mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-02-01 05:01:59 +01:00
efc9f3486a
This patch introduces new APIs to support resource tracking and removal in Orc. It is intended as a thread-safe generalization of the removeModule concept from OrcV1. Clients can now create ResourceTracker objects (using JITDylib::createResourceTracker) to track resources for each MaterializationUnit (code, data, aliases, absolute symbols, etc.) added to the JIT. Every MaterializationUnit will be associated with a ResourceTracker, and ResourceTrackers can be re-used for multiple MaterializationUnits. Each JITDylib has a default ResourceTracker that will be used for MaterializationUnits added to that JITDylib if no ResourceTracker is explicitly specified. Two operations can be performed on ResourceTrackers: transferTo and remove. The transferTo operation transfers tracking of the resources to a different ResourceTracker object, allowing ResourceTrackers to be merged to reduce administrative overhead (the source tracker is invalidated in the process). The remove operation removes all resources associated with a ResourceTracker, including any symbols defined by MaterializationUnits associated with the tracker, and also invalidates the tracker. These operations are thread safe, and should work regardless of the the state of the MaterializationUnits. In the case of resource transfer any existing resources associated with the source tracker will be transferred to the destination tracker, and all future resources for those units will be automatically associated with the destination tracker. In the case of resource removal all already-allocated resources will be deallocated, any if any program representations associated with the tracker have not been compiled yet they will be destroyed. If any program representations are currently being compiled then they will be prevented from completing: their MaterializationResponsibility will return errors on any attempt to update the JIT state. Clients (usually Layer writers) wishing to track resources can implement the ResourceManager API to receive notifications when ResourceTrackers are transferred or removed. The MaterializationResponsibility::withResourceKeyDo method can be used to create associations between the key for a ResourceTracker and an allocated resource in a thread-safe way. RTDyldObjectLinkingLayer and ObjectLinkingLayer are updated to use the ResourceManager API to enable tracking and removal of memory allocated by the JIT linker. The new JITDylib::clear method can be used to trigger removal of every ResourceTracker associated with the JITDylib (note that this will only remove resources for the JITDylib, it does not run static destructors). This patch includes unit tests showing basic usage. A follow-up patch will update the Kaleidoscope and BuildingAJIT tutorial series to OrcV2 and will use this API to release code associated with anonymous expressions.
1452 lines
52 KiB
C++
1452 lines
52 KiB
C++
//===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Implementation of the MC-JIT runtime dynamic linker.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ExecutionEngine/RuntimeDyld.h"
|
|
#include "RuntimeDyldCOFF.h"
|
|
#include "RuntimeDyldELF.h"
|
|
#include "RuntimeDyldImpl.h"
|
|
#include "RuntimeDyldMachO.h"
|
|
#include "llvm/Object/COFF.h"
|
|
#include "llvm/Object/ELFObjectFile.h"
|
|
#include "llvm/Support/Alignment.h"
|
|
#include "llvm/Support/MSVCErrorWorkarounds.h"
|
|
#include "llvm/Support/ManagedStatic.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include <mutex>
|
|
|
|
#include <future>
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::object;
|
|
|
|
#define DEBUG_TYPE "dyld"
|
|
|
|
namespace {
|
|
|
|
enum RuntimeDyldErrorCode {
|
|
GenericRTDyldError = 1
|
|
};
|
|
|
|
// FIXME: This class is only here to support the transition to llvm::Error. It
|
|
// will be removed once this transition is complete. Clients should prefer to
|
|
// deal with the Error value directly, rather than converting to error_code.
|
|
class RuntimeDyldErrorCategory : public std::error_category {
|
|
public:
|
|
const char *name() const noexcept override { return "runtimedyld"; }
|
|
|
|
std::string message(int Condition) const override {
|
|
switch (static_cast<RuntimeDyldErrorCode>(Condition)) {
|
|
case GenericRTDyldError: return "Generic RuntimeDyld error";
|
|
}
|
|
llvm_unreachable("Unrecognized RuntimeDyldErrorCode");
|
|
}
|
|
};
|
|
|
|
static ManagedStatic<RuntimeDyldErrorCategory> RTDyldErrorCategory;
|
|
|
|
}
|
|
|
|
char RuntimeDyldError::ID = 0;
|
|
|
|
void RuntimeDyldError::log(raw_ostream &OS) const {
|
|
OS << ErrMsg << "\n";
|
|
}
|
|
|
|
std::error_code RuntimeDyldError::convertToErrorCode() const {
|
|
return std::error_code(GenericRTDyldError, *RTDyldErrorCategory);
|
|
}
|
|
|
|
// Empty out-of-line virtual destructor as the key function.
|
|
RuntimeDyldImpl::~RuntimeDyldImpl() {}
|
|
|
|
// Pin LoadedObjectInfo's vtables to this file.
|
|
void RuntimeDyld::LoadedObjectInfo::anchor() {}
|
|
|
|
namespace llvm {
|
|
|
|
void RuntimeDyldImpl::registerEHFrames() {}
|
|
|
|
void RuntimeDyldImpl::deregisterEHFrames() {
|
|
MemMgr.deregisterEHFrames();
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
static void dumpSectionMemory(const SectionEntry &S, StringRef State) {
|
|
dbgs() << "----- Contents of section " << S.getName() << " " << State
|
|
<< " -----";
|
|
|
|
if (S.getAddress() == nullptr) {
|
|
dbgs() << "\n <section not emitted>\n";
|
|
return;
|
|
}
|
|
|
|
const unsigned ColsPerRow = 16;
|
|
|
|
uint8_t *DataAddr = S.getAddress();
|
|
uint64_t LoadAddr = S.getLoadAddress();
|
|
|
|
unsigned StartPadding = LoadAddr & (ColsPerRow - 1);
|
|
unsigned BytesRemaining = S.getSize();
|
|
|
|
if (StartPadding) {
|
|
dbgs() << "\n" << format("0x%016" PRIx64,
|
|
LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":";
|
|
while (StartPadding--)
|
|
dbgs() << " ";
|
|
}
|
|
|
|
while (BytesRemaining > 0) {
|
|
if ((LoadAddr & (ColsPerRow - 1)) == 0)
|
|
dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":";
|
|
|
|
dbgs() << " " << format("%02x", *DataAddr);
|
|
|
|
++DataAddr;
|
|
++LoadAddr;
|
|
--BytesRemaining;
|
|
}
|
|
|
|
dbgs() << "\n";
|
|
}
|
|
#endif
|
|
|
|
// Resolve the relocations for all symbols we currently know about.
|
|
void RuntimeDyldImpl::resolveRelocations() {
|
|
std::lock_guard<sys::Mutex> locked(lock);
|
|
|
|
// Print out the sections prior to relocation.
|
|
LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i)
|
|
dumpSectionMemory(Sections[i], "before relocations"););
|
|
|
|
// First, resolve relocations associated with external symbols.
|
|
if (auto Err = resolveExternalSymbols()) {
|
|
HasError = true;
|
|
ErrorStr = toString(std::move(Err));
|
|
}
|
|
|
|
resolveLocalRelocations();
|
|
|
|
// Print out sections after relocation.
|
|
LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i)
|
|
dumpSectionMemory(Sections[i], "after relocations"););
|
|
}
|
|
|
|
void RuntimeDyldImpl::resolveLocalRelocations() {
|
|
// Iterate over all outstanding relocations
|
|
for (auto it = Relocations.begin(), e = Relocations.end(); it != e; ++it) {
|
|
// The Section here (Sections[i]) refers to the section in which the
|
|
// symbol for the relocation is located. The SectionID in the relocation
|
|
// entry provides the section to which the relocation will be applied.
