mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-23 19:23:23 +01:00
68092989f3
This file lists every pass in LLVM, and is included by Pass.h, which is very popular. Every time we add, remove, or rename a pass in LLVM, it caused lots of recompilation. I found this fact by looking at this table, which is sorted by the number of times a file was changed over the last 100,000 git commits multiplied by the number of object files that depend on it in the current checkout: recompiles touches affected_files header 342380 95 3604 llvm/include/llvm/ADT/STLExtras.h 314730 234 1345 llvm/include/llvm/InitializePasses.h 307036 118 2602 llvm/include/llvm/ADT/APInt.h 213049 59 3611 llvm/include/llvm/Support/MathExtras.h 170422 47 3626 llvm/include/llvm/Support/Compiler.h 162225 45 3605 llvm/include/llvm/ADT/Optional.h 158319 63 2513 llvm/include/llvm/ADT/Triple.h 140322 39 3598 llvm/include/llvm/ADT/StringRef.h 137647 59 2333 llvm/include/llvm/Support/Error.h 131619 73 1803 llvm/include/llvm/Support/FileSystem.h Before this change, touching InitializePasses.h would cause 1345 files to recompile. After this change, touching it only causes 550 compiles in an incremental rebuild. Reviewers: bkramer, asbirlea, bollu, jdoerfert Differential Revision: https://reviews.llvm.org/D70211
428 lines
16 KiB
C++
428 lines
16 KiB
C++
//===- IVUsers.cpp - Induction Variable Users -------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements bookkeeping for "interesting" users of expressions
|
|
// computed from induction variables.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/IVUsers.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/CodeMetrics.h"
|
|
#include "llvm/Analysis/LoopAnalysisManager.h"
|
|
#include "llvm/Analysis/LoopPass.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/Config/llvm-config.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "iv-users"
|
|
|
|
AnalysisKey IVUsersAnalysis::Key;
|
|
|
|
IVUsers IVUsersAnalysis::run(Loop &L, LoopAnalysisManager &AM,
|
|
LoopStandardAnalysisResults &AR) {
|
|
return IVUsers(&L, &AR.AC, &AR.LI, &AR.DT, &AR.SE);
|
|
}
|
|
|
|
char IVUsersWrapperPass::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(IVUsersWrapperPass, "iv-users",
|
|
"Induction Variable Users", false, true)
|
|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
|
|
INITIALIZE_PASS_END(IVUsersWrapperPass, "iv-users", "Induction Variable Users",
|
|
false, true)
|
|
|
|
Pass *llvm::createIVUsersPass() { return new IVUsersWrapperPass(); }
|
|
|
|
/// isInteresting - Test whether the given expression is "interesting" when
|
|
/// used by the given expression, within the context of analyzing the
|
|
/// given loop.
|
|
static bool isInteresting(const SCEV *S, const Instruction *I, const Loop *L,
|
|
ScalarEvolution *SE, LoopInfo *LI) {
|
|
// An addrec is interesting if it's affine or if it has an interesting start.
|
|
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
|
|
// Keep things simple. Don't touch loop-variant strides unless they're
|
|
// only used outside the loop and we can simplify them.
|
|
if (AR->getLoop() == L)
|
|
return AR->isAffine() ||
|
|
(!L->contains(I) &&
|
|
SE->getSCEVAtScope(AR, LI->getLoopFor(I->getParent())) != AR);
|
|
// Otherwise recurse to see if the start value is interesting, and that
|
|
// the step value is not interesting, since we don't yet know how to
|
|
// do effective SCEV expansions for addrecs with interesting steps.
|
|
return isInteresting(AR->getStart(), I, L, SE, LI) &&
|
|
!isInteresting(AR->getStepRecurrence(*SE), I, L, SE, LI);
|
|
}
|
|
|
|
// An add is interesting if exactly one of its operands is interesting.
