1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 03:33:20 +01:00
llvm-mirror/lib/Analysis/TargetTransformInfo.cpp
Hal Finkel 198ffea54f Revert: r189565 - Add getUnrollingPreferences to TTI
Revert unintentional commit (of an unreviewed change).

Original commit message:

Add getUnrollingPreferences to TTI

Allow targets to customize the default behavior of the generic loop unrolling
transformation. This will be used by the PowerPC backend when targeting the A2
core (which is in-order with a deep pipeline), and using more aggressive
defaults is important.

llvm-svn: 189566
2013-08-29 03:33:15 +00:00

599 lines
19 KiB
C++

//===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "tti"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Instructions.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/ErrorHandling.h"
using namespace llvm;
// Setup the analysis group to manage the TargetTransformInfo passes.
INITIALIZE_ANALYSIS_GROUP(TargetTransformInfo, "Target Information", NoTTI)
char TargetTransformInfo::ID = 0;
TargetTransformInfo::~TargetTransformInfo() {
}
void TargetTransformInfo::pushTTIStack(Pass *P) {
TopTTI = this;
PrevTTI = &P->getAnalysis<TargetTransformInfo>();
// Walk up the chain and update the top TTI pointer.
for (TargetTransformInfo *PTTI = PrevTTI; PTTI; PTTI = PTTI->PrevTTI)
PTTI->TopTTI = this;
}
void TargetTransformInfo::popTTIStack() {
TopTTI = 0;
// Walk up the chain and update the top TTI pointer.
for (TargetTransformInfo *PTTI = PrevTTI; PTTI; PTTI = PTTI->PrevTTI)
PTTI->TopTTI = PrevTTI;
PrevTTI = 0;
}
void TargetTransformInfo::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<TargetTransformInfo>();
}
unsigned TargetTransformInfo::getOperationCost(unsigned Opcode, Type *Ty,
Type *OpTy) const {
return PrevTTI->getOperationCost(Opcode, Ty, OpTy);
}
unsigned TargetTransformInfo::getGEPCost(
const Value *Ptr, ArrayRef<const Value *> Operands) const {
return PrevTTI->getGEPCost(Ptr, Operands);
}
unsigned TargetTransformInfo::getCallCost(FunctionType *FTy,
int NumArgs) const {
return PrevTTI->getCallCost(FTy, NumArgs);
}
unsigned TargetTransformInfo::getCallCost(const Function *F,
int NumArgs) const {
return PrevTTI->getCallCost(F, NumArgs);
}
unsigned TargetTransformInfo::getCallCost(
const Function *F, ArrayRef<const Value *> Arguments) const {
return PrevTTI->getCallCost(F, Arguments);
}
unsigned TargetTransformInfo::getIntrinsicCost(
Intrinsic::ID IID, Type *RetTy, ArrayRef<Type *> ParamTys) const {
return PrevTTI->getIntrinsicCost(IID, RetTy, ParamTys);
}
unsigned TargetTransformInfo::getIntrinsicCost(
Intrinsic::ID IID, Type *RetTy, ArrayRef<const Value *> Arguments) const {
return PrevTTI->getIntrinsicCost(IID, RetTy, Arguments);
}
unsigned TargetTransformInfo::getUserCost(const User *U) const {
return PrevTTI->getUserCost(U);
}
bool TargetTransformInfo::hasBranchDivergence() const {
return PrevTTI->hasBranchDivergence();
}
bool TargetTransformInfo::isLoweredToCall(const Function *F) const {
return PrevTTI->isLoweredToCall(F);
}
bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const {
return PrevTTI->isLegalAddImmediate(Imm);
}
bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const {
return PrevTTI->isLegalICmpImmediate(Imm);
}
bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
int64_t BaseOffset,
bool HasBaseReg,
int64_t Scale) const {
return PrevTTI->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
Scale);
}
int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
int64_t BaseOffset,
bool HasBaseReg,
int64_t Scale) const {
return PrevTTI->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg,
Scale);
}
bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const {
return PrevTTI->isTruncateFree(Ty1, Ty2);
}
bool TargetTransformInfo::isTypeLegal(Type *Ty) const {
return PrevTTI->isTypeLegal(Ty);
}
unsigned TargetTransformInfo::getJumpBufAlignment() const {
return PrevTTI->getJumpBufAlignment();
}
unsigned TargetTransformInfo::getJumpBufSize() const {
return PrevTTI->getJumpBufSize();
}
