1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-21 03:53:04 +02:00
llvm-mirror/include/llvm/CodeGen/MachineBasicBlock.h
Quentin Colombet 4871a92f84 [MachineBasicBlock] Add a non-assert live-in accessor for debug mode.
With r291169, it is now not possible to access the live-in information
when the liveness is not properly tracked. Although this is want we want
in general, for debugging purpose we may want to still be able to
traverse this information even if it may not be accurate.

llvm-svn: 291317
2017-01-07 00:46:30 +00:00

847 lines
35 KiB
C++

//===-- llvm/CodeGen/MachineBasicBlock.h ------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Collect the sequence of machine instructions for a basic block.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_MACHINEBASICBLOCK_H
#define LLVM_CODEGEN_MACHINEBASICBLOCK_H
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/CodeGen/MachineInstrBundleIterator.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/MC/LaneBitmask.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/DataTypes.h"
#include <functional>
namespace llvm {
class Pass;
class BasicBlock;
class MachineFunction;
class MCSymbol;
class MIPrinter;
class SlotIndexes;
class StringRef;
class raw_ostream;
class MachineBranchProbabilityInfo;
template <> struct ilist_traits<MachineInstr> {
private:
friend class MachineBasicBlock; // Set by the owning MachineBasicBlock.
MachineBasicBlock *Parent;
typedef simple_ilist<MachineInstr, ilist_sentinel_tracking<true>>::iterator
instr_iterator;
public:
void addNodeToList(MachineInstr *N);
void removeNodeFromList(MachineInstr *N);
void transferNodesFromList(ilist_traits &OldList, instr_iterator First,
instr_iterator Last);
void deleteNode(MachineInstr *MI);
};
class MachineBasicBlock
: public ilist_node_with_parent<MachineBasicBlock, MachineFunction> {
public:
/// Pair of physical register and lane mask.
/// This is not simply a std::pair typedef because the members should be named
/// clearly as they both have an integer type.
struct RegisterMaskPair {
public:
MCPhysReg PhysReg;
LaneBitmask LaneMask;
RegisterMaskPair(MCPhysReg PhysReg, LaneBitmask LaneMask)
: PhysReg(PhysReg), LaneMask(LaneMask) {}
};
private:
typedef ilist<MachineInstr, ilist_sentinel_tracking<true>> Instructions;
Instructions Insts;
const BasicBlock *BB;
int Number;
MachineFunction *xParent;
/// Keep track of the predecessor / successor basic blocks.
std::vector<MachineBasicBlock *> Predecessors;
std::vector<MachineBasicBlock *> Successors;
/// Keep track of the probabilities to the successors. This vector has the
/// same order as Successors, or it is empty if we don't use it (disable
/// optimization).
std::vector<BranchProbability> Probs;
typedef std::vector<BranchProbability>::iterator probability_iterator;
typedef std::vector<BranchProbability>::const_iterator
const_probability_iterator;
/// Keep track of the physical registers that are livein of the basicblock.
typedef std::vector<RegisterMaskPair> LiveInVector;
LiveInVector LiveIns;
/// Alignment of the basic block. Zero if the basic block does not need to be
/// aligned. The alignment is specified as log2(bytes).
unsigned Alignment = 0;
/// Indicate that this basic block is entered via an exception handler.
bool IsEHPad = false;
/// Indicate that this basic block is potentially the target of an indirect
/// branch.
bool AddressTaken = false;
/// Indicate that this basic block is the entry block of an EH funclet.
bool IsEHFuncletEntry = false;
/// Indicate that this basic block is the entry block of a cleanup funclet.
bool IsCleanupFuncletEntry = false;
/// \brief since getSymbol is a relatively heavy-weight operation, the symbol
/// is only computed once and is cached.
mutable MCSymbol *CachedMCSymbol = nullptr;
// Intrusive list support
MachineBasicBlock() {}
explicit MachineBasicBlock(MachineFunction &MF, const BasicBlock *BB);
~MachineBasicBlock();
// MachineBasicBlocks are allocated and owned by MachineFunction.
friend class MachineFunction;
public:
/// Return the LLVM basic block that this instance corresponded to originally.
