1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-02 00:42:52 +01:00
llvm-mirror/lib/Target/Mips/MipsInstrInfo.cpp
Evan Cheng 420bf5446c Move TargetRegistry and TargetSelect from Target to Support where they belong.
These are strictly utilities for registering targets and components.

llvm-svn: 138450
2011-08-24 18:08:43 +00:00

440 lines
15 KiB
C++

//===- MipsInstrInfo.cpp - Mips Instruction Information ---------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the Mips implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//
#include "MipsInstrInfo.h"
#include "MipsTargetMachine.h"
#include "MipsMachineFunction.h"
#include "InstPrinter/MipsInstPrinter.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/ADT/STLExtras.h"
#define GET_INSTRINFO_CTOR
#include "MipsGenInstrInfo.inc"
using namespace llvm;
MipsInstrInfo::MipsInstrInfo(MipsTargetMachine &tm)
: MipsGenInstrInfo(Mips::ADJCALLSTACKDOWN, Mips::ADJCALLSTACKUP),
TM(tm), RI(*TM.getSubtargetImpl(), *this) {}
const MipsRegisterInfo &MipsInstrInfo::getRegisterInfo() const {
return RI;
}
static bool isZeroImm(const MachineOperand &op) {
return op.isImm() && op.getImm() == 0;
}
/// isLoadFromStackSlot - If the specified machine instruction is a direct
/// load from a stack slot, return the virtual or physical register number of
/// the destination along with the FrameIndex of the loaded stack slot. If
/// not, return 0. This predicate must return 0 if the instruction has
/// any side effects other than loading from the stack slot.
unsigned MipsInstrInfo::
isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const
{
if ((MI->getOpcode() == Mips::LW) || (MI->getOpcode() == Mips::LWC1) ||
(MI->getOpcode() == Mips::LDC1)) {
if ((MI->getOperand(1).isFI()) && // is a stack slot
(MI->getOperand(2).isImm()) && // the imm is zero
(isZeroImm(MI->getOperand(2)))) {
FrameIndex = MI->getOperand(1).getIndex();
return MI->getOperand(0).getReg();
}
}
return 0;
}
/// isStoreToStackSlot - If the specified machine instruction is a direct
/// store to a stack slot, return the virtual or physical register number of
/// the source reg along with the FrameIndex of the loaded stack slot. If
/// not, return 0. This predicate must return 0 if the instruction has
/// any side effects other than storing to the stack slot.
unsigned MipsInstrInfo::
isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const
{
if ((MI->getOpcode() == Mips::SW) || (MI->getOpcode() == Mips::SWC1) ||
(MI->getOpcode() == Mips::SDC1)) {
if ((MI->getOperand(1).isFI()) && // is a stack slot
(MI->getOperand(2).isImm()) && // the imm is zero
(isZeroImm(MI->getOperand(2)))) {
FrameIndex = MI->getOperand(1).getIndex();
return MI->getOperand(0).getReg();
}
}
return 0;
}
/// insertNoop - If data hazard condition is found insert the target nop
/// instruction.
void MipsInstrInfo::
insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const
{
DebugLoc DL;
BuildMI(MBB, MI, DL, get(Mips::NOP));
}
void MipsInstrInfo::
copyPhysReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I, DebugLoc DL,
unsigned DestReg, unsigned SrcReg,
bool KillSrc) const {
bool DestCPU = Mips::CPURegsRegClass.contains(DestReg);
bool SrcCPU = Mips::CPURegsRegClass.contains(SrcReg);
// CPU-CPU is the most common.
if (DestCPU && SrcCPU) {
BuildMI(MBB, I, DL, get(Mips::ADDu), DestReg).addReg(Mips::ZERO)
.addReg(SrcReg, getKillRegState(KillSrc));
return;
}
// Copy to CPU from other registers.
