cannot be non-empty if the LHS is empty.
if (getRHSKind() != EmptyKind && getLHSKind() == EmptyKind)
return false;
// A twine child should always be binary.
if (getLHSKind() == TwineKind &&
!static_cast<const Twine*>(LHS)->isBinary())
return false;
if (getRHSKind() == TwineKind &&
!static_cast<const Twine*>(RHS)->isBinary())
return false;
return true;
}
/// getLHSKind - Get the NodeKind of the left-hand side.
NodeKind getLHSKind() const { return (NodeKind) LHSKind; }
/// getRHSKind - Get the NodeKind of the left-hand side.
NodeKind getRHSKind() const { return (NodeKind) RHSKind; }
/// printOneChild - Print one child from a twine.
void printOneChild(raw_ostream &OS, const void *Ptr, NodeKind Kind) const;
/// printOneChildRepr - Print the representation of one child from a twine.
void printOneChildRepr(raw_ostream &OS, const void *Ptr,
NodeKind Kind) const;
public:
/// @name Constructors
/// @{
/// Construct from an empty string.
/*implicit*/ Twine() : LHSKind(EmptyKind), RHSKind(EmptyKind) {
assert(isValid() && "Invalid twine!");
}
/// Construct from a C string.
///
/// We take care here to optimize "" into the empty twine -- this will be
/// optimized out for string constants. This allows Twine arguments have
/// default "" values, without introducing unnecessary string constants.
/*implicit*/ Twine(const char *Str)
: RHSKind(EmptyKind) {
if (Str[0] != '\0') {
LHS = Str;
LHSKind = CStringKind;
} else
LHSKind = EmptyKind;
assert(isValid() && "Invalid twine!");
}
/// Construct from an std::string.
/*implicit*/ Twine(const std::string &Str)
: LHS(&Str), LHSKind(StdStringKind), RHSKind(EmptyKind) {
assert(isValid() && "Invalid twine!");
}
/// Construct from a StringRef.
/*implicit*/ Twine(const StringRef &Str)
: LHS(&Str), LHSKind(StringRefKind), RHSKind(EmptyKind) {
assert(isValid() && "Invalid twine!");
}
/// Construct a twine to print \arg Val as an unsigned decimal integer.
explicit Twine(unsigned Val)
: LHS((void*)(intptr_t)Val), LHSKind(DecUIKind), RHSKind(EmptyKind) {
}
/// Construct a twine to print \arg Val as a signed decimal integer.
explicit Twine(int Val)
: LHS((void*)(intptr_t)Val), LHSKind(DecIKind), RHSKind(EmptyKind) {
}
/// Construct a twine to print \arg Val as an unsigned decimal integer.
explicit Twine(const unsigned long &Val)
: LHS(&Val), LHSKind(DecULKind), RHSKind(EmptyKind) {
}
/// Construct a twine to print \arg Val as a signed decimal integer.
explicit Twine(const long &Val)
: LHS(&Val), LHSKind(DecLKind), RHSKind(EmptyKind) {
}
/// Construct a twine to print \arg Val as an unsigned decimal integer.
explicit Twine(const unsigned long long &Val)
: LHS(&Val), LHSKind(DecULLKind), RHSKind(EmptyKind) {
}
/// Construct a twine to print \arg Val as a signed decimal integer.
explicit Twine(const long long &Val)
: LHS(&Val), LHSKind(DecLLKind), RHSKind(EmptyKind) {
}
// FIXME: Unfortunately, to make sure this is as efficient as possible we
// need extra binary constructors from particular types. We can't rely on
// the compiler to be smart enough to fold operator+()/concat() down to the
// right thing. Yet.
/// Construct as the concatenation of a C string and a StringRef.
/*implicit*/ Twine(const char *_LHS, const StringRef &_RHS)
: LHS(_LHS), RHS(&_RHS), LHSKind(CStringKind), RHSKind(StringRefKind) {
assert(isValid() && "Invalid twine!");
}
/// Construct as the concatenation of a StringRef and a C string.