|
|
int Idx = it->first;
|
|
uint64_t Addr = Sections[Idx].getLoadAddress();
|
|
LLVM_DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t"
|
|
<< format("%p", (uintptr_t)Addr) << "\n");
|
|
resolveRelocationList(it->second, Addr);
|
|
}
|
|
Relocations.clear();
|
|
}
|
|
|
|
void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
|
|
uint64_t TargetAddress) {
|
|
std::lock_guard<sys::Mutex> locked(lock);
|
|
for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
|
|
if (Sections[i].getAddress() == LocalAddress) {
|
|
reassignSectionAddress(i, TargetAddress);
|
|
return;
|
|
}
|
|
}
|
|
llvm_unreachable("Attempting to remap address of unknown section!");
|
|
}
|
|
|
|
static Error getOffset(const SymbolRef &Sym, SectionRef Sec,
|
|
uint64_t &Result) {
|
|
Expected<uint64_t> AddressOrErr = Sym.getAddress();
|
|
if (!AddressOrErr)
|
|
return AddressOrErr.takeError();
|
|
Result = *AddressOrErr - Sec.getAddress();
|
|
return Error::success();
|
|
}
|
|
|
|
Expected<RuntimeDyldImpl::ObjSectionToIDMap>
|
|
RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) {
|
|
std::lock_guard<sys::Mutex> locked(lock);
|
|
|
|
// Save information about our target
|
|
Arch = (Triple::ArchType)Obj.getArch();
|
|
IsTargetLittleEndian = Obj.isLittleEndian();
|
|
setMipsABI(Obj);
|
|
|
|
// Compute the memory size required to load all sections to be loaded
|
|
// and pass this information to the memory manager
|
|
if (MemMgr.needsToReserveAllocationSpace()) {
|
|
uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0;
|
|
uint32_t CodeAlign = 1, RODataAlign = 1, RWDataAlign = 1;
|
|
if (auto Err = computeTotalAllocSize(Obj,
|
|
CodeSize, CodeAlign,
|
|
RODataSize, RODataAlign,
|
|
RWDataSize, RWDataAlign))
|
|
return std::move(Err);
|
|
MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign,
|
|
RWDataSize, RWDataAlign);
|
|
}
|
|
|
|
// Used sections from the object file
|
|
ObjSectionToIDMap LocalSections;
|
|
|
|
// Common symbols requiring allocation, with their sizes and alignments
|
|
CommonSymbolList CommonSymbolsToAllocate;
|
|
|
|
uint64_t CommonSize = 0;
|
|
uint32_t CommonAlign = 0;
|
|
|
|
// First, collect all weak and common symbols. We need to know if stronger
|
|
// definitions occur elsewhere.
|
|
JITSymbolResolver::LookupSet ResponsibilitySet;
|
|
{
|
|
JITSymbolResolver::LookupSet Symbols;
|
|
for (auto &Sym : Obj.symbols()) {
|
|
Expected<uint32_t> FlagsOrErr = Sym.getFlags();
|
|
if (!FlagsOrErr)
|
|
// TODO: Test this error.
|
|
return FlagsOrErr.takeError();
|
|
if ((*FlagsOrErr & SymbolRef::SF_Common) ||
|
|
(*FlagsOrErr & SymbolRef::SF_Weak)) {
|
|
// Get symbol name.
|
|
if (auto NameOrErr = Sym.getName())
|
|
Symbols.insert(*NameOrErr);
|
|
else
|
|
return NameOrErr.takeError();
|
|
}
|
|
}
|
|
|
|
if (auto ResultOrErr = Resolver.getResponsibilitySet(Symbols))
|
|
ResponsibilitySet = std::move(*ResultOrErr);
|
|
else
|
|
return ResultOrErr.takeError();
|
|
}
|
|
|
|
// Parse symbols
|
|
LLVM_DEBUG(dbgs() << "Parse symbols:\n");
|
|
for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
|
|
++I) {
|
|
Expected<uint32_t> FlagsOrErr = I->getFlags();
|
|
if (!FlagsOrErr)
|
|
// TODO: Test this error.
|
|
return FlagsOrErr.takeError();
|
|
|
|
// Skip undefined symbols.
|
|
if (*FlagsOrErr & SymbolRef::SF_Undefined)
|
|
continue;
|
|
|
|
// Get the symbol type.
|
|
object::SymbolRef::Type SymType;
|
|
if (auto SymTypeOrErr = I->getType())
|
|
SymType = *SymTypeOrErr;
|
|
else
|
|
return SymTypeOrErr.takeError();
|
|
|
|
// Get symbol name.
|
|
StringRef Name;
|
|
if (auto NameOrErr = I->getName())
|
|
Name = *NameOrErr;
|
|
else
|
|
return NameOrErr.takeError();
|
|
|
|
// Compute JIT symbol flags.
|
|
auto JITSymFlags = getJITSymbolFlags(*I);
|
|
if (!JITSymFlags)
|
|
return JITSymFlags.takeError();
|
|
|
|
// If this is a weak definition, check to see if there's a strong one.
|
|
// If there is, skip this symbol (we won't be providing it: the strong
|
|
// definition will). If there's no strong definition, make this definition
|
|
// strong.
|
|
if (JITSymFlags->isWeak() || JITSymFlags->isCommon()) {
|
|
// First check whether there's already a definition in this instance.
|
|
if (GlobalSymbolTable.count(Name))
|
|
continue;
|
|
|
|
// If we're not responsible for this symbol, skip it.
|
|
if (!ResponsibilitySet.count(Name))
|
|
continue;
|
|
|
|
// Otherwise update the flags on the symbol to make this definition
|
|
// strong.
|
|
if (JITSymFlags->isWeak())
|
|
*JITSymFlags &= ~JITSymbolFlags::Weak;
|
|
if (JITSymFlags->isCommon()) {
|
|
*JITSymFlags &= ~JITSymbolFlags::Common;
|
|
uint32_t Align = I->getAlignment();
|
|
uint64_t Size = I->getCommonSize();
|
|
if (!CommonAlign)
|
|
CommonAlign = Align;
|
|
CommonSize = alignTo(CommonSize, Align) + Size;
|
|
CommonSymbolsToAllocate.push_back(*I);
|
|
}
|
|
}
|
|
|
|
if (*FlagsOrErr & SymbolRef::SF_Absolute &&
|
|
SymType != object::SymbolRef::ST_File) {
|
|
uint64_t Addr = 0;
|
|
if (auto AddrOrErr = I->getAddress())
|
|
Addr = *AddrOrErr;
|
|
else
|
|
return AddrOrErr.takeError();
|
|
|
|
unsigned SectionID = AbsoluteSymbolSection;
|
|
|
|
LLVM_DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Name
|
|
<< " SID: " << SectionID
|
|
<< " Offset: " << format("%p", (uintptr_t)Addr)
|
|
<< " flags: " << *FlagsOrErr << "\n");
|
|
GlobalSymbolTable[Name] = SymbolTableEntry(SectionID, Addr, *JITSymFlags);
|
|
} else if (SymType == object::SymbolRef::ST_Function ||
|
|
SymType == object::SymbolRef::ST_Data ||
|
|
SymType == object::SymbolRef::ST_Unknown ||
|
|
SymType == object::SymbolRef::ST_Other) {
|
|
|
|
section_iterator SI = Obj.section_end();
|
|
if (auto SIOrErr = I->getSection())
|
|
SI = *SIOrErr;
|
|
else
|
|
return SIOrErr.takeError();
|
|
|
|
if (SI == Obj.section_end())
|
|
continue;
|
|
|
|
// Get symbol offset.