bool TargetTransformInfo::shouldBuildLookupTables() const {
return PrevTTI->shouldBuildLookupTables();
}
TargetTransformInfo::PopcntSupportKind
TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const {
return PrevTTI->getPopcntSupport(IntTyWidthInBit);
}
bool TargetTransformInfo::haveFastSqrt(Type *Ty) const {
return PrevTTI->haveFastSqrt(Ty);
}
unsigned TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty) const {
return PrevTTI->getIntImmCost(Imm, Ty);
}
unsigned TargetTransformInfo::getNumberOfRegisters(bool Vector) const {
return PrevTTI->getNumberOfRegisters(Vector);
}
unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const {
return PrevTTI->getRegisterBitWidth(Vector);
}
unsigned TargetTransformInfo::getMaximumUnrollFactor() const {
return PrevTTI->getMaximumUnrollFactor();
}
unsigned TargetTransformInfo::getArithmeticInstrCost(unsigned Opcode,
Type *Ty,
OperandValueKind Op1Info,
OperandValueKind Op2Info) const {
return PrevTTI->getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info);
}
unsigned TargetTransformInfo::getShuffleCost(ShuffleKind Kind, Type *Tp,
int Index, Type *SubTp) const {
return PrevTTI->getShuffleCost(Kind, Tp, Index, SubTp);
}
unsigned TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst,
Type *Src) const {
return PrevTTI->getCastInstrCost(Opcode, Dst, Src);
}
unsigned TargetTransformInfo::getCFInstrCost(unsigned Opcode) const {
return PrevTTI->getCFInstrCost(Opcode);
}
unsigned TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
Type *CondTy) const {
return PrevTTI->getCmpSelInstrCost(Opcode, ValTy, CondTy);
}
unsigned TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val,
unsigned Index) const {
return PrevTTI->getVectorInstrCost(Opcode, Val, Index);
}
unsigned TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src,
unsigned Alignment,
unsigned AddressSpace) const {
return PrevTTI->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
;
}
unsigned
TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID,
Type *RetTy,
ArrayRef<Type *> Tys) const {
return PrevTTI->getIntrinsicInstrCost(ID, RetTy, Tys);
}
unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const {
return PrevTTI->getNumberOfParts(Tp);
}
unsigned TargetTransformInfo::getAddressComputationCost(Type *Tp,
bool IsComplex) const {
return PrevTTI->getAddressComputationCost(Tp, IsComplex);
}
namespace {
struct NoTTI : ImmutablePass, TargetTransformInfo {
const DataLayout *DL;
NoTTI() : ImmutablePass(ID), DL(0) {
initializeNoTTIPass(*PassRegistry::getPassRegistry());
}
virtual void initializePass() {
// Note that this subclass is special, and must *not* call initializeTTI as
// it does not chain.
TopTTI = this;
PrevTTI = 0;
DL = getAnalysisIfAvailable<DataLayout>();
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
// Note that this subclass is special, and must *not* call
// TTI::getAnalysisUsage as it breaks the recursion.
}
/// Pass identification.
static char ID;
/// Provide necessary pointer adjustments for the two base classes.
virtual void *getAdjustedAnalysisPointer(const void *ID) {
if (ID == &TargetTransformInfo::ID)
return (TargetTransformInfo*)this;
return this;
}
unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) const {
switch (Opcode) {
default:
// By default, just classify everything as 'basic'.
return TCC_Basic;
case Instruction::GetElementPtr:
llvm_unreachable("Use getGEPCost for GEP operations!");
case Instruction::BitCast:
assert(OpTy && "Cast instructions must provide the operand type");
if (Ty == OpTy || (Ty->isPointerTy() && OpTy->isPointerTy()))
// Identity and pointer-to-pointer casts are free.
return TCC_Free;
// Otherwise, the default basic cost is used.
return TCC_Basic;
case Instruction::IntToPtr: {
if (!DL)
return TCC_Basic;
// An inttoptr cast is free so long as the input is a legal integer type
// which doesn't contain values outside the range of a pointer.
unsigned OpSize = OpTy->getScalarSizeInBits();
if (DL->isLegalInteger(OpSize) &&
OpSize <= DL->getPointerTypeSizeInBits(Ty))
return TCC_Free;
// Otherwise it's not a no-op.
