mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-23 11:13:28 +01:00
14de61149f
NFC. llvm-svn: 232981
896 lines
34 KiB
C++
896 lines
34 KiB
C++
//===- PassManager.h - Pass management infrastructure -----------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
///
|
|
/// This header defines various interfaces for pass management in LLVM. There
|
|
/// is no "pass" interface in LLVM per se. Instead, an instance of any class
|
|
/// which supports a method to 'run' it over a unit of IR can be used as
|
|
/// a pass. A pass manager is generally a tool to collect a sequence of passes
|
|
/// which run over a particular IR construct, and run each of them in sequence
|
|
/// over each such construct in the containing IR construct. As there is no
|
|
/// containing IR construct for a Module, a manager for passes over modules
|
|
/// forms the base case which runs its managed passes in sequence over the
|
|
/// single module provided.
|
|
///
|
|
/// The core IR library provides managers for running passes over
|
|
/// modules and functions.
|
|
///
|
|
/// * FunctionPassManager can run over a Module, runs each pass over
|
|
/// a Function.
|
|
/// * ModulePassManager must be directly run, runs each pass over the Module.
|
|
///
|
|
/// Note that the implementations of the pass managers use concept-based
|
|
/// polymorphism as outlined in the "Value Semantics and Concept-based
|
|
/// Polymorphism" talk (or its abbreviated sibling "Inheritance Is The Base
|
|
/// Class of Evil") by Sean Parent:
|
|
/// * http://github.com/sean-parent/sean-parent.github.com/wiki/Papers-and-Presentations
|
|
/// * http://www.youtube.com/watch?v=_BpMYeUFXv8
|
|
/// * http://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_IR_PASSMANAGER_H
|
|
#define LLVM_IR_PASSMANAGER_H
|
|
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/PassManagerInternal.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Support/type_traits.h"
|
|
#include <list>
|
|
#include <memory>
|
|
#include <vector>
|
|
|
|
namespace llvm {
|
|
|
|
class Module;
|
|
class Function;
|
|
|
|
/// \brief An abstract set of preserved analyses following a transformation pass
|
|
/// run.
|
|
///
|
|
/// When a transformation pass is run, it can return a set of analyses whose
|
|
/// results were preserved by that transformation. The default set is "none",
|
|
/// and preserving analyses must be done explicitly.
|
|
///
|
|
/// There is also an explicit all state which can be used (for example) when
|
|
/// the IR is not mutated at all.
|
|
class PreservedAnalyses {
|
|
public:
|
|
// We have to explicitly define all the special member functions because MSVC
|
|
// refuses to generate them.
|
|
PreservedAnalyses() {}
|
|
PreservedAnalyses(const PreservedAnalyses &Arg)
|
|
: PreservedPassIDs(Arg.PreservedPassIDs) {}
|
|
PreservedAnalyses(PreservedAnalyses &&Arg)
|
|
: PreservedPassIDs(std::move(Arg.PreservedPassIDs)) {}
|
|
friend void swap(PreservedAnalyses &LHS, PreservedAnalyses &RHS) {
|
|
using std::swap;
|
|
swap(LHS.PreservedPassIDs, RHS.PreservedPassIDs);
|
|
}
|
|
PreservedAnalyses &operator=(PreservedAnalyses RHS) {
|
|
swap(*this, RHS);
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Convenience factory function for the empty preserved set.
|
|
static PreservedAnalyses none() { return PreservedAnalyses(); }
|
|
|
|
/// \brief Construct a special preserved set that preserves all passes.
|
|
static PreservedAnalyses all() {
|
|
PreservedAnalyses PA;
|
|
PA.PreservedPassIDs.insert((void *)AllPassesID);
|
|
return PA;
|
|
}
|
|
|
|
/// \brief Mark a particular pass as preserved, adding it to the set.
|
|
template <typename PassT> void preserve() { preserve(PassT::ID()); }
|
|
|
|
/// \brief Mark an abstract PassID as preserved, adding it to the set.
|
|
void preserve(void *PassID) {
|
|
if (!areAllPreserved())
|
|
PreservedPassIDs.insert(PassID);
|
|
}
|
|
|
|
/// \brief Intersect this set with another in place.
|
|
///
|
|
/// This is a mutating operation on this preserved set, removing all
|
|
/// preserved passes which are not also preserved in the argument.
|
|
void intersect(const PreservedAnalyses &Arg) {
|
|
if (Arg.areAllPreserved())
|
|
return;
|
|
if (areAllPreserved()) {
|
|
PreservedPassIDs = Arg.PreservedPassIDs;
|
|
return;
|
|
}
|
|
for (void *P : PreservedPassIDs)
|
|
if (!Arg.PreservedPassIDs.count(P))
|
|
PreservedPassIDs.erase(P);
|
|
}
|
|
|
|
/// \brief Intersect this set with a temporary other set in place.
|
|
///
|
|
/// This is a mutating operation on this preserved set, removing all
|
|
/// preserved passes which are not also preserved in the argument.