/// Note that this may be NULL if this instance does not correspond directly
/// to an LLVM basic block.
const BasicBlock *getBasicBlock() const { return BB; }
/// Return the name of the corresponding LLVM basic block, or "(null)".
StringRef getName() const;
/// Return a formatted string to identify this block and its parent function.
std::string getFullName() const;
/// Test whether this block is potentially the target of an indirect branch.
bool hasAddressTaken() const { return AddressTaken; }
/// Set this block to reflect that it potentially is the target of an indirect
/// branch.
void setHasAddressTaken() { AddressTaken = true; }
/// Return the MachineFunction containing this basic block.
const MachineFunction *getParent() const { return xParent; }
MachineFunction *getParent() { return xParent; }
typedef Instructions::iterator instr_iterator;
typedef Instructions::const_iterator const_instr_iterator;
typedef Instructions::reverse_iterator reverse_instr_iterator;
typedef Instructions::const_reverse_iterator const_reverse_instr_iterator;
typedef MachineInstrBundleIterator<MachineInstr> iterator;
typedef MachineInstrBundleIterator<const MachineInstr> const_iterator;
typedef MachineInstrBundleIterator<MachineInstr, true> reverse_iterator;
typedef MachineInstrBundleIterator<const MachineInstr, true>
const_reverse_iterator;
unsigned size() const { return (unsigned)Insts.size(); }
bool empty() const { return Insts.empty(); }
MachineInstr &instr_front() { return Insts.front(); }
MachineInstr &instr_back() { return Insts.back(); }
const MachineInstr &instr_front() const { return Insts.front(); }
const MachineInstr &instr_back() const { return Insts.back(); }
MachineInstr &front() { return Insts.front(); }
MachineInstr &back() { return *--end(); }
const MachineInstr &front() const { return Insts.front(); }
const MachineInstr &back() const { return *--end(); }
instr_iterator instr_begin() { return Insts.begin(); }
const_instr_iterator instr_begin() const { return Insts.begin(); }
instr_iterator instr_end() { return Insts.end(); }
const_instr_iterator instr_end() const { return Insts.end(); }
reverse_instr_iterator instr_rbegin() { return Insts.rbegin(); }
const_reverse_instr_iterator instr_rbegin() const { return Insts.rbegin(); }
reverse_instr_iterator instr_rend () { return Insts.rend(); }
const_reverse_instr_iterator instr_rend () const { return Insts.rend(); }
typedef iterator_range<instr_iterator> instr_range;
typedef iterator_range<const_instr_iterator> const_instr_range;
instr_range instrs() { return instr_range(instr_begin(), instr_end()); }
const_instr_range instrs() const {
return const_instr_range(instr_begin(), instr_end());
}
iterator begin() { return instr_begin(); }
const_iterator begin() const { return instr_begin(); }
iterator end () { return instr_end(); }
const_iterator end () const { return instr_end(); }
reverse_iterator rbegin() {
return reverse_iterator::getAtBundleBegin(instr_rbegin());
}
const_reverse_iterator rbegin() const {
return const_reverse_iterator::getAtBundleBegin(instr_rbegin());
}
reverse_iterator rend() { return reverse_iterator(instr_rend()); }
const_reverse_iterator rend() const {
return const_reverse_iterator(instr_rend());
}
/// Support for MachineInstr::getNextNode().