/*implicit*/ Twine(const StringRef &_LHS, const char *_RHS)
: LHS(&_LHS), RHS(_RHS), LHSKind(StringRefKind), RHSKind(CStringKind) {
assert(isValid() && "Invalid twine!");
}
/// Create a 'null' string, which is an empty string that always
/// concatenates to form another empty string.
static Twine createNull() {
return Twine(NullKind);
}
/// @}
/// @name Numeric Conversions
/// @{
// Construct a twine to print \arg Val as an unsigned hexadecimal integer.
static Twine utohexstr(const uint64_t &Val) {
return Twine(&Val, UHexKind, 0, EmptyKind);
}
/// @}
/// @name Predicate Operations
/// @{
/// isTriviallyEmpty - Check if this twine is trivially empty; a false
/// return value does not necessarily mean the twine is empty.
bool isTriviallyEmpty() const {
return isNullary();
}
/// isSingleStringRef - Return true if this twine can be dynamically
/// accessed as a single StringRef value with getSingleStringRef().
bool isSingleStringRef() const {
if (getRHSKind() != EmptyKind) return false;
switch (getLHSKind()) {
case EmptyKind:
case CStringKind:
case StdStringKind:
case StringRefKind:
return true;
default:
return false;
}
}
/// @}
/// @name String Operations
/// @{
Twine concat(const Twine &Suffix) const;
/// @}
/// @name Output & Conversion.
/// @{
/// str - Return the twine contents as a std::string.
std::string str() const;
/// toVector - Write the concatenated string into the given SmallString or
/// SmallVector.
void toVector(SmallVectorImpl<char> &Out) const;
/// getSingleStringRef - This returns the twine as a single StringRef. This
/// method is only valid if isSingleStringRef() is true.
StringRef getSingleStringRef() const {
assert(isSingleStringRef() &&"This cannot be had as a single stringref!");
switch (getLHSKind()) {
default: assert(0 && "Out of sync with isSingleStringRef");
case EmptyKind: return StringRef();
case CStringKind: return StringRef((const char*)LHS);
case StdStringKind: return StringRef(*(const std::string*)LHS);
case StringRefKind: return *(const StringRef*)LHS;
}
}
/// toStringRef - This returns the twine as a single StringRef if it can be
/// represented as such. Otherwise the twine is written into the given
/// SmallVector and a StringRef to the SmallVector's data is returned.
StringRef toStringRef(SmallVectorImpl<char> &Out) const;
/// print - Write the concatenated string represented by this twine to the
/// stream \arg OS.
void print(raw_ostream &OS) const;
/// dump - Dump the concatenated string represented by this twine to stderr.
void dump() const;
/// print - Write the representation of this twine to the stream \arg OS.
void printRepr(raw_ostream &OS) const;
/// dumpRepr - Dump the representation of this twine to stderr.
void dumpRepr() const;
/// @}
};
/// @name Twine Inline Implementations
/// @{
inline Twine Twine::concat(const Twine &Suffix) const {
// Concatenation with null is null.
if (isNull() || Suffix.isNull())
return Twine(NullKind);
// Concatenation with empty yields the other side.
if (isEmpty())
return Suffix;
if (Suffix.isEmpty())
return *this;
// Otherwise we need to create a new node, taking care to fold in unary
// twines.
const void *NewLHS = this, *NewRHS = &Suffix;
NodeKind NewLHSKind = TwineKind, NewRHSKind = TwineKind;
if (isUnary()) {
NewLHS = LHS;
NewLHSKind = getLHSKind();
}
if (Suffix.isUnary()) {
NewRHS = Suffix.LHS;
NewRHSKind = Suffix.getLHSKind();
}
return Twine(NewLHS, NewLHSKind, NewRHS, NewRHSKind);
}
inline Twine operator+(const Twine &LHS, const Twine &RHS) {
return LHS.concat(RHS);
}
/// Additional overload to guarantee simplified codegen; this is equivalent to
/// concat().
inline Twine operator+(const char *LHS, const StringRef &RHS) {
return Twine(LHS, RHS);
}
/// Additional overload to guarantee simplified codegen; this is equivalent to
/// concat().
inline Twine operator+(const StringRef &LHS, const char *RHS) {
return Twine(LHS, RHS);
}
inline raw_ostream &operator<<(raw_ostream &OS, const Twine &RHS) {
RHS.print(OS);
return OS;
}
/// @}
}
#endif