|
|
void intersect(PreservedAnalyses &&Arg) {
|
|
if (Arg.areAllPreserved())
|
|
return;
|
|
if (areAllPreserved()) {
|
|
PreservedPassIDs = std::move(Arg.PreservedPassIDs);
|
|
return;
|
|
}
|
|
for (void *P : PreservedPassIDs)
|
|
if (!Arg.PreservedPassIDs.count(P))
|
|
PreservedPassIDs.erase(P);
|
|
}
|
|
|
|
/// \brief Query whether a pass is marked as preserved by this set.
|
|
template <typename PassT> bool preserved() const {
|
|
return preserved(PassT::ID());
|
|
}
|
|
|
|
/// \brief Query whether an abstract pass ID is marked as preserved by this
|
|
/// set.
|
|
bool preserved(void *PassID) const {
|
|
return PreservedPassIDs.count((void *)AllPassesID) ||
|
|
PreservedPassIDs.count(PassID);
|
|
}
|
|
|
|
/// \brief Test whether all passes are preserved.
|
|
///
|
|
/// This is used primarily to optimize for the case of no changes which will
|
|
/// common in many scenarios.
|
|
bool areAllPreserved() const {
|
|
return PreservedPassIDs.count((void *)AllPassesID);
|
|
}
|
|
|
|
private:
|
|
// Note that this must not be -1 or -2 as those are already used by the
|
|
// SmallPtrSet.
|
|
static const uintptr_t AllPassesID = (intptr_t)(-3);
|
|
|
|
SmallPtrSet<void *, 2> PreservedPassIDs;
|
|
};
|
|
|
|
// Forward declare the analysis manager template.
|
|
template <typename IRUnitT> class AnalysisManager;
|
|
|
|
/// \brief Manages a sequence of passes over units of IR.
|
|
///
|
|
/// A pass manager contains a sequence of passes to run over units of IR. It is
|
|
/// itself a valid pass over that unit of IR, and when over some given IR will
|
|
/// run each pass in sequence. This is the primary and most basic building
|
|
/// block of a pass pipeline.
|
|
///
|
|
/// If it is run with an \c AnalysisManager<IRUnitT> argument, it will propagate
|
|
/// that analysis manager to each pass it runs, as well as calling the analysis
|
|
/// manager's invalidation routine with the PreservedAnalyses of each pass it
|
|
/// runs.
|
|
template <typename IRUnitT> class PassManager {
|
|
public:
|
|
/// \brief Construct a pass manager.
|
|
///
|
|
/// It can be passed a flag to get debug logging as the passes are run.
|
|
PassManager(bool DebugLogging = false) : DebugLogging(DebugLogging) {}
|
|
// We have to explicitly define all the special member functions because MSVC
|
|
// refuses to generate them.
|
|
PassManager(PassManager &&Arg)
|
|
: Passes(std::move(Arg.Passes)),
|
|
DebugLogging(std::move(Arg.DebugLogging)) {}
|
|
PassManager &operator=(PassManager &&RHS) {
|
|
Passes = std::move(RHS.Passes);
|
|
DebugLogging = std::move(RHS.DebugLogging);
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Run all of the passes in this manager over the IR.
|
|
PreservedAnalyses run(IRUnitT &IR, AnalysisManager<IRUnitT> *AM = nullptr) {
|
|
PreservedAnalyses PA = PreservedAnalyses::all();
|
|
|
|
if (DebugLogging)
|
|
dbgs() << "Starting pass manager run.\n";
|
|
|
|
for (unsigned Idx = 0, Size = Passes.size(); Idx != Size; ++Idx) {
|
|
if (DebugLogging)
|
|
dbgs() << "Running pass: " << Passes[Idx]->name() << "\n";
|
|
|
|
PreservedAnalyses PassPA = Passes[Idx]->run(IR, AM);
|
|
|
|
// If we have an active analysis manager at this level we want to ensure
|
|
// we update it as each pass runs and potentially invalidates analyses.
|
|
// We also update the preserved set of analyses based on what analyses we
|
|
// have already handled the invalidation for here and don't need to
|
|
// invalidate when finished.
|
|
if (AM)
|
|
PassPA = AM->invalidate(IR, std::move(PassPA));
|
|
|
|
// Finally, we intersect the final preserved analyses to compute the
|
|
// aggregate preserved set for this pass manager.
|
|
PA.intersect(std::move(PassPA));
|
|
|
|
// FIXME: Historically, the pass managers all called the LLVM context's
|
|
// yield function here. We don't have a generic way to acquire the
|
|
// context and it isn't yet clear what the right pattern is for yielding
|
|
// in the new pass manager so it is currently omitted.
|
|
//IR.getContext().yield();
|
|
}
|
|
|
|
if (DebugLogging)
|
|
dbgs() << "Finished pass manager run.\n";
|
|
|
|
return PA;
|
|
}
|
|
|
|
template <typename PassT> void addPass(PassT Pass) {
|
|
typedef detail::PassModel<IRUnitT, PassT> PassModelT;
|
|
Passes.emplace_back(new PassModelT(std::move(Pass)));
|
|
}
|
|
|
|
static StringRef name() { return "PassManager"; }
|
|
|
|
private:
|
|
typedef detail::PassConcept<IRUnitT> PassConceptT;
|
|
|
|
PassManager(const PassManager &) = delete;
|
|
PassManager &operator=(const PassManager &) = delete;
|
|
|
|
std::vector<std::unique_ptr<PassConceptT>> Passes;
|
|
|
|
/// \brief Flag indicating whether we should do debug logging.