|
|
if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
|
|
bool AnyInterestingYet = false;
|
|
for (const auto *Op : Add->operands())
|
|
if (isInteresting(Op, I, L, SE, LI)) {
|
|
if (AnyInterestingYet)
|
|
return false;
|
|
AnyInterestingYet = true;
|
|
}
|
|
return AnyInterestingYet;
|
|
}
|
|
|
|
// Nothing else is interesting here.
|
|
return false;
|
|
}
|
|
|
|
/// Return true if all loop headers that dominate this block are in simplified
|
|
/// form.
|
|
static bool isSimplifiedLoopNest(BasicBlock *BB, const DominatorTree *DT,
|
|
const LoopInfo *LI,
|
|
SmallPtrSetImpl<Loop*> &SimpleLoopNests) {
|
|
Loop *NearestLoop = nullptr;
|
|
for (DomTreeNode *Rung = DT->getNode(BB);
|
|
Rung; Rung = Rung->getIDom()) {
|
|
BasicBlock *DomBB = Rung->getBlock();
|
|
Loop *DomLoop = LI->getLoopFor(DomBB);
|
|
if (DomLoop && DomLoop->getHeader() == DomBB) {
|
|
// If the domtree walk reaches a loop with no preheader, return false.
|
|
if (!DomLoop->isLoopSimplifyForm())
|
|
return false;
|
|
// If we have already checked this loop nest, stop checking.
|
|
if (SimpleLoopNests.count(DomLoop))
|
|
break;
|
|
// If we have not already checked this loop nest, remember the loop
|
|
// header nearest to BB. The nearest loop may not contain BB.
|
|
if (!NearestLoop)
|
|
NearestLoop = DomLoop;
|
|
}
|
|
}
|
|
if (NearestLoop)
|
|
SimpleLoopNests.insert(NearestLoop);
|
|
return true;
|
|
}
|
|
|
|
/// IVUseShouldUsePostIncValue - We have discovered a "User" of an IV expression
|
|
/// and now we need to decide whether the user should use the preinc or post-inc
|
|
/// value. If this user should use the post-inc version of the IV, return true.
|
|
///
|
|
/// Choosing wrong here can break dominance properties (if we choose to use the
|
|
/// post-inc value when we cannot) or it can end up adding extra live-ranges to
|
|
/// the loop, resulting in reg-reg copies (if we use the pre-inc value when we
|
|
/// should use the post-inc value).
|
|
static bool IVUseShouldUsePostIncValue(Instruction *User, Value *Operand,
|
|
const Loop *L, DominatorTree *DT) {
|
|
// If the user is in the loop, use the preinc value.
|
|
if (L->contains(User))
|
|
return false;
|
|
|
|
BasicBlock *LatchBlock = L->getLoopLatch();
|
|
if (!LatchBlock)
|
|
return false;
|
|
|
|
// Ok, the user is outside of the loop. If it is dominated by the latch
|
|
// block, use the post-inc value.
|
|
if (DT->dominates(LatchBlock, User->getParent()))
|
|
return true;
|
|
|
|
// There is one case we have to be careful of: PHI nodes. These little guys
|
|
// can live in blocks that are not dominated by the latch block, but (since
|
|
// their uses occur in the predecessor block, not the block the PHI lives in)
|
|
// should still use the post-inc value. Check for this case now.
|
|
PHINode *PN = dyn_cast<PHINode>(User);
|
|
if (!PN || !Operand)
|
|
return false; // not a phi, not dominated by latch block.
|
|
|
|
// Look at all of the uses of Operand by the PHI node. If any use corresponds
|
|
// to a block that is not dominated by the latch block, give up and use the
|
|
// preincremented value.