static Instructions MachineBasicBlock::*getSublistAccess(MachineInstr *) {
return &MachineBasicBlock::Insts;
}
inline iterator_range<iterator> terminators() {
return make_range(getFirstTerminator(), end());
}
inline iterator_range<const_iterator> terminators() const {
return make_range(getFirstTerminator(), end());
}
// Machine-CFG iterators
typedef std::vector<MachineBasicBlock *>::iterator pred_iterator;
typedef std::vector<MachineBasicBlock *>::const_iterator const_pred_iterator;
typedef std::vector<MachineBasicBlock *>::iterator succ_iterator;
typedef std::vector<MachineBasicBlock *>::const_iterator const_succ_iterator;
typedef std::vector<MachineBasicBlock *>::reverse_iterator
pred_reverse_iterator;
typedef std::vector<MachineBasicBlock *>::const_reverse_iterator
const_pred_reverse_iterator;
typedef std::vector<MachineBasicBlock *>::reverse_iterator
succ_reverse_iterator;
typedef std::vector<MachineBasicBlock *>::const_reverse_iterator
const_succ_reverse_iterator;
pred_iterator pred_begin() { return Predecessors.begin(); }
const_pred_iterator pred_begin() const { return Predecessors.begin(); }
pred_iterator pred_end() { return Predecessors.end(); }
const_pred_iterator pred_end() const { return Predecessors.end(); }
pred_reverse_iterator pred_rbegin()
{ return Predecessors.rbegin();}
const_pred_reverse_iterator pred_rbegin() const
{ return Predecessors.rbegin();}
pred_reverse_iterator pred_rend()
{ return Predecessors.rend(); }
const_pred_reverse_iterator pred_rend() const
{ return Predecessors.rend(); }
unsigned pred_size() const {
return (unsigned)Predecessors.size();
}
bool pred_empty() const { return Predecessors.empty(); }
succ_iterator succ_begin() { return Successors.begin(); }
const_succ_iterator succ_begin() const { return Successors.begin(); }
succ_iterator succ_end() { return Successors.end(); }
const_succ_iterator succ_end() const { return Successors.end(); }
succ_reverse_iterator succ_rbegin()
{ return Successors.rbegin(); }
const_succ_reverse_iterator succ_rbegin() const
{ return Successors.rbegin(); }
succ_reverse_iterator succ_rend()
{ return Successors.rend(); }
const_succ_reverse_iterator succ_rend() const
{ return Successors.rend(); }
unsigned succ_size() const {
return (unsigned)Successors.size();
}
bool succ_empty() const { return Successors.empty(); }
inline iterator_range<pred_iterator> predecessors() {
return make_range(pred_begin(), pred_end());
}
inline iterator_range<const_pred_iterator> predecessors() const {
return make_range(pred_begin(), pred_end());
}
inline iterator_range<succ_iterator> successors() {
return make_range(succ_begin(), succ_end());
}
inline iterator_range<const_succ_iterator> successors() const {
return make_range(succ_begin(), succ_end());
}
// LiveIn management methods.
/// Adds the specified register as a live in. Note that it is an error to add
/// the same register to the same set more than once unless the intention is
/// to call sortUniqueLiveIns after all registers are added.
void addLiveIn(MCPhysReg PhysReg,
LaneBitmask LaneMask = LaneBitmask::getAll()) {
LiveIns.push_back(RegisterMaskPair(PhysReg, LaneMask));
}
void addLiveIn(const RegisterMaskPair &RegMaskPair) {
LiveIns.push_back(RegMaskPair);
}
/// Sorts and uniques the LiveIns vector. It can be significantly faster to do
/// this than repeatedly calling isLiveIn before calling addLiveIn for every
/// LiveIn insertion.
void sortUniqueLiveIns();
/// Clear live in list.
void clearLiveIns();
/// Add PhysReg as live in to this block, and ensure that there is a copy of
/// PhysReg to a virtual register of class RC. Return the virtual register
/// that is a copy of the live in PhysReg.
unsigned addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC);
/// Remove the specified register from the live in set.
void removeLiveIn(MCPhysReg Reg,
LaneBitmask LaneMask = LaneBitmask::getAll());
/// Return true if the specified register is in the live in set.
bool isLiveIn(MCPhysReg Reg,
LaneBitmask LaneMask = LaneBitmask::getAll()) const;
// Iteration support for live in sets. These sets are kept in sorted
// order by their register number.
typedef LiveInVector::const_iterator livein_iterator;
#ifndef NDEBUG
/// Unlike livein_begin, this method does not check that the liveness
/// information is accurate. Still for debug purposes it may be useful
/// to have iterators that won't assert if the liveness information
/// is not current.