return TCC_Basic;
}
case Instruction::PtrToInt: {
if (!DL)
return TCC_Basic;
// A ptrtoint cast is free so long as the result is large enough to store
// the pointer, and a legal integer type.
unsigned DestSize = Ty->getScalarSizeInBits();
if (DL->isLegalInteger(DestSize) &&
DestSize >= DL->getPointerTypeSizeInBits(OpTy))
return TCC_Free;
// Otherwise it's not a no-op.
return TCC_Basic;
}
case Instruction::Trunc:
// trunc to a native type is free (assuming the target has compare and
// shift-right of the same width).
if (DL && DL->isLegalInteger(DL->getTypeSizeInBits(Ty)))
return TCC_Free;
return TCC_Basic;
}
}
unsigned getGEPCost(const Value *Ptr,
ArrayRef<const Value *> Operands) const {
// In the basic model, we just assume that all-constant GEPs will be folded
// into their uses via addressing modes.
for (unsigned Idx = 0, Size = Operands.size(); Idx != Size; ++Idx)
if (!isa<Constant>(Operands[Idx]))
return TCC_Basic;
return TCC_Free;
}
unsigned getCallCost(FunctionType *FTy, int NumArgs = -1) const {
assert(FTy && "FunctionType must be provided to this routine.");
// The target-independent implementation just measures the size of the
// function by approximating that each argument will take on average one
// instruction to prepare.
if (NumArgs < 0)
// Set the argument number to the number of explicit arguments in the
// function.
NumArgs = FTy->getNumParams();
return TCC_Basic * (NumArgs + 1);
}
unsigned getCallCost(const Function *F, int NumArgs = -1) const {
assert(F && "A concrete function must be provided to this routine.");
if (NumArgs < 0)
// Set the argument number to the number of explicit arguments in the
// function.
NumArgs = F->arg_size();
if (Intrinsic::ID IID = (Intrinsic::ID)F->getIntrinsicID()) {
FunctionType *FTy = F->getFunctionType();
SmallVector<Type *, 8> ParamTys(FTy->param_begin(), FTy->param_end());
return TopTTI->getIntrinsicCost(IID, FTy->getReturnType(), ParamTys);
}
if (!TopTTI->isLoweredToCall(F))
return TCC_Basic; // Give a basic cost if it will be lowered directly.
return TopTTI->getCallCost(F->getFunctionType(), NumArgs);
}
unsigned getCallCost(const Function *F,
ArrayRef<const Value *> Arguments) const {
// Simply delegate to generic handling of the call.
// FIXME: We should use instsimplify or something else to catch calls which
// will constant fold with these arguments.
return TopTTI->getCallCost(F, Arguments.size());
}
unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
ArrayRef<Type *> ParamTys) const {
switch (IID) {
default:
// Intrinsics rarely (if ever) have normal argument setup constraints.
// Model them as having a basic instruction cost.
// FIXME: This is wrong for libc intrinsics.
return TCC_Basic;
case Intrinsic::dbg_declare:
case Intrinsic::dbg_value:
case Intrinsic::invariant_start:
case Intrinsic::invariant_end:
case Intrinsic::lifetime_start:
case Intrinsic::lifetime_end:
case Intrinsic::objectsize:
case Intrinsic::ptr_annotation:
case Intrinsic::var_annotation:
// These intrinsics don't actually represent code after lowering.
return TCC_Free;
}
}
unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
ArrayRef<const Value *> Arguments) const {
// Delegate to the generic intrinsic handling code. This mostly provides an
// opportunity for targets to (for example) special case the cost of
// certain intrinsics based on constants used as arguments.
SmallVector<Type *, 8> ParamTys;
ParamTys.reserve(Arguments.size());
for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx)
ParamTys.push_back(Arguments[Idx]->getType());
return TopTTI->getIntrinsicCost(IID, RetTy, ParamTys);
}
unsigned getUserCost(const User *U) const {
if (isa<PHINode>(U))
return TCC_Free; // Model all PHI nodes as free.
if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U))
// In the basic model we just assume that all-constant GEPs will be
// folded into their uses via addressing modes.
return GEP->hasAllConstantIndices() ? TCC_Free : TCC_Basic;
if (ImmutableCallSite CS = U) {
const Function *F = CS.getCalledFunction();
if (!F) {
// Just use the called value type.
