1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 20:23:11 +01:00
llvm-mirror/lib/CodeGen/SelectionDAG/ScheduleDAGFast.cpp
Evan Cheng c3ad04c825 Trim unneeded includes.
llvm-svn: 94105
2010-01-21 21:44:43 +00:00

605 lines
20 KiB
C++

//===----- ScheduleDAGFast.cpp - Fast poor list scheduler -----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements a fast scheduler.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "pre-RA-sched"
#include "ScheduleDAGSDNodes.h"
#include "llvm/CodeGen/SchedulerRegistry.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
STATISTIC(NumUnfolds, "Number of nodes unfolded");
STATISTIC(NumDups, "Number of duplicated nodes");
STATISTIC(NumPRCopies, "Number of physical copies");
static RegisterScheduler
fastDAGScheduler("fast", "Fast suboptimal list scheduling",
createFastDAGScheduler);
namespace {
/// FastPriorityQueue - A degenerate priority queue that considers
/// all nodes to have the same priority.
///
struct FastPriorityQueue {
SmallVector<SUnit *, 16> Queue;
bool empty() const { return Queue.empty(); }
void push(SUnit *U) {
Queue.push_back(U);
}
SUnit *pop() {
if (empty()) return NULL;
SUnit *V = Queue.back();
Queue.pop_back();
return V;
}
};
//===----------------------------------------------------------------------===//
/// ScheduleDAGFast - The actual "fast" list scheduler implementation.
///
class ScheduleDAGFast : public ScheduleDAGSDNodes {
private:
/// AvailableQueue - The priority queue to use for the available SUnits.
FastPriorityQueue AvailableQueue;
/// LiveRegDefs - A set of physical registers and their definition
/// that are "live". These nodes must be scheduled before any other nodes that
/// modifies the registers can be scheduled.
unsigned NumLiveRegs;
std::vector<SUnit*> LiveRegDefs;
std::vector<unsigned> LiveRegCycles;
public:
ScheduleDAGFast(MachineFunction &mf)
: ScheduleDAGSDNodes(mf) {}
void Schedule();
/// AddPred - adds a predecessor edge to SUnit SU.
/// This returns true if this is a new predecessor.
void AddPred(SUnit *SU, const SDep &D) {
SU->addPred(D);
}
/// RemovePred - removes a predecessor edge from SUnit SU.
/// This returns true if an edge was removed.
void RemovePred(SUnit *SU, const SDep &D) {
SU->removePred(D);
}
private:
void ReleasePred(SUnit *SU, SDep *PredEdge);
void ReleasePredecessors(SUnit *SU, unsigned CurCycle);
void ScheduleNodeBottomUp(SUnit*, unsigned);
SUnit *CopyAndMoveSuccessors(SUnit*);
void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
const TargetRegisterClass*,
const TargetRegisterClass*,
SmallVector<SUnit*, 2>&);
bool DelayForLiveRegsBottomUp(SUnit*, SmallVector<unsigned, 4>&);
void ListScheduleBottomUp();
/// ForceUnitLatencies - The fast scheduler doesn't care about real latencies.
bool ForceUnitLatencies() const { return true; }
};
} // end anonymous namespace
/// Schedule - Schedule the DAG using list scheduling.
void ScheduleDAGFast::Schedule() {
DEBUG(dbgs() << "********** List Scheduling **********\n");
NumLiveRegs = 0;
LiveRegDefs.resize(TRI->getNumRegs(), NULL);
LiveRegCycles.resize(TRI->getNumRegs(), 0);
// Build the scheduling graph.
BuildSchedGraph(NULL);
DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
SUnits[su].dumpAll(this));
// Execute the actual scheduling loop.
ListScheduleBottomUp();
}
//===----------------------------------------------------------------------===//
// Bottom-Up Scheduling
//===----------------------------------------------------------------------===//
/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
void ScheduleDAGFast::ReleasePred(SUnit *SU, SDep *PredEdge) {
SUnit *PredSU = PredEdge->getSUnit();
#ifndef NDEBUG
if (PredSU->NumSuccsLeft == 0) {
dbgs() << "*** Scheduling failed! ***\n";
PredSU->dump(this);
dbgs() << " has been released too many times!\n";
llvm_unreachable(0);
}
#endif
--PredSU->NumSuccsLeft;
// If all the node's successors are scheduled, this node is ready
// to be scheduled. Ignore the special EntrySU node.
if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
PredSU->isAvailable = true;
AvailableQueue.push(PredSU);
}
}
void ScheduleDAGFast::ReleasePredecessors(SUnit *SU, unsigned CurCycle) {
// Bottom up: release predecessors
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
I != E; ++I) {
ReleasePred(SU, &*I);
if (I->isAssignedRegDep()) {
// This is a physical register dependency and it's impossible or
// expensive to copy the register. Make sure nothing that can
// clobber the register is scheduled between the predecessor and
// this node.