|
|
uint64_t SectOffset;
|
|
if (auto Err = getOffset(*I, *SI, SectOffset))
|
|
return std::move(Err);
|
|
|
|
bool IsCode = SI->isText();
|
|
unsigned SectionID;
|
|
if (auto SectionIDOrErr =
|
|
findOrEmitSection(Obj, *SI, IsCode, LocalSections))
|
|
SectionID = *SectionIDOrErr;
|
|
else
|
|
return SectionIDOrErr.takeError();
|
|
|
|
LLVM_DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name
|
|
<< " SID: " << SectionID
|
|
<< " Offset: " << format("%p", (uintptr_t)SectOffset)
|
|
<< " flags: " << *FlagsOrErr << "\n");
|
|
GlobalSymbolTable[Name] =
|
|
SymbolTableEntry(SectionID, SectOffset, *JITSymFlags);
|
|
}
|
|
}
|
|
|
|
// Allocate common symbols
|
|
if (auto Err = emitCommonSymbols(Obj, CommonSymbolsToAllocate, CommonSize,
|
|
CommonAlign))
|
|
return std::move(Err);
|
|
|
|
// Parse and process relocations
|
|
LLVM_DEBUG(dbgs() << "Parse relocations:\n");
|
|
for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
|
|
SI != SE; ++SI) {
|
|
StubMap Stubs;
|
|
|
|
Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection();
|
|
if (!RelSecOrErr)
|
|
return RelSecOrErr.takeError();
|
|
|
|
section_iterator RelocatedSection = *RelSecOrErr;
|
|
if (RelocatedSection == SE)
|
|
continue;
|
|
|
|
relocation_iterator I = SI->relocation_begin();
|
|
relocation_iterator E = SI->relocation_end();
|
|
|
|
if (I == E && !ProcessAllSections)
|
|
continue;
|
|
|
|
bool IsCode = RelocatedSection->isText();
|
|
unsigned SectionID = 0;
|
|
if (auto SectionIDOrErr = findOrEmitSection(Obj, *RelocatedSection, IsCode,
|
|
LocalSections))
|
|
SectionID = *SectionIDOrErr;
|
|
else
|
|
return SectionIDOrErr.takeError();
|
|
|
|
LLVM_DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
|
|
|
|
for (; I != E;)
|
|
if (auto IOrErr = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs))
|
|
I = *IOrErr;
|
|
else
|
|
return IOrErr.takeError();
|
|
|
|
// If there is a NotifyStubEmitted callback set, call it to register any
|
|
// stubs created for this section.
|
|
if (NotifyStubEmitted) {
|
|
StringRef FileName = Obj.getFileName();
|
|
StringRef SectionName = Sections[SectionID].getName();
|
|
for (auto &KV : Stubs) {
|
|
|
|
auto &VR = KV.first;
|
|
uint64_t StubAddr = KV.second;
|
|
|
|
// If this is a named stub, just call NotifyStubEmitted.
|
|
if (VR.SymbolName) {
|
|
NotifyStubEmitted(FileName, SectionName, VR.SymbolName, SectionID,
|
|
StubAddr);
|
|
continue;
|
|
}
|
|
|
|
// Otherwise we will have to try a reverse lookup on the globla symbol table.
|
|
for (auto &GSTMapEntry : GlobalSymbolTable) {
|
|
StringRef SymbolName = GSTMapEntry.first();
|
|
auto &GSTEntry = GSTMapEntry.second;
|
|
if (GSTEntry.getSectionID() == VR.SectionID &&
|
|
GSTEntry.getOffset() == VR.Offset) {
|
|
NotifyStubEmitted(FileName, SectionName, SymbolName, SectionID,
|
|
StubAddr);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Process remaining sections
|
|
if (ProcessAllSections) {
|
|
LLVM_DEBUG(dbgs() << "Process remaining sections:\n");
|
|
for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
|
|
SI != SE; ++SI) {
|
|
|
|
/* Ignore already loaded sections */
|
|
if (LocalSections.find(*SI) != LocalSections.end())
|
|
continue;
|
|
|
|
bool IsCode = SI->isText();
|
|
if (auto SectionIDOrErr =
|
|
findOrEmitSection(Obj, *SI, IsCode, LocalSections))
|
|
LLVM_DEBUG(dbgs() << "\tSectionID: " << (*SectionIDOrErr) << "\n");
|
|
else
|
|
return SectionIDOrErr.takeError();
|
|
}
|
|
}
|
|
|
|
// Give the subclasses a chance to tie-up any loose ends.
|
|
if (auto Err = finalizeLoad(Obj, LocalSections))
|
|
return std::move(Err);
|
|
|
|
// for (auto E : LocalSections)
|
|
// llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n";
|
|
|
|
return LocalSections;
|
|
}
|
|
|
|
// A helper method for computeTotalAllocSize.
|
|
// Computes the memory size required to allocate sections with the given sizes,
|
|
// assuming that all sections are allocated with the given alignment
|
|
static uint64_t
|
|
computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes,
|
|
uint64_t Alignment) {
|
|
uint64_t TotalSize = 0;
|
|
for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) {
|
|
uint64_t AlignedSize =
|
|
(SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment;
|
|
TotalSize += AlignedSize;
|
|
}
|
|
return TotalSize;
|
|
}
|
|
|
|
static bool isRequiredForExecution(const SectionRef Section) {
|
|
const ObjectFile *Obj = Section.getObject();
|
|
if (isa<object::ELFObjectFileBase>(Obj))
|
|
return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
|
|
if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) {
|
|
const coff_section *CoffSection = COFFObj->getCOFFSection(Section);
|
|
// Avoid loading zero-sized COFF sections.
|
|
// In PE files, VirtualSize gives the section size, and SizeOfRawData
|
|
// may be zero for sections with content. In Obj files, SizeOfRawData
|
|
// gives the section size, and VirtualSize is always zero. Hence
|
|
// the need to check for both cases below.
|
|
bool HasContent =
|
|
(CoffSection->VirtualSize > 0) || (CoffSection->SizeOfRawData > 0);
|
|
bool IsDiscardable =
|
|
CoffSection->Characteristics &
|
|
(COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO);
|
|
return HasContent && !IsDiscardable;
|
|
}
|
|
|
|
assert(isa<MachOObjectFile>(Obj));
|
|
return true;
|
|
}
|
|
|
|
static bool isReadOnlyData(const SectionRef Section) {
|
|
const ObjectFile *Obj = Section.getObject();
|
|
if (isa<object::ELFObjectFileBase>(Obj))
|
|
return !(ELFSectionRef(Section).getFlags() &
|
|
(ELF::SHF_WRITE | ELF::SHF_EXECINSTR));
|
|
if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
|
|
return ((COFFObj->getCOFFSection(Section)->Characteristics &
|
|
(COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
|
|
| COFF::IMAGE_SCN_MEM_READ
|
|
| COFF::IMAGE_SCN_MEM_WRITE))
|
|
==
|
|
(COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
|
|
| COFF::IMAGE_SCN_MEM_READ));
|
|
|
|
assert(isa<MachOObjectFile>(Obj));
|
|
return false;
|
|
}
|
|
|
|
static bool isZeroInit(const SectionRef Section) {
|
|
const ObjectFile *Obj = Section.getObject();
|
|
if (isa<object::ELFObjectFileBase>(Obj))
|
|
return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS;
|
|
if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
|
|
return COFFObj->getCOFFSection(Section)->Characteristics &
|
|
COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA;
|
|
|
|
auto *MachO = cast<MachOObjectFile>(Obj);
|
|
unsigned SectionType = MachO->getSectionType(Section);
|
|
return SectionType == MachO::S_ZEROFILL ||
|
|
SectionType == MachO::S_GB_ZEROFILL;
|
|
}
|
|
|
|
// Compute an upper bound of the memory size that is required to load all
|
|
// sections
|
|
Error RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj,
|
|
uint64_t &CodeSize,
|
|
uint32_t &CodeAlign,
|
|
uint64_t &RODataSize,
|
|
uint32_t &RODataAlign,
|
|
uint64_t &RWDataSize,
|
|
uint32_t &RWDataAlign) {
|
|
// Compute the size of all sections required for execution
|
|
std::vector<uint64_t> CodeSectionSizes;
|
|
std::vector<uint64_t> ROSectionSizes;
|
|
std::vector<uint64_t> RWSectionSizes;
|
|
|
|
// Collect sizes of all sections to be loaded;
|
|
// also determine the max alignment of all sections
|
|
for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
|
|
SI != SE; ++SI) {
|
|
const SectionRef &Section = *SI;
|
|
|
|
bool IsRequired = isRequiredForExecution(Section) || ProcessAllSections;
|
|
|
|
// Consider only the sections that are required to be loaded for execution
|
|
if (IsRequired) {
|
|
uint64_t DataSize = Section.getSize();
|
|
uint64_t Alignment64 = Section.getAlignment();
|
|
unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
|
|
bool IsCode = Section.isText();
|
|
bool IsReadOnly = isReadOnlyData(Section);
|
|
|
|
Expected<StringRef> NameOrErr = Section.getName();
|
|
if (!NameOrErr)
|
|
return NameOrErr.takeError();
|
|
StringRef Name = *NameOrErr;
|
|
|
|
uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section);
|
|
|
|
uint64_t PaddingSize = 0;
|
|
if (Name == ".eh_frame")
|
|
PaddingSize += 4;
|
|
if (StubBufSize != 0)
|
|
PaddingSize += getStubAlignment() - 1;
|
|
|
|
uint64_t SectionSize = DataSize + PaddingSize + StubBufSize;
|
|
|
|
// The .eh_frame section (at least on Linux) needs an extra four bytes
|
|
// padded
|
|
// with zeroes added at the end. For MachO objects, this section has a
|
|
// slightly different name, so this won't have any effect for MachO
|
|
// objects.