Type *FTy = CS.getCalledValue()->getType()->getPointerElementType();
return TopTTI->getCallCost(cast<FunctionType>(FTy), CS.arg_size());
}
SmallVector<const Value *, 8> Arguments;
for (ImmutableCallSite::arg_iterator AI = CS.arg_begin(),
AE = CS.arg_end();
AI != AE; ++AI)
Arguments.push_back(*AI);
return TopTTI->getCallCost(F, Arguments);
}
if (const CastInst *CI = dyn_cast<CastInst>(U)) {
// Result of a cmp instruction is often extended (to be used by other
// cmp instructions, logical or return instructions). These are usually
// nop on most sane targets.
if (isa<CmpInst>(CI->getOperand(0)))
return TCC_Free;
}
// Otherwise delegate to the fully generic implementations.
return getOperationCost(Operator::getOpcode(U), U->getType(),
U->getNumOperands() == 1 ?
U->getOperand(0)->getType() : 0);
}
bool hasBranchDivergence() const { return false; }
bool isLoweredToCall(const Function *F) const {
// FIXME: These should almost certainly not be handled here, and instead
// handled with the help of TLI or the target itself. This was largely
// ported from existing analysis heuristics here so that such refactorings
// can take place in the future.
if (F->isIntrinsic())
return false;
if (F->hasLocalLinkage() || !F->hasName())
return true;
StringRef Name = F->getName();
// These will all likely lower to a single selection DAG node.
if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" ||
Name == "fabs" || Name == "fabsf" || Name == "fabsl" || Name == "sin" ||
Name == "sinf" || Name == "sinl" || Name == "cos" || Name == "cosf" ||
Name == "cosl" || Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl")
return false;
// These are all likely to be optimized into something smaller.
if (Name == "pow" || Name == "powf" || Name == "powl" || Name == "exp2" ||
Name == "exp2l" || Name == "exp2f" || Name == "floor" || Name ==
"floorf" || Name == "ceil" || Name == "round" || Name == "ffs" ||
Name == "ffsl" || Name == "abs" || Name == "labs" || Name == "llabs")
return false;
return true;
}
bool isLegalAddImmediate(int64_t Imm) const {
return false;
}
bool isLegalICmpImmediate(int64_t Imm) const {
return false;
}
bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
bool HasBaseReg, int64_t Scale) const {
// Guess that reg+reg addressing is allowed. This heuristic is taken from
// the implementation of LSR.
return !BaseGV && BaseOffset == 0 && Scale <= 1;
}
int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
bool HasBaseReg, int64_t Scale) const {
// Guess that all legal addressing mode are free.
if(isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, Scale))
return 0;
return -1;
}
bool isTruncateFree(Type *Ty1, Type *Ty2) const {
return false;
}
bool isTypeLegal(Type *Ty) const {
return false;
}
unsigned getJumpBufAlignment() const {
return 0;
}
unsigned getJumpBufSize() const {
return 0;
}
bool shouldBuildLookupTables() const {
return true;
}
PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const {
return PSK_Software;
}
bool haveFastSqrt(Type *Ty) const {
return false;
}
unsigned getIntImmCost(const APInt &Imm, Type *Ty) const {
return 1;
}
unsigned getNumberOfRegisters(bool Vector) const {
return 8;
}
unsigned getRegisterBitWidth(bool Vector) const {
return 32;
}
unsigned getMaximumUnrollFactor() const {
return 1;
}
unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind,
OperandValueKind) const {
return 1;
}
unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
int Index = 0, Type *SubTp = 0) const {
return 1;
}
unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
Type *Src) const {
return 1;
}
unsigned getCFInstrCost(unsigned Opcode) const {
return 1;
}
unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
Type *CondTy = 0) const {
return 1;
}
unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
unsigned Index = -1) const {
return 1;
}
unsigned getMemoryOpCost(unsigned Opcode, Type *Src,
unsigned Alignment,
unsigned AddressSpace) const {
return 1;
}
unsigned getIntrinsicInstrCost(Intrinsic::ID ID,
Type *RetTy,
ArrayRef<Type*> Tys) const {
return 1;
}
unsigned getNumberOfParts(Type *Tp) const {
return 0;
}
unsigned getAddressComputationCost(Type *Tp, bool) const {
return 0;
}
};
} // end anonymous namespace
INITIALIZE_AG_PASS(NoTTI, TargetTransformInfo, "notti",
"No target information", true, true, true)
char NoTTI::ID = 0;
ImmutablePass *llvm::createNoTargetTransformInfoPass() {
return new NoTTI();
}