livein_iterator livein_begin_dbg() const { return LiveIns.begin(); }
iterator_range<livein_iterator> liveins_dbg() const {
return make_range(livein_begin_dbg(), livein_end());
}
#endif
livein_iterator livein_begin() const;
livein_iterator livein_end() const { return LiveIns.end(); }
bool livein_empty() const { return LiveIns.empty(); }
iterator_range<livein_iterator> liveins() const {
return make_range(livein_begin(), livein_end());
}
/// Get the clobber mask for the start of this basic block. Funclets use this
/// to prevent register allocation across funclet transitions.
const uint32_t *getBeginClobberMask(const TargetRegisterInfo *TRI) const;
/// Get the clobber mask for the end of the basic block.
/// \see getBeginClobberMask()
const uint32_t *getEndClobberMask(const TargetRegisterInfo *TRI) const;
/// Return alignment of the basic block. The alignment is specified as
/// log2(bytes).
unsigned getAlignment() const { return Alignment; }
/// Set alignment of the basic block. The alignment is specified as
/// log2(bytes).
void setAlignment(unsigned Align) { Alignment = Align; }
/// Returns true if the block is a landing pad. That is this basic block is
/// entered via an exception handler.
bool isEHPad() const { return IsEHPad; }
/// Indicates the block is a landing pad. That is this basic block is entered
/// via an exception handler.
void setIsEHPad(bool V = true) { IsEHPad = V; }
bool hasEHPadSuccessor() const;
/// Returns true if this is the entry block of an EH funclet.
bool isEHFuncletEntry() const { return IsEHFuncletEntry; }
/// Indicates if this is the entry block of an EH funclet.
void setIsEHFuncletEntry(bool V = true) { IsEHFuncletEntry = V; }
/// Returns true if this is the entry block of a cleanup funclet.
bool isCleanupFuncletEntry() const { return IsCleanupFuncletEntry; }
/// Indicates if this is the entry block of a cleanup funclet.
void setIsCleanupFuncletEntry(bool V = true) { IsCleanupFuncletEntry = V; }
// Code Layout methods.
/// Move 'this' block before or after the specified block. This only moves
/// the block, it does not modify the CFG or adjust potential fall-throughs at
/// the end of the block.
void moveBefore(MachineBasicBlock *NewAfter);
void moveAfter(MachineBasicBlock *NewBefore);
/// Update the terminator instructions in block to account for changes to the
/// layout. If the block previously used a fallthrough, it may now need a
/// branch, and if it previously used branching it may now be able to use a
/// fallthrough.
void updateTerminator();
// Machine-CFG mutators
/// Add Succ as a successor of this MachineBasicBlock. The Predecessors list
/// of Succ is automatically updated. PROB parameter is stored in
/// Probabilities list. The default probability is set as unknown. Mixing
/// known and unknown probabilities in successor list is not allowed. When all
/// successors have unknown probabilities, 1 / N is returned as the
/// probability for each successor, where N is the number of successors.
///
/// Note that duplicate Machine CFG edges are not allowed.
void addSuccessor(MachineBasicBlock *Succ,
BranchProbability Prob = BranchProbability::getUnknown());
/// Add Succ as a successor of this MachineBasicBlock. The Predecessors list
/// of Succ is automatically updated. The probability is not provided because
/// BPI is not available (e.g. -O0 is used), in which case edge probabilities
/// won't be used. Using this interface can save some space.
void addSuccessorWithoutProb(MachineBasicBlock *Succ);
/// Set successor probability of a given iterator.
void setSuccProbability(succ_iterator I, BranchProbability Prob);
/// Normalize probabilities of all successors so that the sum of them becomes
/// one. This is usually done when the current update on this MBB is done, and
/// the sum of its successors' probabilities is not guaranteed to be one. The
/// user is responsible for the correct use of this function.
/// MBB::removeSuccessor() has an option to do this automatically.
void normalizeSuccProbs() {
BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
}
/// Validate successors' probabilities and check if the sum of them is
/// approximate one. This only works in DEBUG mode.
void validateSuccProbs() const;
/// Remove successor from the successors list of this MachineBasicBlock. The
/// Predecessors list of Succ is automatically updated.
