1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2025-02-01 05:01:59 +01:00
Adam Nemet ffa0068101 [LDist] Match behavior between invoking via optimization pipeline or opt -loop-distribute
In r267672, where the loop distribution pragma was introduced, I tried
it hard to keep the old behavior for opt: when opt is invoked
with -loop-distribute, it should distribute the loop (it's off by
default when ran via the optimization pipeline).

As MichaelZ has discovered this has the unintended consequence of
breaking a very common developer work-flow to reproduce compilations
using opt: First you print the pass pipeline of clang
with -debug-pass=Arguments and then invoking opt with the returned
arguments.

clang -debug-pass will include -loop-distribute but the pass is invoked
with default=off so nothing happens unless the loop carries the pragma.
While through opt (default=on) we will try to distribute all loops.

This changes opt's default to off as well to match clang.  The tests are
modified to explicitly enable the transformation.

llvm-svn: 290235
2016-12-21 04:07:40 +00:00

70 lines
2.2 KiB
LLVM

; RUN: opt -loop-distribute -enable-loop-distribute -verify-loop-info -verify-dom-info -S < %s \
; RUN: | FileCheck %s
; Check that definitions used outside the loop are handled correctly: (1) they
; are not dropped (2) when version the loop, a phi is added to merge the value
; from the non-distributed loop and the distributed loop.
;
; for (i = 0; i < n; i++) {
; A[i + 1] = A[i] * B[i];
; ==========================
; sum += C[i];
; }
target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-apple-macosx10.10.0"
@B = common global i32* null, align 8
@A = common global i32* null, align 8
@C = common global i32* null, align 8
@D = common global i32* null, align 8
@E = common global i32* null, align 8
@SUM = common global i32 0, align 8
define void @f() {
entry:
%a = load i32*, i32** @A, align 8
%b = load i32*, i32** @B, align 8
%c = load i32*, i32** @C, align 8
%d = load i32*, i32** @D, align 8
%e = load i32*, i32** @E, align 8
br label %for.body
; CHECK: for.body.ldist1:
; CHECK: %mulA.ldist1 = mul i32 %loadB.ldist1, %loadA.ldist1
; CHECK: for.body.ph:
; CHECK: for.body:
; CHECK: %sum_add = add nuw nsw i32 %sum, %loadC
; CHECK: for.end:
; CHECK: %sum_add.lver = phi i32 [ %sum_add, %for.body ], [ %sum_add.lver.orig, %for.body.lver.orig ]
for.body: ; preds = %for.body, %entry
%ind = phi i64 [ 0, %entry ], [ %add, %for.body ]
%sum = phi i32 [ 0, %entry ], [ %sum_add, %for.body ]
%arrayidxA = getelementptr inbounds i32, i32* %a, i64 %ind
%loadA = load i32, i32* %arrayidxA, align 4
%arrayidxB = getelementptr inbounds i32, i32* %b, i64 %ind
%loadB = load i32, i32* %arrayidxB, align 4
%mulA = mul i32 %loadB, %loadA
%add = add nuw nsw i64 %ind, 1
%arrayidxA_plus_4 = getelementptr inbounds i32, i32* %a, i64 %add
store i32 %mulA, i32* %arrayidxA_plus_4, align 4
%arrayidxC = getelementptr inbounds i32, i32* %c, i64 %ind
%loadC = load i32, i32* %arrayidxC, align 4
%sum_add = add nuw nsw i32 %sum, %loadC
%exitcond = icmp eq i64 %add, 20
br i1 %exitcond, label %for.end, label %for.body
for.end: ; preds = %for.body
store i32 %sum_add, i32* @SUM, align 4
ret void
}