|
|
if (Name == ".eh_frame")
|
|
SectionSize += 4;
|
|
|
|
if (!SectionSize)
|
|
SectionSize = 1;
|
|
|
|
if (IsCode) {
|
|
CodeAlign = std::max(CodeAlign, Alignment);
|
|
CodeSectionSizes.push_back(SectionSize);
|
|
} else if (IsReadOnly) {
|
|
RODataAlign = std::max(RODataAlign, Alignment);
|
|
ROSectionSizes.push_back(SectionSize);
|
|
} else {
|
|
RWDataAlign = std::max(RWDataAlign, Alignment);
|
|
RWSectionSizes.push_back(SectionSize);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Compute Global Offset Table size. If it is not zero we
|
|
// also update alignment, which is equal to a size of a
|
|
// single GOT entry.
|
|
if (unsigned GotSize = computeGOTSize(Obj)) {
|
|
RWSectionSizes.push_back(GotSize);
|
|
RWDataAlign = std::max<uint32_t>(RWDataAlign, getGOTEntrySize());
|
|
}
|
|
|
|
// Compute the size of all common symbols
|
|
uint64_t CommonSize = 0;
|
|
uint32_t CommonAlign = 1;
|
|
for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
|
|
++I) {
|
|
Expected<uint32_t> FlagsOrErr = I->getFlags();
|
|
if (!FlagsOrErr)
|
|
// TODO: Test this error.
|
|
return FlagsOrErr.takeError();
|
|
if (*FlagsOrErr & SymbolRef::SF_Common) {
|
|
// Add the common symbols to a list. We'll allocate them all below.
|
|
uint64_t Size = I->getCommonSize();
|
|
uint32_t Align = I->getAlignment();
|
|
// If this is the first common symbol, use its alignment as the alignment
|
|
// for the common symbols section.
|
|
if (CommonSize == 0)
|
|
CommonAlign = Align;
|
|
CommonSize = alignTo(CommonSize, Align) + Size;
|
|
}
|
|
}
|
|
if (CommonSize != 0) {
|
|
RWSectionSizes.push_back(CommonSize);
|
|
RWDataAlign = std::max(RWDataAlign, CommonAlign);
|
|
}
|
|
|
|
// Compute the required allocation space for each different type of sections
|
|
// (code, read-only data, read-write data) assuming that all sections are
|
|
// allocated with the max alignment. Note that we cannot compute with the
|
|
// individual alignments of the sections, because then the required size
|
|
// depends on the order, in which the sections are allocated.
|
|
CodeSize = computeAllocationSizeForSections(CodeSectionSizes, CodeAlign);
|
|
RODataSize = computeAllocationSizeForSections(ROSectionSizes, RODataAlign);
|
|
RWDataSize = computeAllocationSizeForSections(RWSectionSizes, RWDataAlign);
|
|
|
|
return Error::success();
|
|
}
|
|
|
|
// compute GOT size
|
|
unsigned RuntimeDyldImpl::computeGOTSize(const ObjectFile &Obj) {
|
|
size_t GotEntrySize = getGOTEntrySize();
|
|
if (!GotEntrySize)
|
|
return 0;
|
|
|
|
size_t GotSize = 0;
|
|
for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
|
|
SI != SE; ++SI) {
|
|
|
|
for (const RelocationRef &Reloc : SI->relocations())
|
|
if (relocationNeedsGot(Reloc))
|
|
GotSize += GotEntrySize;
|
|
}
|
|
|
|
return GotSize;
|
|
}
|
|
|
|
// compute stub buffer size for the given section
|
|
unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj,
|
|
const SectionRef &Section) {
|
|
unsigned StubSize = getMaxStubSize();
|
|
if (StubSize == 0) {
|
|
return 0;
|
|
}
|
|
// FIXME: this is an inefficient way to handle this. We should computed the
|
|
// necessary section allocation size in loadObject by walking all the sections
|
|
// once.
|
|
unsigned StubBufSize = 0;
|
|
for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
|
|
SI != SE; ++SI) {
|
|
|
|
Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection();
|
|
if (!RelSecOrErr)
|
|
report_fatal_error(toString(RelSecOrErr.takeError()));
|
|
|
|
section_iterator RelSecI = *RelSecOrErr;
|
|
if (!(RelSecI == Section))
|
|
continue;
|
|
|
|
for (const RelocationRef &Reloc : SI->relocations())
|
|
if (relocationNeedsStub(Reloc))
|
|
StubBufSize += StubSize;
|
|
}
|
|
|
|
// Get section data size and alignment
|
|
uint64_t DataSize = Section.getSize();
|
|
uint64_t Alignment64 = Section.getAlignment();
|
|
|
|
// Add stubbuf size alignment
|
|
unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
|
|
unsigned StubAlignment = getStubAlignment();
|
|
unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
|
|
if (StubAlignment > EndAlignment)
|
|
StubBufSize += StubAlignment - EndAlignment;
|
|
return StubBufSize;
|
|
}
|
|
|
|
uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src,
|
|
unsigned Size) const {
|
|
uint64_t Result = 0;
|
|
if (IsTargetLittleEndian) {
|
|
Src += Size - 1;
|
|
while (Size--)
|
|
Result = (Result << 8) | *Src--;
|
|
} else
|
|
while (Size--)
|
|
Result = (Result << 8) | *Src++;
|
|
|
|
return Result;
|
|
}
|
|
|
|
void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst,
|
|
unsigned Size) const {
|
|
if (IsTargetLittleEndian) {
|
|
while (Size--) {
|
|
*Dst++ = Value & 0xFF;
|
|
Value >>= 8;
|
|
}
|
|
} else {
|
|
Dst += Size - 1;
|
|
while (Size--) {
|
|
*Dst-- = Value & 0xFF;
|
|
Value >>= 8;
|
|
}
|
|
}
|
|
}
|
|
|
|
Expected<JITSymbolFlags>
|
|
RuntimeDyldImpl::getJITSymbolFlags(const SymbolRef &SR) {
|
|
return JITSymbolFlags::fromObjectSymbol(SR);
|
|
}
|
|
|
|
Error RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj,
|
|
CommonSymbolList &SymbolsToAllocate,
|
|
uint64_t CommonSize,
|
|
uint32_t CommonAlign) {
|
|
if (SymbolsToAllocate.empty())
|
|
return Error::success();
|
|
|
|
// Allocate memory for the section
|
|
unsigned SectionID = Sections.size();
|
|
uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, CommonAlign, SectionID,
|
|
"<common symbols>", false);
|
|
if (!Addr)
|
|
report_fatal_error("Unable to allocate memory for common symbols!");
|
|
uint64_t Offset = 0;
|
|
Sections.push_back(
|
|
SectionEntry("<common symbols>", Addr, CommonSize, CommonSize, 0));
|
|
memset(Addr, 0, CommonSize);
|
|
|
|
LLVM_DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID
|
|
<< " new addr: " << format("%p", Addr)
|
|
<< " DataSize: " << CommonSize << "\n");
|
|
|
|
// Assign the address of each symbol
|
|
for (auto &Sym : SymbolsToAllocate) {
|
|
uint32_t Alignment = Sym.getAlignment();
|
|
uint64_t Size = Sym.getCommonSize();
|
|
StringRef Name;
|
|
if (auto NameOrErr = Sym.getName())
|
|
Name = *NameOrErr;
|
|
else
|
|
return NameOrErr.takeError();
|
|
if (Alignment) {
|
|
// This symbol has an alignment requirement.