/// If NormalizeSuccProbs is true, then normalize successors' probabilities
/// after the successor is removed.
void removeSuccessor(MachineBasicBlock *Succ,
bool NormalizeSuccProbs = false);
/// Remove specified successor from the successors list of this
/// MachineBasicBlock. The Predecessors list of Succ is automatically updated.
/// If NormalizeSuccProbs is true, then normalize successors' probabilities
/// after the successor is removed.
/// Return the iterator to the element after the one removed.
succ_iterator removeSuccessor(succ_iterator I,
bool NormalizeSuccProbs = false);
/// Replace successor OLD with NEW and update probability info.
void replaceSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New);
/// Transfers all the successors from MBB to this machine basic block (i.e.,
/// copies all the successors FromMBB and remove all the successors from
/// FromMBB).
void transferSuccessors(MachineBasicBlock *FromMBB);
/// Transfers all the successors, as in transferSuccessors, and update PHI
/// operands in the successor blocks which refer to FromMBB to refer to this.
void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB);
/// Return true if any of the successors have probabilities attached to them.
bool hasSuccessorProbabilities() const { return !Probs.empty(); }
/// Return true if the specified MBB is a predecessor of this block.
bool isPredecessor(const MachineBasicBlock *MBB) const;
/// Return true if the specified MBB is a successor of this block.
bool isSuccessor(const MachineBasicBlock *MBB) const;
/// Return true if the specified MBB will be emitted immediately after this
/// block, such that if this block exits by falling through, control will
/// transfer to the specified MBB. Note that MBB need not be a successor at
/// all, for example if this block ends with an unconditional branch to some
/// other block.
bool isLayoutSuccessor(const MachineBasicBlock *MBB) const;
/// Return true if the block can implicitly transfer control to the block
/// after it by falling off the end of it. This should return false if it can
/// reach the block after it, but it uses an explicit branch to do so (e.g., a
/// table jump). True is a conservative answer.
bool canFallThrough();
/// Returns a pointer to the first instruction in this block that is not a
/// PHINode instruction. When adding instructions to the beginning of the
/// basic block, they should be added before the returned value, not before
/// the first instruction, which might be PHI.
/// Returns end() is there's no non-PHI instruction.
iterator getFirstNonPHI();
/// Return the first instruction in MBB after I that is not a PHI or a label.
/// This is the correct point to insert lowered copies at the beginning of a
/// basic block that must be before any debugging information.
iterator SkipPHIsAndLabels(iterator I);
/// Return the first instruction in MBB after I that is not a PHI, label or
/// debug. This is the correct point to insert copies at the beginning of a
/// basic block.
iterator SkipPHIsLabelsAndDebug(iterator I);
/// Returns an iterator to the first terminator instruction of this basic
/// block. If a terminator does not exist, it returns end().
iterator getFirstTerminator();
const_iterator getFirstTerminator() const {
return const_cast<MachineBasicBlock *>(this)->getFirstTerminator();
}
/// Same getFirstTerminator but it ignores bundles and return an
/// instr_iterator instead.
instr_iterator getFirstInstrTerminator();
/// Returns an iterator to the first non-debug instruction in the basic block,
/// or end().
iterator getFirstNonDebugInstr();
const_iterator getFirstNonDebugInstr() const {
return const_cast<MachineBasicBlock *>(this)->getFirstNonDebugInstr();
}
/// Returns an iterator to the last non-debug instruction in the basic block,
/// or end().
iterator getLastNonDebugInstr();
const_iterator getLastNonDebugInstr() const {
return const_cast<MachineBasicBlock *>(this)->getLastNonDebugInstr();
}
/// Convenience function that returns true if the block ends in a return
/// instruction.
bool isReturnBlock() const {
return !empty() && back().isReturn();
}
/// Split the critical edge from this block to the given successor block, and
/// return the newly created block, or null if splitting is not possible.
