1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2025-02-01 05:01:59 +01:00
llvm-mirror/unittests/ProfileData/InstrProfTest.cpp
Nathan Slingerland b95c2eec31 [llvm-profdata] Add support for weighted merge of profile data (2nd try)
Summary:
This change adds support for specifying a weight when merging profile data with the llvm-profdata tool.
Weights are specified by using the --weighted-input=<weight>,<filename> option. Input files not specified
with this option (normal positional list after options) are given a default weight of 1.

Adding support for arbitrary weighting of input profile data allows for relative importance to be placed on the
input data from multiple training runs.

Both sampled and instrumented profiles are supported.

Reviewers: davidxl, dnovillo, bogner, silvas

Subscribers: silvas, davidxl, llvm-commits

Differential Revision: http://reviews.llvm.org/D15306

llvm-svn: 255659
2015-12-15 17:37:09 +00:00

519 lines
22 KiB
C++

//===- unittest/ProfileData/InstrProfTest.cpp -------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/ProfileData/InstrProfReader.h"
#include "llvm/ProfileData/InstrProfWriter.h"
#include "gtest/gtest.h"
#include <cstdarg>
using namespace llvm;
static ::testing::AssertionResult NoError(std::error_code EC) {
if (!EC)
return ::testing::AssertionSuccess();
return ::testing::AssertionFailure() << "error " << EC.value()
<< ": " << EC.message();
}
static ::testing::AssertionResult ErrorEquals(std::error_code Expected,
std::error_code Found) {
if (Expected == Found)
return ::testing::AssertionSuccess();
return ::testing::AssertionFailure() << "error " << Found.value()
<< ": " << Found.message();
}
namespace {
struct InstrProfTest : ::testing::Test {
InstrProfWriter Writer;
std::unique_ptr<IndexedInstrProfReader> Reader;
void readProfile(std::unique_ptr<MemoryBuffer> Profile) {
auto ReaderOrErr = IndexedInstrProfReader::create(std::move(Profile));
ASSERT_TRUE(NoError(ReaderOrErr.getError()));
Reader = std::move(ReaderOrErr.get());
}
};
TEST_F(InstrProfTest, write_and_read_empty_profile) {
auto Profile = Writer.writeBuffer();
readProfile(std::move(Profile));
ASSERT_TRUE(Reader->begin() == Reader->end());
}
TEST_F(InstrProfTest, write_and_read_one_function) {
InstrProfRecord Record("foo", 0x1234, {1, 2, 3, 4});
Writer.addRecord(std::move(Record));
auto Profile = Writer.writeBuffer();
readProfile(std::move(Profile));
auto I = Reader->begin(), E = Reader->end();
ASSERT_TRUE(I != E);
ASSERT_EQ(StringRef("foo"), I->Name);
ASSERT_EQ(0x1234U, I->Hash);
ASSERT_EQ(4U, I->Counts.size());
ASSERT_EQ(1U, I->Counts[0]);
ASSERT_EQ(2U, I->Counts[1]);
ASSERT_EQ(3U, I->Counts[2]);
ASSERT_EQ(4U, I->Counts[3]);
ASSERT_TRUE(++I == E);
}
TEST_F(InstrProfTest, get_instr_prof_record) {
InstrProfRecord Record1("foo", 0x1234, {1, 2});
InstrProfRecord Record2("foo", 0x1235, {3, 4});
Writer.addRecord(std::move(Record1));
Writer.addRecord(std::move(Record2));
auto Profile = Writer.writeBuffer();
readProfile(std::move(Profile));
ErrorOr<InstrProfRecord> R = Reader->getInstrProfRecord("foo", 0x1234);
ASSERT_TRUE(NoError(R.getError()));
ASSERT_EQ(2U, R.get().Counts.size());