|
|
uint64_t AlignOffset =
|
|
offsetToAlignment((uint64_t)Addr, Align(Alignment));
|
|
Addr += AlignOffset;
|
|
Offset += AlignOffset;
|
|
}
|
|
auto JITSymFlags = getJITSymbolFlags(Sym);
|
|
|
|
if (!JITSymFlags)
|
|
return JITSymFlags.takeError();
|
|
|
|
LLVM_DEBUG(dbgs() << "Allocating common symbol " << Name << " address "
|
|
<< format("%p", Addr) << "\n");
|
|
GlobalSymbolTable[Name] =
|
|
SymbolTableEntry(SectionID, Offset, std::move(*JITSymFlags));
|
|
Offset += Size;
|
|
Addr += Size;
|
|
}
|
|
|
|
return Error::success();
|
|
}
|
|
|
|
Expected<unsigned>
|
|
RuntimeDyldImpl::emitSection(const ObjectFile &Obj,
|
|
const SectionRef &Section,
|
|
bool IsCode) {
|
|
StringRef data;
|
|
uint64_t Alignment64 = Section.getAlignment();
|
|
|
|
unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
|
|
unsigned PaddingSize = 0;
|
|
unsigned StubBufSize = 0;
|
|
bool IsRequired = isRequiredForExecution(Section);
|
|
bool IsVirtual = Section.isVirtual();
|
|
bool IsZeroInit = isZeroInit(Section);
|
|
bool IsReadOnly = isReadOnlyData(Section);
|
|
uint64_t DataSize = Section.getSize();
|
|
|
|
// An alignment of 0 (at least with ELF) is identical to an alignment of 1,
|
|
// while being more "polite". Other formats do not support 0-aligned sections
|
|
// anyway, so we should guarantee that the alignment is always at least 1.
|
|
Alignment = std::max(1u, Alignment);
|
|
|
|
Expected<StringRef> NameOrErr = Section.getName();
|
|
if (!NameOrErr)
|
|
return NameOrErr.takeError();
|
|
StringRef Name = *NameOrErr;
|
|
|
|
StubBufSize = computeSectionStubBufSize(Obj, Section);
|
|
|
|
// The .eh_frame section (at least on Linux) needs an extra four bytes padded
|
|
// with zeroes added at the end. For MachO objects, this section has a
|
|
// slightly different name, so this won't have any effect for MachO objects.
|
|
if (Name == ".eh_frame")
|
|
PaddingSize = 4;
|
|
|
|
uintptr_t Allocate;
|
|
unsigned SectionID = Sections.size();
|
|
uint8_t *Addr;
|
|
const char *pData = nullptr;
|
|
|
|
// If this section contains any bits (i.e. isn't a virtual or bss section),
|
|
// grab a reference to them.
|
|
if (!IsVirtual && !IsZeroInit) {
|
|
// In either case, set the location of the unrelocated section in memory,
|
|
// since we still process relocations for it even if we're not applying them.
|
|
if (Expected<StringRef> E = Section.getContents())
|
|
data = *E;
|
|
else
|
|
return E.takeError();
|
|
pData = data.data();
|
|
}
|
|
|
|
// If there are any stubs then the section alignment needs to be at least as
|
|
// high as stub alignment or padding calculations may by incorrect when the
|
|
// section is remapped.
|
|
if (StubBufSize != 0) {
|
|
Alignment = std::max(Alignment, getStubAlignment());
|
|
PaddingSize += getStubAlignment() - 1;
|
|
}
|
|
|
|
// Some sections, such as debug info, don't need to be loaded for execution.
|
|
// Process those only if explicitly requested.
|
|
if (IsRequired || ProcessAllSections) {
|
|
Allocate = DataSize + PaddingSize + StubBufSize;
|
|
if (!Allocate)
|
|
Allocate = 1;
|
|
Addr = IsCode ? MemMgr.allocateCodeSection(Allocate, Alignment, SectionID,
|
|
Name)
|
|
: MemMgr.allocateDataSection(Allocate, Alignment, SectionID,
|
|
Name, IsReadOnly);
|
|
if (!Addr)
|
|
report_fatal_error("Unable to allocate section memory!");
|
|
|
|
// Zero-initialize or copy the data from the image
|
|
if (IsZeroInit || IsVirtual)
|
|
memset(Addr, 0, DataSize);
|
|
else
|
|
memcpy(Addr, pData, DataSize);
|
|
|
|
// Fill in any extra bytes we allocated for padding
|
|
if (PaddingSize != 0) {
|
|
memset(Addr + DataSize, 0, PaddingSize);
|
|
// Update the DataSize variable to include padding.
|
|
DataSize += PaddingSize;
|
|
|
|
// Align DataSize to stub alignment if we have any stubs (PaddingSize will
|
|
// have been increased above to account for this).
|
|
if (StubBufSize > 0)
|
|
DataSize &= -(uint64_t)getStubAlignment();
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: "
|
|
<< Name << " obj addr: " << format("%p", pData)
|
|
<< " new addr: " << format("%p", Addr) << " DataSize: "
|
|
<< DataSize << " StubBufSize: " << StubBufSize
|
|
<< " Allocate: " << Allocate << "\n");
|
|
} else {
|
|
// Even if we didn't load the section, we need to record an entry for it
|
|
// to handle later processing (and by 'handle' I mean don't do anything
|
|
// with these sections).
|
|
Allocate = 0;
|
|
Addr = nullptr;
|
|
LLVM_DEBUG(
|
|
dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
|
|
<< " obj addr: " << format("%p", data.data()) << " new addr: 0"
|
|
<< " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
|
|
<< " Allocate: " << Allocate << "\n");
|
|
}
|
|
|
|
Sections.push_back(
|
|
SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData));
|
|
|
|
// Debug info sections are linked as if their load address was zero
|
|
if (!IsRequired)
|
|
Sections.back().setLoadAddress(0);
|
|
|
|
return SectionID;
|
|
}
|
|
|
|
Expected<unsigned>
|
|
RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj,
|
|
const SectionRef &Section,
|
|
bool IsCode,
|
|
ObjSectionToIDMap &LocalSections) {
|
|
|
|
unsigned SectionID = 0;
|
|
ObjSectionToIDMap::iterator i = LocalSections.find(Section);
|
|
if (i != LocalSections.end())
|
|
SectionID = i->second;
|
|
else {
|
|
if (auto SectionIDOrErr = emitSection(Obj, Section, IsCode))
|
|
SectionID = *SectionIDOrErr;
|
|
else
|
|
return SectionIDOrErr.takeError();
|
|
LocalSections[Section] = SectionID;
|
|
}
|
|
return SectionID;
|
|
}
|
|
|
|
void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
|
|
unsigned SectionID) {
|
|
Relocations[SectionID].push_back(RE);
|
|
}
|
|
|
|
void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
|
|
StringRef SymbolName) {
|
|
// Relocation by symbol. If the symbol is found in the global symbol table,
|
|
// create an appropriate section relocation. Otherwise, add it to
|
|
// ExternalSymbolRelocations.
|
|
RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName);
|
|
if (Loc == GlobalSymbolTable.end()) {
|
|
ExternalSymbolRelocations[SymbolName].push_back(RE);
|
|
} else {
|
|
// Copy the RE since we want to modify its addend.
|
|
RelocationEntry RECopy = RE;
|
|
const auto &SymInfo = Loc->second;
|
|
RECopy.Addend += SymInfo.getOffset();
|
|
Relocations[SymInfo.getSectionID()].push_back(RECopy);
|
|
}
|
|
}
|
|
|
|
uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr,
|
|
unsigned AbiVariant) {
|
|
if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be ||
|
|
Arch == Triple::aarch64_32) {
|
|
// This stub has to be able to access the full address space,
|
|
// since symbol lookup won't necessarily find a handy, in-range,
|
|
// PLT stub for functions which could be anywhere.