if (!LiveRegDefs[I->getReg()]) {
++NumLiveRegs;
LiveRegDefs[I->getReg()] = I->getSUnit();
LiveRegCycles[I->getReg()] = CurCycle;
}
}
}
}
/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
/// count of its predecessors. If a predecessor pending count is zero, add it to
/// the Available queue.
void ScheduleDAGFast::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
DEBUG(SU->dump(this));
assert(CurCycle >= SU->getHeight() && "Node scheduled below its height!");
SU->setHeightToAtLeast(CurCycle);
Sequence.push_back(SU);
ReleasePredecessors(SU, CurCycle);
// Release all the implicit physical register defs that are live.
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I) {
if (I->isAssignedRegDep()) {
if (LiveRegCycles[I->getReg()] == I->getSUnit()->getHeight()) {
assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
assert(LiveRegDefs[I->getReg()] == SU &&
"Physical register dependency violated?");
--NumLiveRegs;
LiveRegDefs[I->getReg()] = NULL;
LiveRegCycles[I->getReg()] = 0;
}
}
}
SU->isScheduled = true;
}
/// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
/// successors to the newly created node.
SUnit *ScheduleDAGFast::CopyAndMoveSuccessors(SUnit *SU) {
if (SU->getNode()->getFlaggedNode())
return NULL;
SDNode *N = SU->getNode();
if (!N)
return NULL;
SUnit *NewSU;
bool TryUnfold = false;
for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
EVT VT = N->getValueType(i);
if (VT == MVT::Flag)
return NULL;
else if (VT == MVT::Other)
TryUnfold = true;
}
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
const SDValue &Op = N->getOperand(i);
EVT VT = Op.getNode()->getValueType(Op.getResNo());
if (VT == MVT::Flag)
return NULL;
}
if (TryUnfold) {
SmallVector<SDNode*, 2> NewNodes;
if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
return NULL;
DEBUG(dbgs() << "Unfolding SU # " << SU->NodeNum << "\n");
assert(NewNodes.size() == 2 && "Expected a load folding node!");
N = NewNodes[1];
SDNode *LoadNode = NewNodes[0];
unsigned NumVals = N->getNumValues();
unsigned OldNumVals = SU->getNode()->getNumValues();
for (unsigned i = 0; i != NumVals; ++i)
DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
SDValue(LoadNode, 1));
SUnit *NewSU = NewSUnit(N);
assert(N->getNodeId() == -1 && "Node already inserted!");
N->setNodeId(NewSU->NodeNum);
const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
NewSU->isTwoAddress = true;
break;
}
}
if (TID.isCommutable())
NewSU->isCommutable = true;
// LoadNode may already exist. This can happen when there is another
// load from the same location and producing the same type of value
// but it has different alignment or volatileness.
bool isNewLoad = true;
SUnit *LoadSU;
if (LoadNode->getNodeId() != -1) {
LoadSU = &SUnits[LoadNode->getNodeId()];
isNewLoad = false;
} else {
LoadSU = NewSUnit(LoadNode);
LoadNode->setNodeId(LoadSU->NodeNum);
}
SDep ChainPred;
SmallVector<SDep, 4> ChainSuccs;
SmallVector<SDep, 4> LoadPreds;
SmallVector<SDep, 4> NodePreds;
SmallVector<SDep, 4> NodeSuccs;
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
I != E; ++I) {
if (I->isCtrl())
ChainPred = *I;
else if (I->getSUnit()->getNode() &&
I->getSUnit()->getNode()->isOperandOf(LoadNode))
LoadPreds.push_back(*I);
else
NodePreds.push_back(*I);
}
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I) {
if (I->isCtrl())
ChainSuccs.push_back(*I);
else
NodeSuccs.push_back(*I);
}
if (ChainPred.getSUnit()) {
RemovePred(SU, ChainPred);
if (isNewLoad)
AddPred(LoadSU, ChainPred);
}
for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
const SDep &Pred = LoadPreds[i];
RemovePred(SU, Pred);
if (isNewLoad) {
AddPred(LoadSU, Pred);
}
}
for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
const SDep &Pred = NodePreds[i];
RemovePred(SU, Pred);
AddPred(NewSU, Pred);
}
for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
SDep D = NodeSuccs[i];
SUnit *SuccDep = D.getSUnit();
D.setSUnit(SU);
RemovePred(SuccDep, D);
D.setSUnit(NewSU);
AddPred(SuccDep, D);
}
for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
SDep D = ChainSuccs[i];
SUnit *SuccDep = D.getSUnit();
D.setSUnit(SU);
RemovePred(SuccDep, D);
if (isNewLoad) {
D.setSUnit(LoadSU);
AddPred(SuccDep, D);
}
}
if (isNewLoad) {
AddPred(NewSU, SDep(LoadSU, SDep::Order, LoadSU->Latency));
}
++NumUnfolds;
if (NewSU->NumSuccsLeft == 0) {
NewSU->isAvailable = true;
return NewSU;
}
SU = NewSU;
}
DEBUG(dbgs() << "Duplicating SU # " << SU->NodeNum << "\n");
NewSU = Clone(SU);
// New SUnit has the exact same predecessors.