|
|
bool DebugLogging;
|
|
};
|
|
|
|
/// \brief Convenience typedef for a pass manager over modules.
|
|
typedef PassManager<Module> ModulePassManager;
|
|
|
|
/// \brief Convenience typedef for a pass manager over functions.
|
|
typedef PassManager<Function> FunctionPassManager;
|
|
|
|
namespace detail {
|
|
|
|
/// \brief A CRTP base used to implement analysis managers.
|
|
///
|
|
/// This class template serves as the boiler plate of an analysis manager. Any
|
|
/// analysis manager can be implemented on top of this base class. Any
|
|
/// implementation will be required to provide specific hooks:
|
|
///
|
|
/// - getResultImpl
|
|
/// - getCachedResultImpl
|
|
/// - invalidateImpl
|
|
///
|
|
/// The details of the call pattern are within.
|
|
///
|
|
/// Note that there is also a generic analysis manager template which implements
|
|
/// the above required functions along with common datastructures used for
|
|
/// managing analyses. This base class is factored so that if you need to
|
|
/// customize the handling of a specific IR unit, you can do so without
|
|
/// replicating *all* of the boilerplate.
|
|
template <typename DerivedT, typename IRUnitT> class AnalysisManagerBase {
|
|
DerivedT *derived_this() { return static_cast<DerivedT *>(this); }
|
|
const DerivedT *derived_this() const {
|
|
return static_cast<const DerivedT *>(this);
|
|
}
|
|
|
|
AnalysisManagerBase(const AnalysisManagerBase &) = delete;
|
|
AnalysisManagerBase &
|
|
operator=(const AnalysisManagerBase &) = delete;
|
|
|
|
protected:
|
|
typedef detail::AnalysisResultConcept<IRUnitT> ResultConceptT;
|
|
typedef detail::AnalysisPassConcept<IRUnitT> PassConceptT;
|
|
|
|
// FIXME: Provide template aliases for the models when we're using C++11 in
|
|
// a mode supporting them.
|
|
|
|
// We have to explicitly define all the special member functions because MSVC
|
|
// refuses to generate them.
|
|
AnalysisManagerBase() {}
|
|
AnalysisManagerBase(AnalysisManagerBase &&Arg)
|
|
: AnalysisPasses(std::move(Arg.AnalysisPasses)) {}
|
|
AnalysisManagerBase &operator=(AnalysisManagerBase &&RHS) {
|
|
AnalysisPasses = std::move(RHS.AnalysisPasses);
|
|
return *this;
|
|
}
|
|
|
|
public:
|
|
/// \brief Get the result of an analysis pass for this module.
|
|
///
|
|
/// If there is not a valid cached result in the manager already, this will
|
|
/// re-run the analysis to produce a valid result.
|
|
template <typename PassT> typename PassT::Result &getResult(IRUnitT &IR) {
|
|
assert(AnalysisPasses.count(PassT::ID()) &&
|
|
"This analysis pass was not registered prior to being queried");
|
|
|
|
ResultConceptT &ResultConcept =
|
|
derived_this()->getResultImpl(PassT::ID(), IR);
|
|
typedef detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result>
|
|
ResultModelT;
|
|
return static_cast<ResultModelT &>(ResultConcept).Result;
|
|
}
|
|
|
|
/// \brief Get the cached result of an analysis pass for this module.
|
|
///
|
|
/// This method never runs the analysis.
|
|
///
|
|
/// \returns null if there is no cached result.
|
|
template <typename PassT>
|
|
typename PassT::Result *getCachedResult(IRUnitT &IR) const {
|
|
assert(AnalysisPasses.count(PassT::ID()) &&
|
|
"This analysis pass was not registered prior to being queried");
|
|
|
|
ResultConceptT *ResultConcept =
|
|
derived_this()->getCachedResultImpl(PassT::ID(), IR);
|
|
if (!ResultConcept)
|
|
return nullptr;
|
|
|
|
typedef detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result>
|
|
ResultModelT;
|
|
return &static_cast<ResultModelT *>(ResultConcept)->Result;
|
|
}
|
|
|
|
/// \brief Register an analysis pass with the manager.
|
|
///
|
|
/// This provides an initialized and set-up analysis pass to the analysis
|
|
/// manager. Whomever is setting up analysis passes must use this to populate
|
|
/// the manager with all of the analysis passes available.
|
|
template <typename PassT> void registerPass(PassT Pass) {
|
|
assert(!AnalysisPasses.count(PassT::ID()) &&
|
|
"Registered the same analysis pass twice!");
|
|
typedef detail::AnalysisPassModel<IRUnitT, PassT> PassModelT;
|
|
AnalysisPasses[PassT::ID()].reset(new PassModelT(std::move(Pass)));
|
|
}
|
|
|
|
/// \brief Invalidate a specific analysis pass for an IR module.