ASSERT_EQ(1U, R.get().Counts[0]);
ASSERT_EQ(2U, R.get().Counts[1]);
R = Reader->getInstrProfRecord("foo", 0x1235);
ASSERT_TRUE(NoError(R.getError()));
ASSERT_EQ(2U, R.get().Counts.size());
ASSERT_EQ(3U, R.get().Counts[0]);
ASSERT_EQ(4U, R.get().Counts[1]);
R = Reader->getInstrProfRecord("foo", 0x5678);
ASSERT_TRUE(ErrorEquals(instrprof_error::hash_mismatch, R.getError()));
R = Reader->getInstrProfRecord("bar", 0x1234);
ASSERT_TRUE(ErrorEquals(instrprof_error::unknown_function, R.getError()));
}
TEST_F(InstrProfTest, get_function_counts) {
InstrProfRecord Record1("foo", 0x1234, {1, 2});
InstrProfRecord Record2("foo", 0x1235, {3, 4});
Writer.addRecord(std::move(Record1));
Writer.addRecord(std::move(Record2));
auto Profile = Writer.writeBuffer();
readProfile(std::move(Profile));
std::vector<uint64_t> Counts;
ASSERT_TRUE(NoError(Reader->getFunctionCounts("foo", 0x1234, Counts)));
ASSERT_EQ(2U, Counts.size());
ASSERT_EQ(1U, Counts[0]);
ASSERT_EQ(2U, Counts[1]);
ASSERT_TRUE(NoError(Reader->getFunctionCounts("foo", 0x1235, Counts)));
ASSERT_EQ(2U, Counts.size());
ASSERT_EQ(3U, Counts[0]);
ASSERT_EQ(4U, Counts[1]);
std::error_code EC;
EC = Reader->getFunctionCounts("foo", 0x5678, Counts);
ASSERT_TRUE(ErrorEquals(instrprof_error::hash_mismatch, EC));
EC = Reader->getFunctionCounts("bar", 0x1234, Counts);
ASSERT_TRUE(ErrorEquals(instrprof_error::unknown_function, EC));
}
TEST_F(InstrProfTest, get_icall_data_read_write) {
InstrProfRecord Record1("caller", 0x1234, {1, 2});
InstrProfRecord Record2("callee1", 0x1235, {3, 4});
InstrProfRecord Record3("callee2", 0x1235, {3, 4});
InstrProfRecord Record4("callee3", 0x1235, {3, 4});
// 4 value sites.
Record1.reserveSites(IPVK_IndirectCallTarget, 4);
InstrProfValueData VD0[] = {{(uint64_t) "callee1", 1},
{(uint64_t) "callee2", 2},
{(uint64_t) "callee3", 3}};
Record1.addValueData(IPVK_IndirectCallTarget, 0, VD0, 3, nullptr);
// No value profile data at the second site.
Record1.addValueData(IPVK_IndirectCallTarget, 1, nullptr, 0, nullptr);
InstrProfValueData VD2[] = {{(uint64_t) "callee1", 1},
{(uint64_t) "callee2", 2}};
Record1.addValueData(IPVK_IndirectCallTarget, 2, VD2, 2, nullptr);
InstrProfValueData VD3[] = {{(uint64_t) "callee1", 1}};
Record1.addValueData(IPVK_IndirectCallTarget, 3, VD3, 1, nullptr);
Writer.addRecord(std::move(Record1));
Writer.addRecord(std::move(Record2));
Writer.addRecord(std::move(Record3));
Writer.addRecord(std::move(Record4));
auto Profile = Writer.writeBuffer();
readProfile(std::move(Profile));
ErrorOr<InstrProfRecord> R = Reader->getInstrProfRecord("caller", 0x1234);
ASSERT_TRUE(NoError(R.getError()));
ASSERT_EQ(4U, R.get().getNumValueSites(IPVK_IndirectCallTarget));
ASSERT_EQ(3U, R.get().getNumValueDataForSite(IPVK_IndirectCallTarget, 0));
ASSERT_EQ(0U, R.get().getNumValueDataForSite(IPVK_IndirectCallTarget, 1));
ASSERT_EQ(2U, R.get().getNumValueDataForSite(IPVK_IndirectCallTarget, 2));
ASSERT_EQ(1U, R.get().getNumValueDataForSite(IPVK_IndirectCallTarget, 3));
std::unique_ptr<InstrProfValueData[]> VD =
R.get().getValueForSite(IPVK_IndirectCallTarget, 0);
// Now sort the target acording to frequency.