///
/// This function updates LiveVariables, MachineDominatorTree, and
/// MachineLoopInfo, as applicable.
MachineBasicBlock *SplitCriticalEdge(MachineBasicBlock *Succ, Pass &P);
/// Check if the edge between this block and the given successor \p
/// Succ, can be split. If this returns true a subsequent call to
/// SplitCriticalEdge is guaranteed to return a valid basic block if
/// no changes occured in the meantime.
bool canSplitCriticalEdge(const MachineBasicBlock *Succ) const;
void pop_front() { Insts.pop_front(); }
void pop_back() { Insts.pop_back(); }
void push_back(MachineInstr *MI) { Insts.push_back(MI); }
/// Insert MI into the instruction list before I, possibly inside a bundle.
///
/// If the insertion point is inside a bundle, MI will be added to the bundle,
/// otherwise MI will not be added to any bundle. That means this function
/// alone can't be used to prepend or append instructions to bundles. See
/// MIBundleBuilder::insert() for a more reliable way of doing that.
instr_iterator insert(instr_iterator I, MachineInstr *M);
/// Insert a range of instructions into the instruction list before I.
template<typename IT>
void insert(iterator I, IT S, IT E) {
assert((I == end() || I->getParent() == this) &&
"iterator points outside of basic block");
Insts.insert(I.getInstrIterator(), S, E);
}
/// Insert MI into the instruction list before I.
iterator insert(iterator I, MachineInstr *MI) {
assert((I == end() || I->getParent() == this) &&
"iterator points outside of basic block");
assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
"Cannot insert instruction with bundle flags");
return Insts.insert(I.getInstrIterator(), MI);
}
/// Insert MI into the instruction list after I.
iterator insertAfter(iterator I, MachineInstr *MI) {
assert((I == end() || I->getParent() == this) &&
"iterator points outside of basic block");
assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
"Cannot insert instruction with bundle flags");
return Insts.insertAfter(I.getInstrIterator(), MI);
}
/// Remove an instruction from the instruction list and delete it.
///
/// If the instruction is part of a bundle, the other instructions in the
/// bundle will still be bundled after removing the single instruction.
instr_iterator erase(instr_iterator I);
/// Remove an instruction from the instruction list and delete it.
///
/// If the instruction is part of a bundle, the other instructions in the
/// bundle will still be bundled after removing the single instruction.
instr_iterator erase_instr(MachineInstr *I) {
return erase(instr_iterator(I));
}
/// Remove a range of instructions from the instruction list and delete them.
iterator erase(iterator I, iterator E) {
return Insts.erase(I.getInstrIterator(), E.getInstrIterator());
}
/// Remove an instruction or bundle from the instruction list and delete it.
///
/// If I points to a bundle of instructions, they are all erased.
iterator erase(iterator I) {
return erase(I, std::next(I));
}
/// Remove an instruction from the instruction list and delete it.
///
/// If I is the head of a bundle of instructions, the whole bundle will be
/// erased.
iterator erase(MachineInstr *I) {
return erase(iterator(I));
}
/// Remove the unbundled instruction from the instruction list without
/// deleting it.
///
/// This function can not be used to remove bundled instructions, use
/// remove_instr to remove individual instructions from a bundle.
MachineInstr *remove(MachineInstr *I) {
assert(!I->isBundled() && "Cannot remove bundled instructions");
return Insts.remove(instr_iterator(I));
}
/// Remove the possibly bundled instruction from the instruction list
/// without deleting it.
///
/// If the instruction is part of a bundle, the other instructions in the
/// bundle will still be bundled after removing the single instruction.
MachineInstr *remove_instr(MachineInstr *I);
void clear() {
Insts.clear();
}
/// Take an instruction from MBB 'Other' at the position From, and insert it
/// into this MBB right before 'Where'.
///
/// If From points to a bundle of instructions, the whole bundle is moved.
void splice(iterator Where, MachineBasicBlock *Other, iterator From) {
// The range splice() doesn't allow noop moves, but this one does.
if (Where != From)
splice(Where, Other, From, std::next(From));
}
/// Take a block of instructions from MBB 'Other' in the range [From, To),
/// and insert them into this MBB right before 'Where'.