|
|
///
|
|
/// Note that the analysis result can disregard invalidation.
|
|
template <typename PassT> void invalidate(IRUnitT &IR) {
|
|
assert(AnalysisPasses.count(PassT::ID()) &&
|
|
"This analysis pass was not registered prior to being invalidated");
|
|
derived_this()->invalidateImpl(PassT::ID(), IR);
|
|
}
|
|
|
|
/// \brief Invalidate analyses cached for an IR unit.
|
|
///
|
|
/// Walk through all of the analyses pertaining to this unit of IR and
|
|
/// invalidate them unless they are preserved by the PreservedAnalyses set.
|
|
/// We accept the PreservedAnalyses set by value and update it with each
|
|
/// analyis pass which has been successfully invalidated and thus can be
|
|
/// preserved going forward. The updated set is returned.
|
|
PreservedAnalyses invalidate(IRUnitT &IR, PreservedAnalyses PA) {
|
|
return derived_this()->invalidateImpl(IR, std::move(PA));
|
|
}
|
|
|
|
protected:
|
|
/// \brief Lookup a registered analysis pass.
|
|
PassConceptT &lookupPass(void *PassID) {
|
|
typename AnalysisPassMapT::iterator PI = AnalysisPasses.find(PassID);
|
|
assert(PI != AnalysisPasses.end() &&
|
|
"Analysis passes must be registered prior to being queried!");
|
|
return *PI->second;
|
|
}
|
|
|
|
/// \brief Lookup a registered analysis pass.
|
|
const PassConceptT &lookupPass(void *PassID) const {
|
|
typename AnalysisPassMapT::const_iterator PI = AnalysisPasses.find(PassID);
|
|
assert(PI != AnalysisPasses.end() &&
|
|
"Analysis passes must be registered prior to being queried!");
|
|
return *PI->second;
|
|
}
|
|
|
|
private:
|
|
/// \brief Map type from module analysis pass ID to pass concept pointer.
|
|
typedef DenseMap<void *, std::unique_ptr<PassConceptT>> AnalysisPassMapT;
|
|
|
|
/// \brief Collection of module analysis passes, indexed by ID.
|
|
AnalysisPassMapT AnalysisPasses;
|
|
};
|
|
|
|
} // End namespace detail
|
|
|
|
/// \brief A generic analysis pass manager with lazy running and caching of
|
|
/// results.
|
|
///
|
|
/// This analysis manager can be used for any IR unit where the address of the
|
|
/// IR unit sufficies as its identity. It manages the cache for a unit of IR via
|
|
/// the address of each unit of IR cached.
|
|
template <typename IRUnitT>
|
|
class AnalysisManager
|
|
: public detail::AnalysisManagerBase<AnalysisManager<IRUnitT>, IRUnitT> {
|
|
friend class detail::AnalysisManagerBase<AnalysisManager<IRUnitT>, IRUnitT>;
|
|
typedef detail::AnalysisManagerBase<AnalysisManager<IRUnitT>, IRUnitT> BaseT;
|
|
typedef typename BaseT::ResultConceptT ResultConceptT;
|
|
typedef typename BaseT::PassConceptT PassConceptT;
|
|
|
|
public:
|
|
// Most public APIs are inherited from the CRTP base class.
|
|
|
|
/// \brief Construct an empty analysis manager.
|
|
///
|
|
/// A flag can be passed to indicate that the manager should perform debug
|
|
/// logging.
|
|
AnalysisManager(bool DebugLogging = false) : DebugLogging(DebugLogging) {}
|
|
|
|
// We have to explicitly define all the special member functions because MSVC
|
|
// refuses to generate them.
|
|
AnalysisManager(AnalysisManager &&Arg)
|
|
: BaseT(std::move(static_cast<BaseT &>(Arg))),
|
|
AnalysisResults(std::move(Arg.AnalysisResults)),
|
|
DebugLogging(std::move(Arg.DebugLogging)) {}
|
|
AnalysisManager &operator=(AnalysisManager &&RHS) {
|
|
BaseT::operator=(std::move(static_cast<BaseT &>(RHS)));
|
|
AnalysisResults = std::move(RHS.AnalysisResults);
|
|
DebugLogging = std::move(RHS.DebugLogging);
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Returns true if the analysis manager has an empty results cache.
|
|
bool empty() const {
|
|
assert(AnalysisResults.empty() == AnalysisResultLists.empty() &&
|
|
"The storage and index of analysis results disagree on how many "
|
|
"there are!");
|
|
return AnalysisResults.empty();
|
|
}
|
|
|
|
/// \brief Clear the analysis result cache.
|
|
///
|
|
/// This routine allows cleaning up when the set of IR units itself has
|
|
/// potentially changed, and thus we can't even look up a a result and
|
|
/// invalidate it directly. Notably, this does *not* call invalidate functions
|
|
/// as there is nothing to be done for them.