std::sort(&VD[0], &VD[3],
[](const InstrProfValueData &VD1, const InstrProfValueData &VD2) {
return VD1.Count > VD2.Count;
});
ASSERT_EQ(StringRef((const char *)VD[0].Value, 7), StringRef("callee3"));
ASSERT_EQ(StringRef((const char *)VD[1].Value, 7), StringRef("callee2"));
ASSERT_EQ(StringRef((const char *)VD[2].Value, 7), StringRef("callee1"));
}
TEST_F(InstrProfTest, get_icall_data_read_write_big_endian) {
InstrProfRecord Record1("caller", 0x1234, {1, 2});
InstrProfRecord Record2("callee1", 0x1235, {3, 4});
InstrProfRecord Record3("callee2", 0x1235, {3, 4});
InstrProfRecord Record4("callee3", 0x1235, {3, 4});
// 4 value sites.
Record1.reserveSites(IPVK_IndirectCallTarget, 4);
InstrProfValueData VD0[] = {{(uint64_t) "callee1", 1},
{(uint64_t) "callee2", 2},
{(uint64_t) "callee3", 3}};
Record1.addValueData(IPVK_IndirectCallTarget, 0, VD0, 3, nullptr);
// No value profile data at the second site.
Record1.addValueData(IPVK_IndirectCallTarget, 1, nullptr, 0, nullptr);
InstrProfValueData VD2[] = {{(uint64_t) "callee1", 1},
{(uint64_t) "callee2", 2}};
Record1.addValueData(IPVK_IndirectCallTarget, 2, VD2, 2, nullptr);
InstrProfValueData VD3[] = {{(uint64_t) "callee1", 1}};
Record1.addValueData(IPVK_IndirectCallTarget, 3, VD3, 1, nullptr);
Writer.addRecord(std::move(Record1));
Writer.addRecord(std::move(Record2));
Writer.addRecord(std::move(Record3));
Writer.addRecord(std::move(Record4));
// Set big endian output.
Writer.setValueProfDataEndianness(support::big);
auto Profile = Writer.writeBuffer();
readProfile(std::move(Profile));
// Set big endian input.
Reader->setValueProfDataEndianness(support::big);
ErrorOr<InstrProfRecord> R = Reader->getInstrProfRecord("caller", 0x1234);
ASSERT_TRUE(NoError(R.getError()));
ASSERT_EQ(4U, R.get().getNumValueSites(IPVK_IndirectCallTarget));
ASSERT_EQ(3U, R.get().getNumValueDataForSite(IPVK_IndirectCallTarget, 0));
ASSERT_EQ(0U, R.get().getNumValueDataForSite(IPVK_IndirectCallTarget, 1));
ASSERT_EQ(2U, R.get().getNumValueDataForSite(IPVK_IndirectCallTarget, 2));
ASSERT_EQ(1U, R.get().getNumValueDataForSite(IPVK_IndirectCallTarget, 3));
std::unique_ptr<InstrProfValueData[]> VD =
R.get().getValueForSite(IPVK_IndirectCallTarget, 0);
// Now sort the target acording to frequency.
std::sort(&VD[0], &VD[3],
[](const InstrProfValueData &VD1, const InstrProfValueData &VD2) {
return VD1.Count > VD2.Count;
});
ASSERT_EQ(StringRef((const char *)VD[0].Value, 7), StringRef("callee3"));
ASSERT_EQ(StringRef((const char *)VD[1].Value, 7), StringRef("callee2"));
ASSERT_EQ(StringRef((const char *)VD[2].Value, 7), StringRef("callee1"));
// Restore little endian default:
Writer.setValueProfDataEndianness(support::little);
}
TEST_F(InstrProfTest, get_icall_data_merge1) {
InstrProfRecord Record11("caller", 0x1234, {1, 2});
InstrProfRecord Record12("caller", 0x1234, {1, 2});
InstrProfRecord Record2("callee1", 0x1235, {3, 4});
InstrProfRecord Record3("callee2", 0x1235, {3, 4});
InstrProfRecord Record4("callee3", 0x1235, {3, 4});
InstrProfRecord Record5("callee3", 0x1235, {3, 4});
InstrProfRecord Record6("callee4", 0x1235, {3, 5});
// 5 value sites.