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
|
|
if (PN->getIncomingValue(i) == Operand &&
|
|
!DT->dominates(LatchBlock, PN->getIncomingBlock(i)))
|
|
return false;
|
|
|
|
// Okay, all uses of Operand by PN are in predecessor blocks that really are
|
|
// dominated by the latch block. Use the post-incremented value.
|
|
return true;
|
|
}
|
|
|
|
/// AddUsersImpl - Inspect the specified instruction. If it is a
|
|
/// reducible SCEV, recursively add its users to the IVUsesByStride set and
|
|
/// return true. Otherwise, return false.
|
|
bool IVUsers::AddUsersImpl(Instruction *I,
|
|
SmallPtrSetImpl<Loop*> &SimpleLoopNests) {
|
|
const DataLayout &DL = I->getModule()->getDataLayout();
|
|
|
|
// Add this IV user to the Processed set before returning false to ensure that
|
|
// all IV users are members of the set. See IVUsers::isIVUserOrOperand.
|
|
if (!Processed.insert(I).second)
|
|
return true; // Instruction already handled.
|
|
|
|
if (!SE->isSCEVable(I->getType()))
|
|
return false; // Void and FP expressions cannot be reduced.
|
|
|
|
// IVUsers is used by LSR which assumes that all SCEV expressions are safe to
|
|
// pass to SCEVExpander. Expressions are not safe to expand if they represent
|
|
// operations that are not safe to speculate, namely integer division.
|
|
if (!isa<PHINode>(I) && !isSafeToSpeculativelyExecute(I))
|
|
return false;
|
|
|
|
// LSR is not APInt clean, do not touch integers bigger than 64-bits.
|
|
// Also avoid creating IVs of non-native types. For example, we don't want a
|
|
// 64-bit IV in 32-bit code just because the loop has one 64-bit cast.
|
|
uint64_t Width = SE->getTypeSizeInBits(I->getType());
|
|
if (Width > 64 || !DL.isLegalInteger(Width))
|
|
return false;
|
|
|
|
// Don't attempt to promote ephemeral values to indvars. They will be removed
|
|
// later anyway.
|
|
if (EphValues.count(I))
|
|
return false;
|
|
|
|
// Get the symbolic expression for this instruction.
|
|
const SCEV *ISE = SE->getSCEV(I);
|
|
|
|
// If we've come to an uninteresting expression, stop the traversal and
|
|
// call this a user.
|
|
if (!isInteresting(ISE, I, L, SE, LI))
|
|
return false;
|
|
|
|
SmallPtrSet<Instruction *, 4> UniqueUsers;
|
|
for (Use &U : I->uses()) {
|
|
Instruction *User = cast<Instruction>(U.getUser());
|
|
if (!UniqueUsers.insert(User).second)
|
|
continue;
|
|
|
|
// Do not infinitely recurse on PHI nodes.
|
|
if (isa<PHINode>(User) && Processed.count(User))
|
|
continue;
|
|
|
|
// Only consider IVUsers that are dominated by simplified loop
|
|
// headers. Otherwise, SCEVExpander will crash.
|
|
BasicBlock *UseBB = User->getParent();
|
|
// A phi's use is live out of its predecessor block.
|
|
if (PHINode *PHI = dyn_cast<PHINode>(User)) {
|
|
unsigned OperandNo = U.getOperandNo();
|
|
unsigned ValNo = PHINode::getIncomingValueNumForOperand(OperandNo);
|
|
UseBB = PHI->getIncomingBlock(ValNo);
|
|
}
|
|
if (!isSimplifiedLoopNest(UseBB, DT, LI, SimpleLoopNests))
|
|
return false;
|
|
|
|
// Descend recursively, but not into PHI nodes outside the current loop.
|
|
// It's important to see the entire expression outside the loop to get
|
|
// choices that depend on addressing mode use right, although we won't
|
|
// consider references outside the loop in all cases.
|
|
// If User is already in Processed, we don't want to recurse into it again,
|
|
// but do want to record a second reference in the same instruction.