///
/// The instruction at 'Where' must not be included in the range of
/// instructions to move.
void splice(iterator Where, MachineBasicBlock *Other,
iterator From, iterator To) {
Insts.splice(Where.getInstrIterator(), Other->Insts,
From.getInstrIterator(), To.getInstrIterator());
}
/// This method unlinks 'this' from the containing function, and returns it,
/// but does not delete it.
MachineBasicBlock *removeFromParent();
/// This method unlinks 'this' from the containing function and deletes it.
void eraseFromParent();
/// Given a machine basic block that branched to 'Old', change the code and
/// CFG so that it branches to 'New' instead.
void ReplaceUsesOfBlockWith(MachineBasicBlock *Old, MachineBasicBlock *New);
/// Various pieces of code can cause excess edges in the CFG to be inserted.
/// If we have proven that MBB can only branch to DestA and DestB, remove any
/// other MBB successors from the CFG. DestA and DestB can be null. Besides
/// DestA and DestB, retain other edges leading to LandingPads (currently
/// there can be only one; we don't check or require that here). Note it is
/// possible that DestA and/or DestB are LandingPads.
bool CorrectExtraCFGEdges(MachineBasicBlock *DestA,
MachineBasicBlock *DestB,
bool IsCond);
/// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
/// instructions. Return UnknownLoc if there is none.
DebugLoc findDebugLoc(instr_iterator MBBI);
DebugLoc findDebugLoc(iterator MBBI) {
return findDebugLoc(MBBI.getInstrIterator());
}
/// Possible outcome of a register liveness query to computeRegisterLiveness()
enum LivenessQueryResult {
LQR_Live, ///< Register is known to be (at least partially) live.
LQR_Dead, ///< Register is known to be fully dead.
LQR_Unknown ///< Register liveness not decidable from local neighborhood.
};
/// Return whether (physical) register \p Reg has been <def>ined and not
/// <kill>ed as of just before \p Before.
///
/// Search is localised to a neighborhood of \p Neighborhood instructions
/// before (searching for defs or kills) and \p Neighborhood instructions
/// after (searching just for defs) \p Before.
///
/// \p Reg must be a physical register.
LivenessQueryResult computeRegisterLiveness(const TargetRegisterInfo *TRI,
unsigned Reg,
const_iterator Before,
unsigned Neighborhood=10) const;
// Debugging methods.
void dump() const;
void print(raw_ostream &OS, const SlotIndexes* = nullptr) const;
void print(raw_ostream &OS, ModuleSlotTracker &MST,
const SlotIndexes* = nullptr) const;
// Printing method used by LoopInfo.
void printAsOperand(raw_ostream &OS, bool PrintType = true) const;
/// MachineBasicBlocks are uniquely numbered at the function level, unless
/// they're not in a MachineFunction yet, in which case this will return -1.
int getNumber() const { return Number; }
void setNumber(int N) { Number = N; }
/// Return the MCSymbol for this basic block.
MCSymbol *getSymbol() const;
private:
/// Return probability iterator corresponding to the I successor iterator.
probability_iterator getProbabilityIterator(succ_iterator I);
const_probability_iterator
getProbabilityIterator(const_succ_iterator I) const;
friend class MachineBranchProbabilityInfo;
friend class MIPrinter;
/// Return probability of the edge from this block to MBB. This method should
/// NOT be called directly, but by using getEdgeProbability method from
/// MachineBranchProbabilityInfo class.