Record11.reserveSites(IPVK_IndirectCallTarget, 5);
InstrProfValueData VD0[] = {{(uint64_t) "callee1", 1},
{(uint64_t) "callee2", 2},
{(uint64_t) "callee3", 3},
{(uint64_t) "callee4", 4}};
Record11.addValueData(IPVK_IndirectCallTarget, 0, VD0, 4, nullptr);
// No valeu profile data at the second site.
Record11.addValueData(IPVK_IndirectCallTarget, 1, nullptr, 0, nullptr);
InstrProfValueData VD2[] = {{(uint64_t) "callee1", 1},
{(uint64_t) "callee2", 2},
{(uint64_t) "callee3", 3}};
Record11.addValueData(IPVK_IndirectCallTarget, 2, VD2, 3, nullptr);
InstrProfValueData VD3[] = {{(uint64_t) "callee1", 1}};
Record11.addValueData(IPVK_IndirectCallTarget, 3, VD3, 1, nullptr);
InstrProfValueData VD4[] = {{(uint64_t) "callee1", 1},
{(uint64_t) "callee2", 2},
{(uint64_t) "callee3", 3}};
Record11.addValueData(IPVK_IndirectCallTarget, 4, VD4, 3, nullptr);
// A differnt record for the same caller.
Record12.reserveSites(IPVK_IndirectCallTarget, 5);
InstrProfValueData VD02[] = {{(uint64_t) "callee2", 5},
{(uint64_t) "callee3", 3}};
Record12.addValueData(IPVK_IndirectCallTarget, 0, VD02, 2, nullptr);
// No valeu profile data at the second site.
Record12.addValueData(IPVK_IndirectCallTarget, 1, nullptr, 0, nullptr);
InstrProfValueData VD22[] = {{(uint64_t) "callee2", 1},
{(uint64_t) "callee3", 3},
{(uint64_t) "callee4", 4}};
Record12.addValueData(IPVK_IndirectCallTarget, 2, VD22, 3, nullptr);
Record12.addValueData(IPVK_IndirectCallTarget, 3, nullptr, 0, nullptr);
InstrProfValueData VD42[] = {{(uint64_t) "callee1", 1},
{(uint64_t) "callee2", 2},
{(uint64_t) "callee3", 3}};
Record12.addValueData(IPVK_IndirectCallTarget, 4, VD42, 3, nullptr);
Writer.addRecord(std::move(Record11));
// Merge profile data.
Writer.addRecord(std::move(Record12));
Writer.addRecord(std::move(Record2));
Writer.addRecord(std::move(Record3));
Writer.addRecord(std::move(Record4));
Writer.addRecord(std::move(Record5));
Writer.addRecord(std::move(Record6));
auto Profile = Writer.writeBuffer();
readProfile(std::move(Profile));
ErrorOr<InstrProfRecord> R = Reader->getInstrProfRecord("caller", 0x1234);
ASSERT_TRUE(NoError(R.getError()));
ASSERT_EQ(5U, R.get().getNumValueSites(IPVK_IndirectCallTarget));
ASSERT_EQ(4U, R.get().getNumValueDataForSite(IPVK_IndirectCallTarget, 0));
ASSERT_EQ(0U, R.get().getNumValueDataForSite(IPVK_IndirectCallTarget, 1));
ASSERT_EQ(4U, R.get().getNumValueDataForSite(IPVK_IndirectCallTarget, 2));
ASSERT_EQ(1U, R.get().getNumValueDataForSite(IPVK_IndirectCallTarget, 3));
ASSERT_EQ(3U, R.get().getNumValueDataForSite(IPVK_IndirectCallTarget, 4));
std::unique_ptr<InstrProfValueData[]> VD =
R.get().getValueForSite(IPVK_IndirectCallTarget, 0);
// Now sort the target acording to frequency.