|
|
void clear() {
|
|
AnalysisResults.clear();
|
|
AnalysisResultLists.clear();
|
|
}
|
|
|
|
private:
|
|
AnalysisManager(const AnalysisManager &) = delete;
|
|
AnalysisManager &operator=(const AnalysisManager &) = delete;
|
|
|
|
/// \brief Get an analysis result, running the pass if necessary.
|
|
ResultConceptT &getResultImpl(void *PassID, IRUnitT &IR) {
|
|
typename AnalysisResultMapT::iterator RI;
|
|
bool Inserted;
|
|
std::tie(RI, Inserted) = AnalysisResults.insert(std::make_pair(
|
|
std::make_pair(PassID, &IR), typename AnalysisResultListT::iterator()));
|
|
|
|
// If we don't have a cached result for this function, look up the pass and
|
|
// run it to produce a result, which we then add to the cache.
|
|
if (Inserted) {
|
|
auto &P = this->lookupPass(PassID);
|
|
if (DebugLogging)
|
|
dbgs() << "Running analysis: " << P.name() << "\n";
|
|
AnalysisResultListT &ResultList = AnalysisResultLists[&IR];
|
|
ResultList.emplace_back(PassID, P.run(IR, this));
|
|
|
|
// P.run may have inserted elements into AnalysisResults and invalidated
|
|
// RI.
|
|
RI = AnalysisResults.find(std::make_pair(PassID, &IR));
|
|
assert(RI != AnalysisResults.end() && "we just inserted it!");
|
|
|
|
RI->second = std::prev(ResultList.end());
|
|
}
|
|
|
|
return *RI->second->second;
|
|
}
|
|
|
|
/// \brief Get a cached analysis result or return null.
|
|
ResultConceptT *getCachedResultImpl(void *PassID, IRUnitT &IR) const {
|
|
typename AnalysisResultMapT::const_iterator RI =
|
|
AnalysisResults.find(std::make_pair(PassID, &IR));
|
|
return RI == AnalysisResults.end() ? nullptr : &*RI->second->second;
|
|
}
|
|
|
|
/// \brief Invalidate a function pass result.
|
|
void invalidateImpl(void *PassID, IRUnitT &IR) {
|
|
typename AnalysisResultMapT::iterator RI =
|
|
AnalysisResults.find(std::make_pair(PassID, &IR));
|
|
if (RI == AnalysisResults.end())
|
|
return;
|
|
|
|
if (DebugLogging)
|
|
dbgs() << "Invalidating analysis: " << this->lookupPass(PassID).name()
|
|
<< "\n";
|
|
AnalysisResultLists[&IR].erase(RI->second);
|
|
AnalysisResults.erase(RI);
|
|
}
|
|
|
|
/// \brief Invalidate the results for a function..
|
|
PreservedAnalyses invalidateImpl(IRUnitT &IR, PreservedAnalyses PA) {
|
|
// Short circuit for a common case of all analyses being preserved.
|
|
if (PA.areAllPreserved())
|
|
return std::move(PA);
|
|
|
|
if (DebugLogging)
|
|
dbgs() << "Invalidating all non-preserved analyses for: "
|
|
<< IR.getName() << "\n";
|
|
|
|
// Clear all the invalidated results associated specifically with this
|
|
// function.
|
|
SmallVector<void *, 8> InvalidatedPassIDs;
|
|
AnalysisResultListT &ResultsList = AnalysisResultLists[&IR];
|
|
for (typename AnalysisResultListT::iterator I = ResultsList.begin(),
|
|
E = ResultsList.end();
|
|
I != E;) {
|
|
void *PassID = I->first;
|
|
|
|
// Pass the invalidation down to the pass itself to see if it thinks it is
|
|
// necessary. The analysis pass can return false if no action on the part
|
|
// of the analysis manager is required for this invalidation event.
|
|
if (I->second->invalidate(IR, PA)) {
|
|
if (DebugLogging)
|
|
dbgs() << "Invalidating analysis: " << this->lookupPass(PassID).name()
|
|
<< "\n";
|
|
|
|
InvalidatedPassIDs.push_back(I->first);
|
|
I = ResultsList.erase(I);
|
|
} else {
|
|
++I;
|
|
}
|
|
|
|
// After handling each pass, we mark it as preserved. Once we've
|
|
// invalidated any stale results, the rest of the system is allowed to
|
|
// start preserving this analysis again.
|
|
PA.preserve(PassID);
|
|
}
|
|
while (!InvalidatedPassIDs.empty())
|
|
AnalysisResults.erase(
|
|
std::make_pair(InvalidatedPassIDs.pop_back_val(), &IR));
|
|
if (ResultsList.empty())
|
|
AnalysisResultLists.erase(&IR);
|
|
|
|
return std::move(PA);
|
|
}
|
|
|
|
/// \brief List of function analysis pass IDs and associated concept pointers.
|
|
///
|
|
/// Requires iterators to be valid across appending new entries and arbitrary
|
|
/// erases. Provides both the pass ID and concept pointer such that it is
|
|
/// half of a bijection and provides storage for the actual result concept.
|
|
typedef std::list<std::pair<
|
|
void *, std::unique_ptr<detail::AnalysisResultConcept<IRUnitT>>>>
|
|
AnalysisResultListT;
|
|
|
|
/// \brief Map type from function pointer to our custom list type.