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
I != E; ++I)
if (!I->isArtificial())
AddPred(NewSU, *I);
// Only copy scheduled successors. Cut them from old node's successor
// list and move them over.
SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I) {
if (I->isArtificial())
continue;
SUnit *SuccSU = I->getSUnit();
if (SuccSU->isScheduled) {
SDep D = *I;
D.setSUnit(NewSU);
AddPred(SuccSU, D);
D.setSUnit(SU);
DelDeps.push_back(std::make_pair(SuccSU, D));
}
}
for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
RemovePred(DelDeps[i].first, DelDeps[i].second);
++NumDups;
return NewSU;
}
/// InsertCopiesAndMoveSuccs - Insert register copies and move all
/// scheduled successors of the given SUnit to the last copy.
void ScheduleDAGFast::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
const TargetRegisterClass *DestRC,
const TargetRegisterClass *SrcRC,
SmallVector<SUnit*, 2> &Copies) {
SUnit *CopyFromSU = NewSUnit(static_cast<SDNode *>(NULL));
CopyFromSU->CopySrcRC = SrcRC;
CopyFromSU->CopyDstRC = DestRC;
SUnit *CopyToSU = NewSUnit(static_cast<SDNode *>(NULL));
CopyToSU->CopySrcRC = DestRC;
CopyToSU->CopyDstRC = SrcRC;
// Only copy scheduled successors. Cut them from old node's successor
// list and move them over.
SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I) {
if (I->isArtificial())
continue;
SUnit *SuccSU = I->getSUnit();
if (SuccSU->isScheduled) {
SDep D = *I;
D.setSUnit(CopyToSU);
AddPred(SuccSU, D);
DelDeps.push_back(std::make_pair(SuccSU, *I));
}
}
for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
RemovePred(DelDeps[i].first, DelDeps[i].second);
}
AddPred(CopyFromSU, SDep(SU, SDep::Data, SU->Latency, Reg));
AddPred(CopyToSU, SDep(CopyFromSU, SDep::Data, CopyFromSU->Latency, 0));
Copies.push_back(CopyFromSU);
Copies.push_back(CopyToSU);
++NumPRCopies;
}
/// getPhysicalRegisterVT - Returns the ValueType of the physical register
/// definition of the specified node.
/// FIXME: Move to SelectionDAG?
static EVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
const TargetInstrInfo *TII) {
const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
assert(TID.ImplicitDefs && "Physical reg def must be in implicit def list!");
unsigned NumRes = TID.getNumDefs();
for (const unsigned *ImpDef = TID.getImplicitDefs(); *ImpDef; ++ImpDef) {
if (Reg == *ImpDef)
break;
++NumRes;
}
return N->getValueType(NumRes);
}
/// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
/// scheduling of the given node to satisfy live physical register dependencies.
/// If the specific node is the last one that's available to schedule, do
/// whatever is necessary (i.e. backtracking or cloning) to make it possible.
bool ScheduleDAGFast::DelayForLiveRegsBottomUp(SUnit *SU,
SmallVector<unsigned, 4> &LRegs){
if (NumLiveRegs == 0)
return false;
SmallSet<unsigned, 4> RegAdded;
// If this node would clobber any "live" register, then it's not ready.