std::sort(&VD[0], &VD[4],
[](const InstrProfValueData &VD1, const InstrProfValueData &VD2) {
return VD1.Count > VD2.Count;
});
ASSERT_EQ(StringRef((const char *)VD[0].Value, 7), StringRef("callee2"));
ASSERT_EQ(7U, VD[0].Count);
ASSERT_EQ(StringRef((const char *)VD[1].Value, 7), StringRef("callee3"));
ASSERT_EQ(6U, VD[1].Count);
ASSERT_EQ(StringRef((const char *)VD[2].Value, 7), StringRef("callee4"));
ASSERT_EQ(4U, VD[2].Count);
ASSERT_EQ(StringRef((const char *)VD[3].Value, 7), StringRef("callee1"));
ASSERT_EQ(1U, VD[3].Count);
std::unique_ptr<InstrProfValueData[]> VD_2(
R.get().getValueForSite(IPVK_IndirectCallTarget, 2));
std::sort(&VD_2[0], &VD_2[4],
[](const InstrProfValueData &VD1, const InstrProfValueData &VD2) {
return VD1.Count > VD2.Count;
});
ASSERT_EQ(StringRef((const char *)VD_2[0].Value, 7), StringRef("callee3"));
ASSERT_EQ(6U, VD_2[0].Count);
ASSERT_EQ(StringRef((const char *)VD_2[1].Value, 7), StringRef("callee4"));
ASSERT_EQ(4U, VD_2[1].Count);
ASSERT_EQ(StringRef((const char *)VD_2[2].Value, 7), StringRef("callee2"));
ASSERT_EQ(3U, VD_2[2].Count);
ASSERT_EQ(StringRef((const char *)VD_2[3].Value, 7), StringRef("callee1"));
ASSERT_EQ(1U, VD_2[3].Count);
std::unique_ptr<InstrProfValueData[]> VD_3(
R.get().getValueForSite(IPVK_IndirectCallTarget, 3));
ASSERT_EQ(StringRef((const char *)VD_3[0].Value, 7), StringRef("callee1"));
ASSERT_EQ(1U, VD_3[0].Count);
std::unique_ptr<InstrProfValueData[]> VD_4(
R.get().getValueForSite(IPVK_IndirectCallTarget, 4));
std::sort(&VD_4[0], &VD_4[3],
[](const InstrProfValueData &VD1, const InstrProfValueData &VD2) {
return VD1.Count > VD2.Count;
});
ASSERT_EQ(StringRef((const char *)VD_4[0].Value, 7), StringRef("callee3"));
ASSERT_EQ(6U, VD_4[0].Count);
ASSERT_EQ(StringRef((const char *)VD_4[1].Value, 7), StringRef("callee2"));
ASSERT_EQ(4U, VD_4[1].Count);
ASSERT_EQ(StringRef((const char *)VD_4[2].Value, 7), StringRef("callee1"));
ASSERT_EQ(2U, VD_4[2].Count);
}
TEST_F(InstrProfTest, get_icall_data_merge1_saturation) {
const uint64_t Max = std::numeric_limits<uint64_t>::max();
InstrProfRecord Record1("caller", 0x1234, {1});
InstrProfRecord Record2("caller", 0x1234, {Max});
InstrProfRecord Record3("callee1", 0x1235, {3, 4});
Record1.reserveSites(IPVK_IndirectCallTarget, 1);
InstrProfValueData VD1[] = {{(uint64_t) "callee1", 1}};
Record1.addValueData(IPVK_IndirectCallTarget, 0, VD1, 1, nullptr);
Record2.reserveSites(IPVK_IndirectCallTarget, 1);
// FIXME: Improve handling of counter overflow. ValueData asserts on overflow.
// InstrProfValueData VD2[] = {{(uint64_t) "callee1", Max}};
InstrProfValueData VD2[] = {{(uint64_t) "callee1", 1}};
Record2.addValueData(IPVK_IndirectCallTarget, 0, VD2, 1, nullptr);
Writer.addRecord(std::move(Record1));
Writer.addRecord(std::move(Record2));
Writer.addRecord(std::move(Record3));
auto Profile = Writer.writeBuffer();
readProfile(std::move(Profile));
// Verify saturation of counts.