|
|
typedef DenseMap<IRUnitT *, AnalysisResultListT> AnalysisResultListMapT;
|
|
|
|
/// \brief Map from function to a list of function analysis results.
|
|
///
|
|
/// Provides linear time removal of all analysis results for a function and
|
|
/// the ultimate storage for a particular cached analysis result.
|
|
AnalysisResultListMapT AnalysisResultLists;
|
|
|
|
/// \brief Map type from a pair of analysis ID and function pointer to an
|
|
/// iterator into a particular result list.
|
|
typedef DenseMap<std::pair<void *, IRUnitT *>,
|
|
typename AnalysisResultListT::iterator> AnalysisResultMapT;
|
|
|
|
/// \brief Map from an analysis ID and function to a particular cached
|
|
/// analysis result.
|
|
AnalysisResultMapT AnalysisResults;
|
|
|
|
/// \brief A flag indicating whether debug logging is enabled.
|
|
bool DebugLogging;
|
|
};
|
|
|
|
/// \brief Convenience typedef for the Module analysis manager.
|
|
typedef AnalysisManager<Module> ModuleAnalysisManager;
|
|
|
|
/// \brief Convenience typedef for the Function analysis manager.
|
|
typedef AnalysisManager<Function> FunctionAnalysisManager;
|
|
|
|
/// \brief A module analysis which acts as a proxy for a function analysis
|
|
/// manager.
|
|
///
|
|
/// This primarily proxies invalidation information from the module analysis
|
|
/// manager and module pass manager to a function analysis manager. You should
|
|
/// never use a function analysis manager from within (transitively) a module
|
|
/// pass manager unless your parent module pass has received a proxy result
|
|
/// object for it.
|
|
class FunctionAnalysisManagerModuleProxy {
|
|
public:
|
|
class Result;
|
|
|
|
static void *ID() { return (void *)&PassID; }
|
|
|
|
static StringRef name() { return "FunctionAnalysisManagerModuleProxy"; }
|
|
|
|
explicit FunctionAnalysisManagerModuleProxy(FunctionAnalysisManager &FAM)
|
|
: FAM(&FAM) {}
|
|
// We have to explicitly define all the special member functions because MSVC
|
|
// refuses to generate them.
|
|
FunctionAnalysisManagerModuleProxy(
|
|
const FunctionAnalysisManagerModuleProxy &Arg)
|
|
: FAM(Arg.FAM) {}
|
|
FunctionAnalysisManagerModuleProxy(FunctionAnalysisManagerModuleProxy &&Arg)
|
|
: FAM(std::move(Arg.FAM)) {}
|
|
FunctionAnalysisManagerModuleProxy &
|
|
operator=(FunctionAnalysisManagerModuleProxy RHS) {
|
|
std::swap(FAM, RHS.FAM);
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Run the analysis pass and create our proxy result object.
|
|
///
|
|
/// This doesn't do any interesting work, it is primarily used to insert our
|
|
/// proxy result object into the module analysis cache so that we can proxy
|
|
/// invalidation to the function analysis manager.
|
|
///
|
|
/// In debug builds, it will also assert that the analysis manager is empty
|
|
/// as no queries should arrive at the function analysis manager prior to
|
|
/// this analysis being requested.
|
|
Result run(Module &M);
|
|
|
|
private:
|
|
static char PassID;
|
|
|
|
FunctionAnalysisManager *FAM;
|
|
};
|
|
|
|
/// \brief The result proxy object for the
|
|
/// \c FunctionAnalysisManagerModuleProxy.
|
|
///
|
|
/// See its documentation for more information.
|
|
class FunctionAnalysisManagerModuleProxy::Result {
|
|
public:
|
|
explicit Result(FunctionAnalysisManager &FAM) : FAM(&FAM) {}
|
|
// We have to explicitly define all the special member functions because MSVC
|
|
// refuses to generate them.
|
|
Result(const Result &Arg) : FAM(Arg.FAM) {}
|
|
Result(Result &&Arg) : FAM(std::move(Arg.FAM)) {}
|
|
Result &operator=(Result RHS) {
|
|
std::swap(FAM, RHS.FAM);
|
|
return *this;
|
|
}
|
|
~Result();
|
|
|
|
/// \brief Accessor for the \c FunctionAnalysisManager.
|
|
FunctionAnalysisManager &getManager() { return *FAM; }
|
|
|
|
/// \brief Handler for invalidation of the module.
|
|
///
|
|
/// If this analysis itself is preserved, then we assume that the set of \c
|
|
/// Function objects in the \c Module hasn't changed and thus we don't need
|
|
/// to invalidate *all* cached data associated with a \c Function* in the \c
|
|
/// FunctionAnalysisManager.
|
|
///
|
|
/// Regardless of whether this analysis is marked as preserved, all of the
|
|
/// analyses in the \c FunctionAnalysisManager are potentially invalidated
|
|
/// based on the set of preserved analyses.