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
I != E; ++I) {
if (I->isAssignedRegDep()) {
unsigned Reg = I->getReg();
if (LiveRegDefs[Reg] && LiveRegDefs[Reg] != I->getSUnit()) {
if (RegAdded.insert(Reg))
LRegs.push_back(Reg);
}
for (const unsigned *Alias = TRI->getAliasSet(Reg);
*Alias; ++Alias)
if (LiveRegDefs[*Alias] && LiveRegDefs[*Alias] != I->getSUnit()) {
if (RegAdded.insert(*Alias))
LRegs.push_back(*Alias);
}
}
}
for (SDNode *Node = SU->getNode(); Node; Node = Node->getFlaggedNode()) {
if (!Node->isMachineOpcode())
continue;
const TargetInstrDesc &TID = TII->get(Node->getMachineOpcode());
if (!TID.ImplicitDefs)
continue;
for (const unsigned *Reg = TID.ImplicitDefs; *Reg; ++Reg) {
if (LiveRegDefs[*Reg] && LiveRegDefs[*Reg] != SU) {
if (RegAdded.insert(*Reg))
LRegs.push_back(*Reg);
}
for (const unsigned *Alias = TRI->getAliasSet(*Reg);
*Alias; ++Alias)
if (LiveRegDefs[*Alias] && LiveRegDefs[*Alias] != SU) {
if (RegAdded.insert(*Alias))
LRegs.push_back(*Alias);
}
}
}
return !LRegs.empty();
}
/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
/// schedulers.
void ScheduleDAGFast::ListScheduleBottomUp() {
unsigned CurCycle = 0;
// Release any predecessors of the special Exit node.
ReleasePredecessors(&ExitSU, CurCycle);
// Add root to Available queue.
if (!SUnits.empty()) {
SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
RootSU->isAvailable = true;
AvailableQueue.push(RootSU);
}
// While Available queue is not empty, grab the node with the highest
// priority. If it is not ready put it back. Schedule the node.
SmallVector<SUnit*, 4> NotReady;
DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
Sequence.reserve(SUnits.size());
while (!AvailableQueue.empty()) {
bool Delayed = false;
LRegsMap.clear();
SUnit *CurSU = AvailableQueue.pop();
while (CurSU) {
SmallVector<unsigned, 4> LRegs;
if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
break;
Delayed = true;
LRegsMap.insert(std::make_pair(CurSU, LRegs));
CurSU->isPending = true; // This SU is not in AvailableQueue right now.
NotReady.push_back(CurSU);
CurSU = AvailableQueue.pop();
}
// All candidates are delayed due to live physical reg dependencies.
// Try code duplication or inserting cross class copies
// to resolve it.
if (Delayed && !CurSU) {
if (!CurSU) {
// Try duplicating the nodes that produces these
// "expensive to copy" values to break the dependency. In case even
// that doesn't work, insert cross class copies.
SUnit *TrySU = NotReady[0];
SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
assert(LRegs.size() == 1 && "Can't handle this yet!");
unsigned Reg = LRegs[0];
SUnit *LRDef = LiveRegDefs[Reg];
EVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
const TargetRegisterClass *RC =
TRI->getPhysicalRegisterRegClass(Reg, VT);
const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
// If cross copy register class is null, then it must be possible copy
// the value directly. Do not try duplicate the def.
SUnit *NewDef = 0;
if (DestRC)
NewDef = CopyAndMoveSuccessors(LRDef);
else
DestRC = RC;
if (!NewDef) {
// Issue copies, these can be expensive cross register class copies.
SmallVector<SUnit*, 2> Copies;
InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
DEBUG(dbgs() << "Adding an edge from SU # " << TrySU->NodeNum
<< " to SU #" << Copies.front()->NodeNum << "\n");
AddPred(TrySU, SDep(Copies.front(), SDep::Order, /*Latency=*/1,
/*Reg=*/0, /*isNormalMemory=*/false,
/*isMustAlias=*/false, /*isArtificial=*/true));
NewDef = Copies.back();
}
DEBUG(dbgs() << "Adding an edge from SU # " << NewDef->NodeNum
<< " to SU #" << TrySU->NodeNum << "\n");
LiveRegDefs[Reg] = NewDef;
AddPred(NewDef, SDep(TrySU, SDep::Order, /*Latency=*/1,
/*Reg=*/0, /*isNormalMemory=*/false,
/*isMustAlias=*/false, /*isArtificial=*/true));
TrySU->isAvailable = false;
CurSU = NewDef;
}
if (!CurSU) {
llvm_unreachable("Unable to resolve live physical register dependencies!");
}
}
// Add the nodes that aren't ready back onto the available list.
for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
NotReady[i]->isPending = false;
// May no longer be available due to backtracking.
if (NotReady[i]->isAvailable)
AvailableQueue.push(NotReady[i]);
}
NotReady.clear();
if (CurSU)
ScheduleNodeBottomUp(CurSU, CurCycle);
++CurCycle;
}
// Reverse the order since it is bottom up.
std::reverse(Sequence.begin(), Sequence.end());
#ifndef NDEBUG
VerifySchedule(/*isBottomUp=*/true);
#endif
}
//===----------------------------------------------------------------------===//
// Public Constructor Functions
//===----------------------------------------------------------------------===//
llvm::ScheduleDAGSDNodes *
llvm::createFastDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) {
return new ScheduleDAGFast(*IS->MF);
}