|
|
// Stub can use ip0 (== x16) to calculate address
|
|
writeBytesUnaligned(0xd2e00010, Addr, 4); // movz ip0, #:abs_g3:<addr>
|
|
writeBytesUnaligned(0xf2c00010, Addr+4, 4); // movk ip0, #:abs_g2_nc:<addr>
|
|
writeBytesUnaligned(0xf2a00010, Addr+8, 4); // movk ip0, #:abs_g1_nc:<addr>
|
|
writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr>
|
|
writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0
|
|
|
|
return Addr;
|
|
} else if (Arch == Triple::arm || Arch == Triple::armeb) {
|
|
// TODO: There is only ARM far stub now. We should add the Thumb stub,
|
|
// and stubs for branches Thumb - ARM and ARM - Thumb.
|
|
writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc, [pc, #-4]
|
|
return Addr + 4;
|
|
} else if (IsMipsO32ABI || IsMipsN32ABI) {
|
|
// 0: 3c190000 lui t9,%hi(addr).
|
|
// 4: 27390000 addiu t9,t9,%lo(addr).
|
|
// 8: 03200008 jr t9.
|
|
// c: 00000000 nop.
|
|
const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
|
|
const unsigned NopInstr = 0x0;
|
|
unsigned JrT9Instr = 0x03200008;
|
|
if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_32R6 ||
|
|
(AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
|
|
JrT9Instr = 0x03200009;
|
|
|
|
writeBytesUnaligned(LuiT9Instr, Addr, 4);
|
|
writeBytesUnaligned(AdduiT9Instr, Addr + 4, 4);
|
|
writeBytesUnaligned(JrT9Instr, Addr + 8, 4);
|
|
writeBytesUnaligned(NopInstr, Addr + 12, 4);
|
|
return Addr;
|
|
} else if (IsMipsN64ABI) {
|
|
// 0: 3c190000 lui t9,%highest(addr).
|
|
// 4: 67390000 daddiu t9,t9,%higher(addr).
|
|
// 8: 0019CC38 dsll t9,t9,16.
|
|
// c: 67390000 daddiu t9,t9,%hi(addr).
|
|
// 10: 0019CC38 dsll t9,t9,16.
|
|
// 14: 67390000 daddiu t9,t9,%lo(addr).
|
|
// 18: 03200008 jr t9.
|
|
// 1c: 00000000 nop.
|
|
const unsigned LuiT9Instr = 0x3c190000, DaddiuT9Instr = 0x67390000,
|
|
DsllT9Instr = 0x19CC38;
|
|
const unsigned NopInstr = 0x0;
|
|
unsigned JrT9Instr = 0x03200008;
|
|
if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
|
|
JrT9Instr = 0x03200009;
|
|
|
|
writeBytesUnaligned(LuiT9Instr, Addr, 4);
|
|
writeBytesUnaligned(DaddiuT9Instr, Addr + 4, 4);
|
|
writeBytesUnaligned(DsllT9Instr, Addr + 8, 4);
|
|
writeBytesUnaligned(DaddiuT9Instr, Addr + 12, 4);
|
|
writeBytesUnaligned(DsllT9Instr, Addr + 16, 4);
|
|
writeBytesUnaligned(DaddiuT9Instr, Addr + 20, 4);
|
|
writeBytesUnaligned(JrT9Instr, Addr + 24, 4);
|
|
writeBytesUnaligned(NopInstr, Addr + 28, 4);
|
|
return Addr;
|
|
} else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
|
|
// Depending on which version of the ELF ABI is in use, we need to
|
|
// generate one of two variants of the stub. They both start with
|
|
// the same sequence to load the target address into r12.
|
|
writeInt32BE(Addr, 0x3D800000); // lis r12, highest(addr)
|
|
writeInt32BE(Addr+4, 0x618C0000); // ori r12, higher(addr)
|
|
writeInt32BE(Addr+8, 0x798C07C6); // sldi r12, r12, 32
|
|
writeInt32BE(Addr+12, 0x658C0000); // oris r12, r12, h(addr)
|
|
writeInt32BE(Addr+16, 0x618C0000); // ori r12, r12, l(addr)
|
|
if (AbiVariant == 2) {
|
|
// PowerPC64 stub ELFv2 ABI: The address points to the function itself.
|
|
// The address is already in r12 as required by the ABI. Branch to it.
|
|
writeInt32BE(Addr+20, 0xF8410018); // std r2, 24(r1)
|
|
writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12
|
|
writeInt32BE(Addr+28, 0x4E800420); // bctr
|
|
} else {
|
|
// PowerPC64 stub ELFv1 ABI: The address points to a function descriptor.
|
|
// Load the function address on r11 and sets it to control register. Also
|
|
// loads the function TOC in r2 and environment pointer to r11.
|
|
writeInt32BE(Addr+20, 0xF8410028); // std r2, 40(r1)
|
|
writeInt32BE(Addr+24, 0xE96C0000); // ld r11, 0(r12)
|
|
writeInt32BE(Addr+28, 0xE84C0008); // ld r2, 0(r12)
|
|
writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
|
|
writeInt32BE(Addr+36, 0xE96C0010); // ld r11, 16(r2)
|
|
writeInt32BE(Addr+40, 0x4E800420); // bctr
|
|
}
|
|
return Addr;
|
|
} else if (Arch == Triple::systemz) {
|
|
writeInt16BE(Addr, 0xC418); // lgrl %r1,.+8
|
|
writeInt16BE(Addr+2, 0x0000);
|
|
writeInt16BE(Addr+4, 0x0004);
|
|
writeInt16BE(Addr+6, 0x07F1); // brc 15,%r1
|
|
// 8-byte address stored at Addr + 8
|
|
return Addr;
|
|
} else if (Arch == Triple::x86_64) {
|
|
*Addr = 0xFF; // jmp
|
|
*(Addr+1) = 0x25; // rip
|
|
// 32-bit PC-relative address of the GOT entry will be stored at Addr+2
|
|
} else if (Arch == Triple::x86) {
|
|
*Addr = 0xE9; // 32-bit pc-relative jump.
|
|
}
|
|
return Addr;
|
|
}
|
|
|
|
// Assign an address to a symbol name and resolve all the relocations
|
|
// associated with it.
|
|
void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
|
|
uint64_t Addr) {
|
|
// The address to use for relocation resolution is not
|
|
// the address of the local section buffer. We must be doing
|
|
// a remote execution environment of some sort. Relocations can't
|
|
// be applied until all the sections have been moved. The client must
|
|
// trigger this with a call to MCJIT::finalize() or
|
|
// RuntimeDyld::resolveRelocations().
|
|
//
|
|
// Addr is a uint64_t because we can't assume the pointer width
|
|
// of the target is the same as that of the host. Just use a generic
|
|
// "big enough" type.
|
|
LLVM_DEBUG(
|
|
dbgs() << "Reassigning address for section " << SectionID << " ("
|
|
<< Sections[SectionID].getName() << "): "
|
|
<< format("0x%016" PRIx64, Sections[SectionID].getLoadAddress())
|
|
<< " -> " << format("0x%016" PRIx64, Addr) << "\n");
|
|
Sections[SectionID].setLoadAddress(Addr);
|
|
}
|
|
|
|
void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
|
|
uint64_t Value) {
|
|
for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
|
|
const RelocationEntry &RE = Relocs[i];
|
|
// Ignore relocations for sections that were not loaded
|
|
if (Sections[RE.SectionID].getAddress() == nullptr)
|
|
continue;
|
|
resolveRelocation(RE, Value);
|
|
}
|
|
}
|
|
|
|
void RuntimeDyldImpl::applyExternalSymbolRelocations(
|
|
const StringMap<JITEvaluatedSymbol> ExternalSymbolMap) {
|
|
while (!ExternalSymbolRelocations.empty()) {
|
|
|
|
StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin();
|
|
|
|
StringRef Name = i->first();
|
|
if (Name.size() == 0) {
|
|
// This is an absolute symbol, use an address of zero.