if (DestCPU) {
if (Mips::CCRRegClass.contains(SrcReg))
BuildMI(MBB, I, DL, get(Mips::CFC1), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
else if (Mips::FGR32RegClass.contains(SrcReg))
BuildMI(MBB, I, DL, get(Mips::MFC1), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
else if (SrcReg == Mips::HI)
BuildMI(MBB, I, DL, get(Mips::MFHI), DestReg);
else if (SrcReg == Mips::LO)
BuildMI(MBB, I, DL, get(Mips::MFLO), DestReg);
else
llvm_unreachable("Copy to CPU from invalid register");
return;
}
// Copy to other registers from CPU.
if (SrcCPU) {
if (Mips::CCRRegClass.contains(DestReg))
BuildMI(MBB, I, DL, get(Mips::CTC1), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
else if (Mips::FGR32RegClass.contains(DestReg))
BuildMI(MBB, I, DL, get(Mips::MTC1), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
else if (DestReg == Mips::HI)
BuildMI(MBB, I, DL, get(Mips::MTHI))
.addReg(SrcReg, getKillRegState(KillSrc));
else if (DestReg == Mips::LO)
BuildMI(MBB, I, DL, get(Mips::MTLO))
.addReg(SrcReg, getKillRegState(KillSrc));
else
llvm_unreachable("Copy from CPU to invalid register");
return;
}
if (Mips::FGR32RegClass.contains(DestReg, SrcReg)) {
BuildMI(MBB, I, DL, get(Mips::FMOV_S32), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
return;
}
if (Mips::AFGR64RegClass.contains(DestReg, SrcReg)) {
BuildMI(MBB, I, DL, get(Mips::FMOV_D32), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
return;
}
if (Mips::CCRRegClass.contains(DestReg, SrcReg)) {
BuildMI(MBB, I, DL, get(Mips::MOVCCRToCCR), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
return;
}
llvm_unreachable("Cannot copy registers");
}
void MipsInstrInfo::
storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
unsigned SrcReg, bool isKill, int FI,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
DebugLoc DL;
if (I != MBB.end()) DL = I->getDebugLoc();
if (RC == Mips::CPURegsRegisterClass)
BuildMI(MBB, I, DL, get(Mips::SW)).addReg(SrcReg, getKillRegState(isKill))
.addFrameIndex(FI).addImm(0);
else if (RC == Mips::FGR32RegisterClass)
BuildMI(MBB, I, DL, get(Mips::SWC1)).addReg(SrcReg, getKillRegState(isKill))
.addFrameIndex(FI).addImm(0);
else if (RC == Mips::AFGR64RegisterClass) {
BuildMI(MBB, I, DL, get(Mips::SDC1))
.addReg(SrcReg, getKillRegState(isKill))
.addFrameIndex(FI).addImm(0);
} else
llvm_unreachable("Register class not handled!");
}
void MipsInstrInfo::
loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
unsigned DestReg, int FI,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const
{
DebugLoc DL;
if (I != MBB.end()) DL = I->getDebugLoc();
if (RC == Mips::CPURegsRegisterClass)
BuildMI(MBB, I, DL, get(Mips::LW), DestReg).addFrameIndex(FI).addImm(0);
else if (RC == Mips::FGR32RegisterClass)
BuildMI(MBB, I, DL, get(Mips::LWC1), DestReg).addFrameIndex(FI).addImm(0);
else if (RC == Mips::AFGR64RegisterClass) {
BuildMI(MBB, I, DL, get(Mips::LDC1), DestReg).addFrameIndex(FI).addImm(0);
} else
llvm_unreachable("Register class not handled!");
}
MachineInstr*
MipsInstrInfo::emitFrameIndexDebugValue(MachineFunction &MF, int FrameIx,
uint64_t Offset, const MDNode *MDPtr,
DebugLoc DL) const {
MachineInstrBuilder MIB = BuildMI(MF, DL, get(Mips::DBG_VALUE))
.addFrameIndex(FrameIx).addImm(0).addImm(Offset).addMetadata(MDPtr);
return &*MIB;
}
//===----------------------------------------------------------------------===//
// Branch Analysis
//===----------------------------------------------------------------------===//
static unsigned GetAnalyzableBrOpc(unsigned Opc) {
return (Opc == Mips::BEQ || Opc == Mips::BNE || Opc == Mips::BGTZ ||
Opc == Mips::BGEZ || Opc == Mips::BLTZ || Opc == Mips::BLEZ ||
Opc == Mips::BC1T || Opc == Mips::BC1F || Opc == Mips::J) ? Opc : 0;
}
/// GetOppositeBranchOpc - Return the inverse of the specified
/// opcode, e.g. turning BEQ to BNE.