ErrorOr<InstrProfRecord> R = Reader->getInstrProfRecord("caller", 0x1234);
ASSERT_TRUE(NoError(R.getError()));
ASSERT_EQ(Max, R.get().Counts[0]);
ASSERT_EQ(1U, R.get().getNumValueSites(IPVK_IndirectCallTarget));
std::unique_ptr<InstrProfValueData[]> VD =
R.get().getValueForSite(IPVK_IndirectCallTarget, 0);
ASSERT_EQ(StringRef("callee1"), StringRef((const char *)VD[0].Value, 7));
// FIXME: Improve handling of counter overflow. ValueData asserts on overflow.
// ASSERT_EQ(Max, VD[0].Count);
ASSERT_EQ(2U, VD[0].Count);
}
// Synthesize runtime value profile data.
ValueProfNode Site1Values[5] = {{{uint64_t("callee1"), 400}, &Site1Values[1]},
{{uint64_t("callee2"), 1000}, &Site1Values[2]},
{{uint64_t("callee3"), 500}, &Site1Values[3]},
{{uint64_t("callee4"), 300}, &Site1Values[4]},
{{uint64_t("callee5"), 100}, 0}};
ValueProfNode Site2Values[4] = {{{uint64_t("callee5"), 800}, &Site2Values[1]},
{{uint64_t("callee3"), 1000}, &Site2Values[2]},
{{uint64_t("callee2"), 2500}, &Site2Values[3]},
{{uint64_t("callee1"), 1300}, 0}};
ValueProfNode Site3Values[3] = {{{uint64_t("callee6"), 800}, &Site3Values[1]},
{{uint64_t("callee3"), 1000}, &Site3Values[2]},
{{uint64_t("callee4"), 5500}, 0}};
ValueProfNode Site4Values[2] = {{{uint64_t("callee2"), 1800}, &Site4Values[1]},
{{uint64_t("callee3"), 2000}, 0}};
static ValueProfNode *ValueProfNodes[5] = {&Site1Values[0], &Site2Values[0],
&Site3Values[0], &Site4Values[0], 0};
static uint16_t NumValueSites[IPVK_Last + 1] = {5};
TEST_F(InstrProfTest, runtime_value_prof_data_read_write) {
ValueProfRuntimeRecord RTRecord;
initializeValueProfRuntimeRecord(&RTRecord, &NumValueSites[0],
&ValueProfNodes[0]);
ValueProfData *VPData = serializeValueProfDataFromRT(&RTRecord, nullptr);
InstrProfRecord Record("caller", 0x1234, {1ULL << 31, 2});
VPData->deserializeTo(Record, 0);
// Now read data from Record and sanity check the data
ASSERT_EQ(5U, Record.getNumValueSites(IPVK_IndirectCallTarget));
ASSERT_EQ(5U, Record.getNumValueDataForSite(IPVK_IndirectCallTarget, 0));
ASSERT_EQ(4U, Record.getNumValueDataForSite(IPVK_IndirectCallTarget, 1));
ASSERT_EQ(3U, Record.getNumValueDataForSite(IPVK_IndirectCallTarget, 2));
ASSERT_EQ(2U, Record.getNumValueDataForSite(IPVK_IndirectCallTarget, 3));
ASSERT_EQ(0U, Record.getNumValueDataForSite(IPVK_IndirectCallTarget, 4));
auto Cmp = [](const InstrProfValueData &VD1, const InstrProfValueData &VD2) {
return VD1.Count > VD2.Count;
};
std::unique_ptr<InstrProfValueData[]> VD_0(
Record.getValueForSite(IPVK_IndirectCallTarget, 0));
std::sort(&VD_0[0], &VD_0[5], Cmp);
ASSERT_EQ(StringRef((const char *)VD_0[0].Value, 7), StringRef("callee2"));
ASSERT_EQ(1000U, VD_0[0].Count);
ASSERT_EQ(StringRef((const char *)VD_0[1].Value, 7), StringRef("callee3"));
ASSERT_EQ(500U, VD_0[1].Count);
ASSERT_EQ(StringRef((const char *)VD_0[2].Value, 7), StringRef("callee1"));