|
|
bool invalidate(Module &M, const PreservedAnalyses &PA);
|
|
|
|
private:
|
|
FunctionAnalysisManager *FAM;
|
|
};
|
|
|
|
/// \brief A function analysis which acts as a proxy for a module analysis
|
|
/// manager.
|
|
///
|
|
/// This primarily provides an accessor to a parent module analysis manager to
|
|
/// function passes. Only the const interface of the module analysis manager is
|
|
/// provided to indicate that once inside of a function analysis pass you
|
|
/// cannot request a module analysis to actually run. Instead, the user must
|
|
/// rely on the \c getCachedResult API.
|
|
///
|
|
/// This proxy *doesn't* manage the invalidation in any way. That is handled by
|
|
/// the recursive return path of each layer of the pass manager and the
|
|
/// returned PreservedAnalysis set.
|
|
class ModuleAnalysisManagerFunctionProxy {
|
|
public:
|
|
/// \brief Result proxy object for \c ModuleAnalysisManagerFunctionProxy.
|
|
class Result {
|
|
public:
|
|
explicit Result(const ModuleAnalysisManager &MAM) : MAM(&MAM) {}
|
|
// We have to explicitly define all the special member functions because
|
|
// MSVC refuses to generate them.
|
|
Result(const Result &Arg) : MAM(Arg.MAM) {}
|
|
Result(Result &&Arg) : MAM(std::move(Arg.MAM)) {}
|
|
Result &operator=(Result RHS) {
|
|
std::swap(MAM, RHS.MAM);
|
|
return *this;
|
|
}
|
|
|
|
const ModuleAnalysisManager &getManager() const { return *MAM; }
|
|
|
|
/// \brief Handle invalidation by ignoring it, this pass is immutable.
|
|
bool invalidate(Function &) { return false; }
|
|
|
|
private:
|
|
const ModuleAnalysisManager *MAM;
|
|
};
|
|
|
|
static void *ID() { return (void *)&PassID; }
|
|
|
|
static StringRef name() { return "ModuleAnalysisManagerFunctionProxy"; }
|
|
|
|
ModuleAnalysisManagerFunctionProxy(const ModuleAnalysisManager &MAM)
|
|
: MAM(&MAM) {}
|
|
// We have to explicitly define all the special member functions because MSVC
|
|
// refuses to generate them.
|
|
ModuleAnalysisManagerFunctionProxy(
|
|
const ModuleAnalysisManagerFunctionProxy &Arg)
|
|
: MAM(Arg.MAM) {}
|
|
ModuleAnalysisManagerFunctionProxy(ModuleAnalysisManagerFunctionProxy &&Arg)
|
|
: MAM(std::move(Arg.MAM)) {}
|
|
ModuleAnalysisManagerFunctionProxy &
|
|
operator=(ModuleAnalysisManagerFunctionProxy RHS) {
|
|
std::swap(MAM, RHS.MAM);
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Run the analysis pass and create our proxy result object.
|
|
/// Nothing to see here, it just forwards the \c MAM reference into the
|
|
/// result.
|
|
Result run(Function &) { return Result(*MAM); }
|
|
|
|
private:
|
|
static char PassID;
|
|
|
|
const ModuleAnalysisManager *MAM;
|
|
};
|
|
|
|
/// \brief Trivial adaptor that maps from a module to its functions.
|
|
///
|
|
/// Designed to allow composition of a FunctionPass(Manager) and
|
|
/// a ModulePassManager. Note that if this pass is constructed with a pointer
|
|
/// to a \c ModuleAnalysisManager it will run the
|
|
/// \c FunctionAnalysisManagerModuleProxy analysis prior to running the function
|
|
/// pass over the module to enable a \c FunctionAnalysisManager to be used
|
|
/// within this run safely.
|
|
///
|
|
/// Function passes run within this adaptor can rely on having exclusive access
|
|
/// to the function they are run over. They should not read or modify any other
|
|
/// functions! Other threads or systems may be manipulating other functions in
|
|
/// the module, and so their state should never be relied on.
|
|
/// FIXME: Make the above true for all of LLVM's actual passes, some still
|
|
/// violate this principle.
|
|
///
|
|
/// Function passes can also read the module containing the function, but they
|
|
/// should not modify that module outside of the use lists of various globals.
|
|
/// For example, a function pass is not permitted to add functions to the
|
|
/// module.
|
|
/// FIXME: Make the above true for all of LLVM's actual passes, some still
|
|
/// violate this principle.
|
|
template <typename FunctionPassT> class ModuleToFunctionPassAdaptor {
|
|
public:
|
|
explicit ModuleToFunctionPassAdaptor(FunctionPassT Pass)
|
|
: Pass(std::move(Pass)) {}
|
|
// We have to explicitly define all the special member functions because MSVC
|
|
// refuses to generate them.