unsigned Mips::GetOppositeBranchOpc(unsigned Opc)
{
switch (Opc) {
default: llvm_unreachable("Illegal opcode!");
case Mips::BEQ : return Mips::BNE;
case Mips::BNE : return Mips::BEQ;
case Mips::BGTZ : return Mips::BLEZ;
case Mips::BGEZ : return Mips::BLTZ;
case Mips::BLTZ : return Mips::BGEZ;
case Mips::BLEZ : return Mips::BGTZ;
case Mips::BC1T : return Mips::BC1F;
case Mips::BC1F : return Mips::BC1T;
}
}
static void AnalyzeCondBr(const MachineInstr* Inst, unsigned Opc,
MachineBasicBlock *&BB,
SmallVectorImpl<MachineOperand>& Cond) {
assert(GetAnalyzableBrOpc(Opc) && "Not an analyzable branch");
int NumOp = Inst->getNumExplicitOperands();
// for both int and fp branches, the last explicit operand is the
// MBB.
BB = Inst->getOperand(NumOp-1).getMBB();
Cond.push_back(MachineOperand::CreateImm(Opc));
for (int i=0; i<NumOp-1; i++)
Cond.push_back(Inst->getOperand(i));
}
bool MipsInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
MachineBasicBlock *&TBB,
MachineBasicBlock *&FBB,
SmallVectorImpl<MachineOperand> &Cond,
bool AllowModify) const
{
MachineBasicBlock::reverse_iterator I = MBB.rbegin(), REnd = MBB.rend();
// Skip all the debug instructions.
while (I != REnd && I->isDebugValue())
++I;
if (I == REnd || !isUnpredicatedTerminator(&*I)) {
// If this block ends with no branches (it just falls through to its succ)
// just return false, leaving TBB/FBB null.
TBB = FBB = NULL;
return false;
}
MachineInstr *LastInst = &*I;
unsigned LastOpc = LastInst->getOpcode();
// Not an analyzable branch (must be an indirect jump).
if (!GetAnalyzableBrOpc(LastOpc))
return true;
// Get the second to last instruction in the block.
unsigned SecondLastOpc = 0;
MachineInstr *SecondLastInst = NULL;
if (++I != REnd) {
SecondLastInst = &*I;
SecondLastOpc = GetAnalyzableBrOpc(SecondLastInst->getOpcode());
// Not an analyzable branch (must be an indirect jump).
if (isUnpredicatedTerminator(SecondLastInst) && !SecondLastOpc)
return true;
}
// If there is only one terminator instruction, process it.
if (!SecondLastOpc) {
// Unconditional branch
if (LastOpc == Mips::J) {
TBB = LastInst->getOperand(0).getMBB();
return false;
}
// Conditional branch
AnalyzeCondBr(LastInst, LastOpc, TBB, Cond);
return false;
}
// If we reached here, there are two branches.
// If there are three terminators, we don't know what sort of block this is.
if (++I != REnd && isUnpredicatedTerminator(&*I))
return true;
// If second to last instruction is an unconditional branch,
// analyze it and remove the last instruction.
if (SecondLastOpc == Mips::J) {
// Return if the last instruction cannot be removed.
if (!AllowModify)
return true;
TBB = SecondLastInst->getOperand(0).getMBB();
LastInst->eraseFromParent();
return false;
}
// Conditional branch followed by an unconditional branch.