|
|
LLVM_DEBUG(dbgs() << "Resolving absolute relocations."
|
|
<< "\n");
|
|
RelocationList &Relocs = i->second;
|
|
resolveRelocationList(Relocs, 0);
|
|
} else {
|
|
uint64_t Addr = 0;
|
|
JITSymbolFlags Flags;
|
|
RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name);
|
|
if (Loc == GlobalSymbolTable.end()) {
|
|
auto RRI = ExternalSymbolMap.find(Name);
|
|
assert(RRI != ExternalSymbolMap.end() && "No result for symbol");
|
|
Addr = RRI->second.getAddress();
|
|
Flags = RRI->second.getFlags();
|
|
// The call to getSymbolAddress may have caused additional modules to
|
|
// be loaded, which may have added new entries to the
|
|
// ExternalSymbolRelocations map. Consquently, we need to update our
|
|
// iterator. This is also why retrieval of the relocation list
|
|
// associated with this symbol is deferred until below this point.
|
|
// New entries may have been added to the relocation list.
|
|
i = ExternalSymbolRelocations.find(Name);
|
|
} else {
|
|
// We found the symbol in our global table. It was probably in a
|
|
// Module that we loaded previously.
|
|
const auto &SymInfo = Loc->second;
|
|
Addr = getSectionLoadAddress(SymInfo.getSectionID()) +
|
|
SymInfo.getOffset();
|
|
Flags = SymInfo.getFlags();
|
|
}
|
|
|
|
// FIXME: Implement error handling that doesn't kill the host program!
|
|
if (!Addr)
|
|
report_fatal_error("Program used external function '" + Name +
|
|
"' which could not be resolved!");
|
|
|
|
// If Resolver returned UINT64_MAX, the client wants to handle this symbol
|
|
// manually and we shouldn't resolve its relocations.
|
|
if (Addr != UINT64_MAX) {
|
|
|
|
// Tweak the address based on the symbol flags if necessary.
|
|
// For example, this is used by RuntimeDyldMachOARM to toggle the low bit
|
|
// if the target symbol is Thumb.
|
|
Addr = modifyAddressBasedOnFlags(Addr, Flags);
|
|
|
|
LLVM_DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t"
|
|
<< format("0x%lx", Addr) << "\n");
|
|
// This list may have been updated when we called getSymbolAddress, so
|
|
// don't change this code to get the list earlier.
|
|
RelocationList &Relocs = i->second;
|
|
resolveRelocationList(Relocs, Addr);
|
|
}
|
|
}
|
|
|
|
ExternalSymbolRelocations.erase(i);
|
|
}
|
|
}
|
|
|
|
Error RuntimeDyldImpl::resolveExternalSymbols() {
|
|
StringMap<JITEvaluatedSymbol> ExternalSymbolMap;
|
|
|
|
// Resolution can trigger emission of more symbols, so iterate until
|
|
// we've resolved *everything*.
|
|
{
|
|
JITSymbolResolver::LookupSet ResolvedSymbols;
|
|
|
|
while (true) {
|
|
JITSymbolResolver::LookupSet NewSymbols;
|
|
|
|
for (auto &RelocKV : ExternalSymbolRelocations) {
|
|
StringRef Name = RelocKV.first();
|
|
if (!Name.empty() && !GlobalSymbolTable.count(Name) &&
|
|
!ResolvedSymbols.count(Name))
|
|
NewSymbols.insert(Name);
|
|
}
|
|
|
|
if (NewSymbols.empty())
|
|
break;
|
|
|
|
#ifdef _MSC_VER
|
|
using ExpectedLookupResult =
|
|
MSVCPExpected<JITSymbolResolver::LookupResult>;
|
|
#else
|
|
using ExpectedLookupResult = Expected<JITSymbolResolver::LookupResult>;
|
|
#endif
|
|
|
|
auto NewSymbolsP = std::make_shared<std::promise<ExpectedLookupResult>>();
|
|
auto NewSymbolsF = NewSymbolsP->get_future();
|
|
Resolver.lookup(NewSymbols,
|
|
[=](Expected<JITSymbolResolver::LookupResult> Result) {
|
|
NewSymbolsP->set_value(std::move(Result));
|
|
});
|
|
|
|
auto NewResolverResults = NewSymbolsF.get();
|
|
|
|
if (!NewResolverResults)
|
|
return NewResolverResults.takeError();
|
|
|
|
assert(NewResolverResults->size() == NewSymbols.size() &&
|
|
"Should have errored on unresolved symbols");
|
|
|
|
for (auto &RRKV : *NewResolverResults) {
|
|
assert(!ResolvedSymbols.count(RRKV.first) && "Redundant resolution?");
|
|
ExternalSymbolMap.insert(RRKV);
|
|
ResolvedSymbols.insert(RRKV.first);
|
|
}
|
|
}
|
|
}
|
|
|
|
applyExternalSymbolRelocations(ExternalSymbolMap);
|
|
|
|
return Error::success();
|
|
}
|
|
|
|
void RuntimeDyldImpl::finalizeAsync(
|
|
std::unique_ptr<RuntimeDyldImpl> This,
|
|
unique_function<void(object::OwningBinary<object::ObjectFile>,
|
|
std::unique_ptr<RuntimeDyld::LoadedObjectInfo>, Error)>
|
|
OnEmitted,
|
|
object::OwningBinary<object::ObjectFile> O,
|
|
std::unique_ptr<RuntimeDyld::LoadedObjectInfo> Info) {
|
|
|
|
auto SharedThis = std::shared_ptr<RuntimeDyldImpl>(std::move(This));
|
|
auto PostResolveContinuation =
|
|
[SharedThis, OnEmitted = std::move(OnEmitted), O = std::move(O),
|
|
Info = std::move(Info)](
|
|
Expected<JITSymbolResolver::LookupResult> Result) mutable {
|
|
if (!Result) {
|
|
OnEmitted(std::move(O), std::move(Info), Result.takeError());
|
|
return;
|
|
}
|
|
|
|
/// Copy the result into a StringMap, where the keys are held by value.
|
|
StringMap<JITEvaluatedSymbol> Resolved;
|
|
for (auto &KV : *Result)
|
|
Resolved[KV.first] = KV.second;
|
|
|
|
SharedThis->applyExternalSymbolRelocations(Resolved);
|
|
SharedThis->resolveLocalRelocations();
|
|
SharedThis->registerEHFrames();
|
|
std::string ErrMsg;
|
|
if (SharedThis->MemMgr.finalizeMemory(&ErrMsg))
|
|
OnEmitted(std::move(O), std::move(Info),
|
|
make_error<StringError>(std::move(ErrMsg),
|
|
inconvertibleErrorCode()));
|
|
else
|
|
OnEmitted(std::move(O), std::move(Info), Error::success());
|
|
};
|
|
|
|
JITSymbolResolver::LookupSet Symbols;
|
|
|
|
for (auto &RelocKV : SharedThis->ExternalSymbolRelocations) {
|
|
StringRef Name = RelocKV.first();
|
|
assert(!Name.empty() && "Symbol has no name?");
|
|
assert(!SharedThis->GlobalSymbolTable.count(Name) &&
|
|
"Name already processed. RuntimeDyld instances can not be re-used "
|
|
"when finalizing with finalizeAsync.");
|
|
Symbols.insert(Name);
|
|
}
|
|
|
|
if (!Symbols.empty()) {
|
|
SharedThis->Resolver.lookup(Symbols, std::move(PostResolveContinuation));
|
|
} else
|
|
PostResolveContinuation(std::map<StringRef, JITEvaluatedSymbol>());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// RuntimeDyld class implementation
|
|
|
|
uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress(
|
|
const object::SectionRef &Sec) const {
|
|
|
|
auto I = ObjSecToIDMap.find(Sec);
|
|
if (I != ObjSecToIDMap.end())
|
|
return RTDyld.Sections[I->second].getLoadAddress();
|
|
|
|
return 0;
|
|
}
|
|
|
|
void RuntimeDyld::MemoryManager::anchor() {}
|
|
void JITSymbolResolver::anchor() {}
|
|
void LegacyJITSymbolResolver::anchor() {}
|
|
|
|
RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr,
|
|
JITSymbolResolver &Resolver)
|
|
: MemMgr(MemMgr), Resolver(Resolver) {
|
|
// FIXME: There's a potential issue lurking here if a single instance of
|
|
// RuntimeDyld is used to load multiple objects. The current implementation
|
|
// associates a single memory manager with a RuntimeDyld instance. Even
|
|
// though the public class spawns a new 'impl' instance for each load,
|
|
// they share a single memory manager. This can become a problem when page
|
|
// permissions are applied.