BranchProbability getSuccProbability(const_succ_iterator Succ) const;
// Methods used to maintain doubly linked list of blocks...
friend struct ilist_callback_traits<MachineBasicBlock>;
// Machine-CFG mutators
/// Remove Pred as a predecessor of this MachineBasicBlock. Don't do this
/// unless you know what you're doing, because it doesn't update Pred's
/// successors list. Use Pred->addSuccessor instead.
void addPredecessor(MachineBasicBlock *Pred);
/// Remove Pred as a predecessor of this MachineBasicBlock. Don't do this
/// unless you know what you're doing, because it doesn't update Pred's
/// successors list. Use Pred->removeSuccessor instead.
void removePredecessor(MachineBasicBlock *Pred);
};
raw_ostream& operator<<(raw_ostream &OS, const MachineBasicBlock &MBB);
// This is useful when building IndexedMaps keyed on basic block pointers.
struct MBB2NumberFunctor :
public std::unary_function<const MachineBasicBlock*, unsigned> {
unsigned operator()(const MachineBasicBlock *MBB) const {
return MBB->getNumber();
}
};
//===--------------------------------------------------------------------===//
// GraphTraits specializations for machine basic block graphs (machine-CFGs)
//===--------------------------------------------------------------------===//
// Provide specializations of GraphTraits to be able to treat a
// MachineFunction as a graph of MachineBasicBlocks.
//
template <> struct GraphTraits<MachineBasicBlock *> {
typedef MachineBasicBlock *NodeRef;
typedef MachineBasicBlock::succ_iterator ChildIteratorType;
static NodeRef getEntryNode(MachineBasicBlock *BB) { return BB; }
static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
};
template <> struct GraphTraits<const MachineBasicBlock *> {
typedef const MachineBasicBlock *NodeRef;
typedef MachineBasicBlock::const_succ_iterator ChildIteratorType;
static NodeRef getEntryNode(const MachineBasicBlock *BB) { return BB; }
static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
};
// Provide specializations of GraphTraits to be able to treat a
// MachineFunction as a graph of MachineBasicBlocks and to walk it
// in inverse order. Inverse order for a function is considered
// to be when traversing the predecessor edges of a MBB
// instead of the successor edges.
//
template <> struct GraphTraits<Inverse<MachineBasicBlock*> > {
typedef MachineBasicBlock *NodeRef;
typedef MachineBasicBlock::pred_iterator ChildIteratorType;
static NodeRef getEntryNode(Inverse<MachineBasicBlock *> G) {
return G.Graph;
}
static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
};
template <> struct GraphTraits<Inverse<const MachineBasicBlock*> > {
typedef const MachineBasicBlock *NodeRef;
typedef MachineBasicBlock::const_pred_iterator ChildIteratorType;
static NodeRef getEntryNode(Inverse<const MachineBasicBlock *> G) {
return G.Graph;
}
static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
};
/// MachineInstrSpan provides an interface to get an iteration range
/// containing the instruction it was initialized with, along with all
/// those instructions inserted prior to or following that instruction
/// at some point after the MachineInstrSpan is constructed.
class MachineInstrSpan {
MachineBasicBlock &MBB;
MachineBasicBlock::iterator I, B, E;
public:
MachineInstrSpan(MachineBasicBlock::iterator I)
: MBB(*I->getParent()),
I(I),
B(I == MBB.begin() ? MBB.end() : std::prev(I)),
E(std::next(I)) {}
MachineBasicBlock::iterator begin() {
return B == MBB.end() ? MBB.begin() : std::next(B);
}
MachineBasicBlock::iterator end() { return E; }
bool empty() { return begin() == end(); }
MachineBasicBlock::iterator getInitial() { return I; }
};
/// Increment \p It until it points to a non-debug instruction or to \p End
/// and return the resulting iterator. This function should only be used
/// MachineBasicBlock::{iterator, const_iterator, instr_iterator,
/// const_instr_iterator} and the respective reverse iterators.
template<typename IterT>
inline IterT skipDebugInstructionsForward(IterT It, IterT End) {
while (It != End && It->isDebugValue())
It++;
return It;
}
/// Decrement \p It until it points to a non-debug instruction or to \p Begin
/// and return the resulting iterator. This function should only be used
/// MachineBasicBlock::{iterator, const_iterator, instr_iterator,
/// const_instr_iterator} and the respective reverse iterators.
template<class IterT>
inline IterT skipDebugInstructionsBackward(IterT It, IterT Begin) {
while (It != Begin && It->isDebugValue())
It--;
return It;
}
} // End llvm namespace
#endif