ASSERT_EQ(400U, VD_0[2].Count);
ASSERT_EQ(StringRef((const char *)VD_0[3].Value, 7), StringRef("callee4"));
ASSERT_EQ(300U, VD_0[3].Count);
ASSERT_EQ(StringRef((const char *)VD_0[4].Value, 7), StringRef("callee5"));
ASSERT_EQ(100U, VD_0[4].Count);
std::unique_ptr<InstrProfValueData[]> VD_1(
Record.getValueForSite(IPVK_IndirectCallTarget, 1));
std::sort(&VD_1[0], &VD_1[4], Cmp);
ASSERT_EQ(StringRef((const char *)VD_1[0].Value, 7), StringRef("callee2"));
ASSERT_EQ(2500U, VD_1[0].Count);
ASSERT_EQ(StringRef((const char *)VD_1[1].Value, 7), StringRef("callee1"));
ASSERT_EQ(1300U, VD_1[1].Count);
ASSERT_EQ(StringRef((const char *)VD_1[2].Value, 7), StringRef("callee3"));
ASSERT_EQ(1000U, VD_1[2].Count);
ASSERT_EQ(StringRef((const char *)VD_1[3].Value, 7), StringRef("callee5"));
ASSERT_EQ(800U, VD_1[3].Count);
std::unique_ptr<InstrProfValueData[]> VD_2(
Record.getValueForSite(IPVK_IndirectCallTarget, 2));
std::sort(&VD_2[0], &VD_2[3], Cmp);
ASSERT_EQ(StringRef((const char *)VD_2[0].Value, 7), StringRef("callee4"));
ASSERT_EQ(5500U, VD_2[0].Count);
ASSERT_EQ(StringRef((const char *)VD_2[1].Value, 7), StringRef("callee3"));
ASSERT_EQ(1000U, VD_2[1].Count);
ASSERT_EQ(StringRef((const char *)VD_2[2].Value, 7), StringRef("callee6"));
ASSERT_EQ(800U, VD_2[2].Count);
std::unique_ptr<InstrProfValueData[]> VD_3(
Record.getValueForSite(IPVK_IndirectCallTarget, 3));
std::sort(&VD_3[0], &VD_3[2], Cmp);
ASSERT_EQ(StringRef((const char *)VD_3[0].Value, 7), StringRef("callee3"));
ASSERT_EQ(2000U, VD_3[0].Count);
ASSERT_EQ(StringRef((const char *)VD_3[1].Value, 7), StringRef("callee2"));
ASSERT_EQ(1800U, VD_3[1].Count);
finalizeValueProfRuntimeRecord(&RTRecord);
free(VPData);
}
TEST_F(InstrProfTest, get_max_function_count) {
InstrProfRecord Record1("foo", 0x1234, {1ULL << 31, 2});
InstrProfRecord Record2("bar", 0, {1ULL << 63});
InstrProfRecord Record3("baz", 0x5678, {0, 0, 0, 0});
Writer.addRecord(std::move(Record1));
Writer.addRecord(std::move(Record2));
Writer.addRecord(std::move(Record3));
auto Profile = Writer.writeBuffer();
readProfile(std::move(Profile));
ASSERT_EQ(1ULL << 63, Reader->getMaximumFunctionCount());
}
TEST_F(InstrProfTest, get_weighted_function_counts) {
InstrProfRecord Record1("foo", 0x1234, {1, 2});
InstrProfRecord Record2("foo", 0x1235, {3, 4});
Writer.addRecord(std::move(Record1), 3);
Writer.addRecord(std::move(Record2), 5);
auto Profile = Writer.writeBuffer();
readProfile(std::move(Profile));
std::vector<uint64_t> Counts;
ASSERT_TRUE(NoError(Reader->getFunctionCounts("foo", 0x1234, Counts)));
ASSERT_EQ(2U, Counts.size());
ASSERT_EQ(3U, Counts[0]);
ASSERT_EQ(6U, Counts[1]);
ASSERT_TRUE(NoError(Reader->getFunctionCounts("foo", 0x1235, Counts)));
ASSERT_EQ(2U, Counts.size());
ASSERT_EQ(15U, Counts[0]);
ASSERT_EQ(20U, Counts[1]);
}
} // end anonymous namespace