|
|
Dyld = nullptr;
|
|
ProcessAllSections = false;
|
|
}
|
|
|
|
RuntimeDyld::~RuntimeDyld() {}
|
|
|
|
static std::unique_ptr<RuntimeDyldCOFF>
|
|
createRuntimeDyldCOFF(
|
|
Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
|
|
JITSymbolResolver &Resolver, bool ProcessAllSections,
|
|
RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
|
|
std::unique_ptr<RuntimeDyldCOFF> Dyld =
|
|
RuntimeDyldCOFF::create(Arch, MM, Resolver);
|
|
Dyld->setProcessAllSections(ProcessAllSections);
|
|
Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
|
|
return Dyld;
|
|
}
|
|
|
|
static std::unique_ptr<RuntimeDyldELF>
|
|
createRuntimeDyldELF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
|
|
JITSymbolResolver &Resolver, bool ProcessAllSections,
|
|
RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
|
|
std::unique_ptr<RuntimeDyldELF> Dyld =
|
|
RuntimeDyldELF::create(Arch, MM, Resolver);
|
|
Dyld->setProcessAllSections(ProcessAllSections);
|
|
Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
|
|
return Dyld;
|
|
}
|
|
|
|
static std::unique_ptr<RuntimeDyldMachO>
|
|
createRuntimeDyldMachO(
|
|
Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
|
|
JITSymbolResolver &Resolver,
|
|
bool ProcessAllSections,
|
|
RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
|
|
std::unique_ptr<RuntimeDyldMachO> Dyld =
|
|
RuntimeDyldMachO::create(Arch, MM, Resolver);
|
|
Dyld->setProcessAllSections(ProcessAllSections);
|
|
Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
|
|
return Dyld;
|
|
}
|
|
|
|
std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
|
|
RuntimeDyld::loadObject(const ObjectFile &Obj) {
|
|
if (!Dyld) {
|
|
if (Obj.isELF())
|
|
Dyld =
|
|
createRuntimeDyldELF(static_cast<Triple::ArchType>(Obj.getArch()),
|
|
MemMgr, Resolver, ProcessAllSections,
|
|
std::move(NotifyStubEmitted));
|
|
else if (Obj.isMachO())
|
|
Dyld = createRuntimeDyldMachO(
|
|
static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
|
|
ProcessAllSections, std::move(NotifyStubEmitted));
|
|
else if (Obj.isCOFF())
|
|
Dyld = createRuntimeDyldCOFF(
|
|
static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
|
|
ProcessAllSections, std::move(NotifyStubEmitted));
|
|
else
|
|
report_fatal_error("Incompatible object format!");
|
|
}
|
|
|
|
if (!Dyld->isCompatibleFile(Obj))
|
|
report_fatal_error("Incompatible object format!");
|
|
|
|
auto LoadedObjInfo = Dyld->loadObject(Obj);
|
|
MemMgr.notifyObjectLoaded(*this, Obj);
|
|
return LoadedObjInfo;
|
|
}
|
|
|
|
void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const {
|
|
if (!Dyld)
|
|
return nullptr;
|
|
return Dyld->getSymbolLocalAddress(Name);
|
|
}
|
|
|
|
unsigned RuntimeDyld::getSymbolSectionID(StringRef Name) const {
|
|
assert(Dyld && "No RuntimeDyld instance attached");
|
|
return Dyld->getSymbolSectionID(Name);
|
|
}
|
|
|
|
JITEvaluatedSymbol RuntimeDyld::getSymbol(StringRef Name) const {
|
|
if (!Dyld)
|
|
return nullptr;
|
|
return Dyld->getSymbol(Name);
|
|
}
|
|
|
|
std::map<StringRef, JITEvaluatedSymbol> RuntimeDyld::getSymbolTable() const {
|
|
if (!Dyld)
|
|
return std::map<StringRef, JITEvaluatedSymbol>();
|
|
return Dyld->getSymbolTable();
|
|
}
|
|
|
|
void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); }
|
|
|
|
void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
|
|
Dyld->reassignSectionAddress(SectionID, Addr);
|
|
}
|
|
|
|
void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
|
|
uint64_t TargetAddress) {
|
|
Dyld->mapSectionAddress(LocalAddress, TargetAddress);
|
|
}
|
|
|
|
bool RuntimeDyld::hasError() { return Dyld->hasError(); }
|
|
|
|
StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); }
|
|
|
|
void RuntimeDyld::finalizeWithMemoryManagerLocking() {
|
|
bool MemoryFinalizationLocked = MemMgr.FinalizationLocked;
|
|
MemMgr.FinalizationLocked = true;
|
|
resolveRelocations();
|
|
registerEHFrames();
|
|
if (!MemoryFinalizationLocked) {
|
|
MemMgr.finalizeMemory();
|
|
MemMgr.FinalizationLocked = false;
|
|
}
|
|
}
|
|
|
|
StringRef RuntimeDyld::getSectionContent(unsigned SectionID) const {
|
|
assert(Dyld && "No Dyld instance attached");
|
|
return Dyld->getSectionContent(SectionID);
|
|
}
|
|
|
|
uint64_t RuntimeDyld::getSectionLoadAddress(unsigned SectionID) const {
|
|
assert(Dyld && "No Dyld instance attached");
|
|
return Dyld->getSectionLoadAddress(SectionID);
|
|
}
|
|
|
|
void RuntimeDyld::registerEHFrames() {
|
|
if (Dyld)
|
|
Dyld->registerEHFrames();
|
|
}
|
|
|
|
void RuntimeDyld::deregisterEHFrames() {
|
|
if (Dyld)
|
|
Dyld->deregisterEHFrames();
|
|
}
|
|
// FIXME: Kill this with fire once we have a new JIT linker: this is only here
|
|
// so that we can re-use RuntimeDyld's implementation without twisting the
|
|
// interface any further for ORC's purposes.
|
|
void jitLinkForORC(
|
|
object::OwningBinary<object::ObjectFile> O,
|
|
RuntimeDyld::MemoryManager &MemMgr, JITSymbolResolver &Resolver,
|
|
bool ProcessAllSections,
|
|
unique_function<Error(const object::ObjectFile &Obj,
|
|
RuntimeDyld::LoadedObjectInfo &LoadedObj,
|
|
std::map<StringRef, JITEvaluatedSymbol>)>
|
|
OnLoaded,
|
|
unique_function<void(object::OwningBinary<object::ObjectFile>,
|
|
std::unique_ptr<RuntimeDyld::LoadedObjectInfo>, Error)>
|
|
OnEmitted) {
|
|
|
|
RuntimeDyld RTDyld(MemMgr, Resolver);
|
|
RTDyld.setProcessAllSections(ProcessAllSections);
|
|
|
|
auto Info = RTDyld.loadObject(*O.getBinary());
|
|
|
|
if (RTDyld.hasError()) {
|
|
OnEmitted(std::move(O), std::move(Info),
|
|
make_error<StringError>(RTDyld.getErrorString(),
|
|
inconvertibleErrorCode()));
|
|
return;
|
|
}
|
|
|
|
if (auto Err = OnLoaded(*O.getBinary(), *Info, RTDyld.getSymbolTable()))
|
|
OnEmitted(std::move(O), std::move(Info), std::move(Err));
|
|
|
|
RuntimeDyldImpl::finalizeAsync(std::move(RTDyld.Dyld), std::move(OnEmitted),
|
|
std::move(O), std::move(Info));
|
|
}
|
|
|
|
} // end namespace llvm
|