// The last one must be unconditional.
if (LastOpc != Mips::J)
return true;
AnalyzeCondBr(SecondLastInst, SecondLastOpc, TBB, Cond);
FBB = LastInst->getOperand(0).getMBB();
return false;
}
void MipsInstrInfo::BuildCondBr(MachineBasicBlock &MBB,
MachineBasicBlock *TBB, DebugLoc DL,
const SmallVectorImpl<MachineOperand>& Cond)
const {
unsigned Opc = Cond[0].getImm();
const MCInstrDesc &MCID = get(Opc);
MachineInstrBuilder MIB = BuildMI(&MBB, DL, MCID);
for (unsigned i = 1; i < Cond.size(); ++i)
MIB.addReg(Cond[i].getReg());
MIB.addMBB(TBB);
}
unsigned MipsInstrInfo::
InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
MachineBasicBlock *FBB,
const SmallVectorImpl<MachineOperand> &Cond,
DebugLoc DL) const {
// Shouldn't be a fall through.
assert(TBB && "InsertBranch must not be told to insert a fallthrough");
// # of condition operands:
// Unconditional branches: 0
// Floating point branches: 1 (opc)
// Int BranchZero: 2 (opc, reg)
// Int Branch: 3 (opc, reg0, reg1)
assert((Cond.size() <= 3) &&
"# of Mips branch conditions must be <= 3!");
// Two-way Conditional branch.
if (FBB) {
BuildCondBr(MBB, TBB, DL, Cond);
BuildMI(&MBB, DL, get(Mips::J)).addMBB(FBB);
return 2;
}
// One way branch.
// Unconditional branch.
if (Cond.empty())
BuildMI(&MBB, DL, get(Mips::J)).addMBB(TBB);
else // Conditional branch.
BuildCondBr(MBB, TBB, DL, Cond);
return 1;
}
unsigned MipsInstrInfo::
RemoveBranch(MachineBasicBlock &MBB) const
{
MachineBasicBlock::reverse_iterator I = MBB.rbegin(), REnd = MBB.rend();
MachineBasicBlock::reverse_iterator FirstBr;
unsigned removed;
// Skip all the debug instructions.
while (I != REnd && I->isDebugValue())
++I;
FirstBr = I;
// Up to 2 branches are removed.
// Note that indirect branches are not removed.
for(removed = 0; I != REnd && removed < 2; ++I, ++removed)
if (!GetAnalyzableBrOpc(I->getOpcode()))
break;
MBB.erase(I.base(), FirstBr.base());
return removed;
}
/// ReverseBranchCondition - Return the inverse opcode of the
/// specified Branch instruction.
bool MipsInstrInfo::
ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const
{
assert( (Cond.size() && Cond.size() <= 3) &&
"Invalid Mips branch condition!");
Cond[0].setImm(Mips::GetOppositeBranchOpc(Cond[0].getImm()));
return false;
}
/// getGlobalBaseReg - Return a virtual register initialized with the
/// the global base register value. Output instructions required to
/// initialize the register in the function entry block, if necessary.
///
unsigned MipsInstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
MipsFunctionInfo *MipsFI = MF->getInfo<MipsFunctionInfo>();
unsigned GlobalBaseReg = MipsFI->getGlobalBaseReg();
if (GlobalBaseReg != 0)
return GlobalBaseReg;
// Insert the set of GlobalBaseReg into the first MBB of the function
MachineBasicBlock &FirstMBB = MF->front();
MachineBasicBlock::iterator MBBI = FirstMBB.begin();
MachineRegisterInfo &RegInfo = MF->getRegInfo();
const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
GlobalBaseReg = RegInfo.createVirtualRegister(Mips::CPURegsRegisterClass);
BuildMI(FirstMBB, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY),
GlobalBaseReg).addReg(Mips::GP);
RegInfo.addLiveIn(Mips::GP);
MipsFI->setGlobalBaseReg(GlobalBaseReg);
return GlobalBaseReg;
}