|
|
bool AddUserToIVUsers = false;
|
|
if (LI->getLoopFor(User->getParent()) != L) {
|
|
if (isa<PHINode>(User) || Processed.count(User) ||
|
|
!AddUsersImpl(User, SimpleLoopNests)) {
|
|
LLVM_DEBUG(dbgs() << "FOUND USER in other loop: " << *User << '\n'
|
|
<< " OF SCEV: " << *ISE << '\n');
|
|
AddUserToIVUsers = true;
|
|
}
|
|
} else if (Processed.count(User) || !AddUsersImpl(User, SimpleLoopNests)) {
|
|
LLVM_DEBUG(dbgs() << "FOUND USER: " << *User << '\n'
|
|
<< " OF SCEV: " << *ISE << '\n');
|
|
AddUserToIVUsers = true;
|
|
}
|
|
|
|
if (AddUserToIVUsers) {
|
|
// Okay, we found a user that we cannot reduce.
|
|
IVStrideUse &NewUse = AddUser(User, I);
|
|
// Autodetect the post-inc loop set, populating NewUse.PostIncLoops.
|
|
// The regular return value here is discarded; instead of recording
|
|
// it, we just recompute it when we need it.
|
|
const SCEV *OriginalISE = ISE;
|
|
|
|
auto NormalizePred = [&](const SCEVAddRecExpr *AR) {
|
|
auto *L = AR->getLoop();
|
|
bool Result = IVUseShouldUsePostIncValue(User, I, L, DT);
|
|
if (Result)
|
|
NewUse.PostIncLoops.insert(L);
|
|
return Result;
|
|
};
|
|
|
|
ISE = normalizeForPostIncUseIf(ISE, NormalizePred, *SE);
|
|
|
|
// PostIncNormalization effectively simplifies the expression under
|
|
// pre-increment assumptions. Those assumptions (no wrapping) might not
|
|
// hold for the post-inc value. Catch such cases by making sure the
|
|
// transformation is invertible.
|
|
if (OriginalISE != ISE) {
|
|
const SCEV *DenormalizedISE =
|
|
denormalizeForPostIncUse(ISE, NewUse.PostIncLoops, *SE);
|
|
|
|
// If we normalized the expression, but denormalization doesn't give the
|
|
// original one, discard this user.
|
|
if (OriginalISE != DenormalizedISE) {
|
|
LLVM_DEBUG(dbgs()
|
|
<< " DISCARDING (NORMALIZATION ISN'T INVERTIBLE): "
|
|
<< *ISE << '\n');
|
|
IVUses.pop_back();
|
|
return false;
|
|
}
|
|
}
|
|
LLVM_DEBUG(if (SE->getSCEV(I) != ISE) dbgs()
|
|
<< " NORMALIZED TO: " << *ISE << '\n');
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool IVUsers::AddUsersIfInteresting(Instruction *I) {
|
|
// SCEVExpander can only handle users that are dominated by simplified loop
|
|
// entries. Keep track of all loops that are only dominated by other simple
|
|
// loops so we don't traverse the domtree for each user.
|
|
SmallPtrSet<Loop*,16> SimpleLoopNests;
|
|
|
|
return AddUsersImpl(I, SimpleLoopNests);
|
|
}
|
|
|
|
IVStrideUse &IVUsers::AddUser(Instruction *User, Value *Operand) {
|
|
IVUses.push_back(new IVStrideUse(this, User, Operand));
|
|
return IVUses.back();
|
|
}
|
|
|
|
IVUsers::IVUsers(Loop *L, AssumptionCache *AC, LoopInfo *LI, DominatorTree *DT,
|
|
ScalarEvolution *SE)
|
|
: L(L), AC(AC), LI(LI), DT(DT), SE(SE), IVUses() {
|
|
// Collect ephemeral values so that AddUsersIfInteresting skips them.
|
|
EphValues.clear();
|
|
CodeMetrics::collectEphemeralValues(L, AC, EphValues);
|
|
|
|
// Find all uses of induction variables in this loop, and categorize
|
|
// them by stride. Start by finding all of the PHI nodes in the header for
|
|
// this loop. If they are induction variables, inspect their uses.
|
|
for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I)
|
|
(void)AddUsersIfInteresting(&*I);
|
|
}
|
|
|
|
void IVUsers::print(raw_ostream &OS, const Module *M) const {
|
|
OS << "IV Users for loop ";
|
|
L->getHeader()->printAsOperand(OS, false);
|
|
if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
|
|
OS << " with backedge-taken count " << *SE->getBackedgeTakenCount(L);
|
|
}
|
|
OS << ":\n";
|
|
|
|
for (const IVStrideUse &IVUse : IVUses) {
|
|
OS << " ";
|
|
IVUse.getOperandValToReplace()->printAsOperand(OS, false);
|
|
OS << " = " << *getReplacementExpr(IVUse);
|
|
for (auto PostIncLoop : IVUse.PostIncLoops) {
|
|
OS << " (post-inc with loop ";
|
|
PostIncLoop->getHeader()->printAsOperand(OS, false);
|
|
OS << ")";
|
|
}
|
|
OS << " in ";
|
|
if (IVUse.getUser())
|
|
IVUse.getUser()->print(OS);
|
|
else
|
|
OS << "Printing <null> User";
|
|
OS << '\n';
|
|
}
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
LLVM_DUMP_METHOD void IVUsers::dump() const { print(dbgs()); }
|
|
#endif
|
|
|
|
void IVUsers::releaseMemory() {
|
|
Processed.clear();
|
|
IVUses.clear();
|
|
}
|
|
|
|
IVUsersWrapperPass::IVUsersWrapperPass() : LoopPass(ID) {
|
|
initializeIVUsersWrapperPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void IVUsersWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addRequired<AssumptionCacheTracker>();
|
|
AU.addRequired<LoopInfoWrapperPass>();
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addRequired<ScalarEvolutionWrapperPass>();
|
|
AU.setPreservesAll();
|
|
}
|
|
|
|
bool IVUsersWrapperPass::runOnLoop(Loop *L, LPPassManager &LPM) {
|
|
auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
|
|
*L->getHeader()->getParent());
|
|
auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
|
|
auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
|
|
|
|
IU.reset(new IVUsers(L, AC, LI, DT, SE));
|
|
return false;
|
|
}
|
|
|
|
void IVUsersWrapperPass::print(raw_ostream &OS, const Module *M) const {
|
|
IU->print(OS, M);
|
|
}
|
|
|
|
void IVUsersWrapperPass::releaseMemory() { IU->releaseMemory(); }
|
|
|
|
/// getReplacementExpr - Return a SCEV expression which computes the
|
|
/// value of the OperandValToReplace.
|
|
const SCEV *IVUsers::getReplacementExpr(const IVStrideUse &IU) const {
|
|
return SE->getSCEV(IU.getOperandValToReplace());
|
|
}
|
|
|
|
/// getExpr - Return the expression for the use.
|
|
const SCEV *IVUsers::getExpr(const IVStrideUse &IU) const {
|
|
return normalizeForPostIncUse(getReplacementExpr(IU), IU.getPostIncLoops(),
|
|
*SE);
|
|
}
|
|
|
|
static const SCEVAddRecExpr *findAddRecForLoop(const SCEV *S, const Loop *L) {
|
|
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
|
|
if (AR->getLoop() == L)
|
|
return AR;
|
|
return findAddRecForLoop(AR->getStart(), L);
|
|
}
|
|
|
|
if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
|
|
for (const auto *Op : Add->operands())
|
|
if (const SCEVAddRecExpr *AR = findAddRecForLoop(Op, L))
|
|
return AR;
|
|
return nullptr;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
const SCEV *IVUsers::getStride(const IVStrideUse &IU, const Loop *L) const {
|
|
if (const SCEVAddRecExpr *AR = findAddRecForLoop(getExpr(IU), L))
|
|
return AR->getStepRecurrence(*SE);
|
|
return nullptr;
|
|
}
|
|
|
|
void IVStrideUse::transformToPostInc(const Loop *L) {
|
|
PostIncLoops.insert(L);
|
|
}
|
|
|
|
void IVStrideUse::deleted() {
|
|
// Remove this user from the list.
|
|
Parent->Processed.erase(this->getUser());
|
|
Parent->IVUses.erase(this);
|
|
// this now dangles!
|
|
}
|