|
|
ModuleToFunctionPassAdaptor(const ModuleToFunctionPassAdaptor &Arg)
|
|
: Pass(Arg.Pass) {}
|
|
ModuleToFunctionPassAdaptor(ModuleToFunctionPassAdaptor &&Arg)
|
|
: Pass(std::move(Arg.Pass)) {}
|
|
friend void swap(ModuleToFunctionPassAdaptor &LHS,
|
|
ModuleToFunctionPassAdaptor &RHS) {
|
|
using std::swap;
|
|
swap(LHS.Pass, RHS.Pass);
|
|
}
|
|
ModuleToFunctionPassAdaptor &operator=(ModuleToFunctionPassAdaptor RHS) {
|
|
swap(*this, RHS);
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Runs the function pass across every function in the module.
|
|
PreservedAnalyses run(Module &M, ModuleAnalysisManager *AM) {
|
|
FunctionAnalysisManager *FAM = nullptr;
|
|
if (AM)
|
|
// Setup the function analysis manager from its proxy.
|
|
FAM = &AM->getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
|
|
|
|
PreservedAnalyses PA = PreservedAnalyses::all();
|
|
for (Function &F : M) {
|
|
if (F.isDeclaration())
|
|
continue;
|
|
|
|
PreservedAnalyses PassPA = Pass.run(F, FAM);
|
|
|
|
// We know that the function pass couldn't have invalidated any other
|
|
// function's analyses (that's the contract of a function pass), so
|
|
// directly handle the function analysis manager's invalidation here and
|
|
// update our preserved set to reflect that these have already been
|
|
// handled.
|
|
if (FAM)
|
|
PassPA = FAM->invalidate(F, std::move(PassPA));
|
|
|
|
// Then intersect the preserved set so that invalidation of module
|
|
// analyses will eventually occur when the module pass completes.
|
|
PA.intersect(std::move(PassPA));
|
|
}
|
|
|
|
// By definition we preserve the proxy. This precludes *any* invalidation
|
|
// of function analyses by the proxy, but that's OK because we've taken
|
|
// care to invalidate analyses in the function analysis manager
|
|
// incrementally above.
|
|
PA.preserve<FunctionAnalysisManagerModuleProxy>();
|
|
return PA;
|
|
}
|
|
|
|
static StringRef name() { return "ModuleToFunctionPassAdaptor"; }
|
|
|
|
private:
|
|
FunctionPassT Pass;
|
|
};
|
|
|
|
/// \brief A function to deduce a function pass type and wrap it in the
|
|
/// templated adaptor.
|
|
template <typename FunctionPassT>
|
|
ModuleToFunctionPassAdaptor<FunctionPassT>
|
|
createModuleToFunctionPassAdaptor(FunctionPassT Pass) {
|
|
return std::move(ModuleToFunctionPassAdaptor<FunctionPassT>(std::move(Pass)));
|
|
}
|
|
|
|
/// \brief A template utility pass to force an analysis result to be available.
|
|
///
|
|
/// This is a no-op pass which simply forces a specific analysis pass's result
|
|
/// to be available when it is run.
|
|
template <typename AnalysisT> struct RequireAnalysisPass {
|
|
/// \brief Run this pass over some unit of IR.
|
|
///
|
|
/// This pass can be run over any unit of IR and use any analysis manager
|
|
/// provided they satisfy the basic API requirements. When this pass is
|
|
/// created, these methods can be instantiated to satisfy whatever the
|
|
/// context requires.
|
|
template <typename IRUnitT>
|
|
PreservedAnalyses run(IRUnitT &Arg, AnalysisManager<IRUnitT> *AM) {
|
|
if (AM)
|
|
(void)AM->template getResult<AnalysisT>(Arg);
|
|
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
static StringRef name() { return "RequireAnalysisPass"; }
|
|
};
|
|
|
|
/// \brief A template utility pass to force an analysis result to be
|
|
/// invalidated.
|
|
///
|
|
/// This is a no-op pass which simply forces a specific analysis result to be
|
|
/// invalidated when it is run.
|
|
template <typename AnalysisT> struct InvalidateAnalysisPass {
|
|
/// \brief Run this pass over some unit of IR.
|
|
///
|
|
/// This pass can be run over any unit of IR and use any analysis manager
|
|
/// provided they satisfy the basic API requirements. When this pass is
|
|
/// created, these methods can be instantiated to satisfy whatever the
|
|
/// context requires.
|
|
template <typename IRUnitT>
|
|
PreservedAnalyses run(IRUnitT &Arg, AnalysisManager<IRUnitT> *AM) {
|
|
if (AM)
|
|
// We have to directly invalidate the analysis result as we can't
|
|
// enumerate all other analyses and use the preserved set to control it.
|
|
(void)AM->template invalidate<AnalysisT>(Arg);
|
|
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
static StringRef name() { return "InvalidateAnalysisPass"; }
|
|
};
|
|
|
|
/// \brief A utility pass that does nothing but preserves no analyses.
|
|
///
|
|
/// As a consequence fo not preserving any analyses, this pass will force all
|
|
/// analysis passes to be re-run to produce fresh results if any are needed.
|
|
struct InvalidateAllAnalysesPass {
|
|
/// \brief Run this pass over some unit of IR.
|
|
template <typename IRUnitT> PreservedAnalyses run(IRUnitT &Arg) {
|
|
return PreservedAnalyses::none();
|
|
}
|
|
|
|
static StringRef name() { return "InvalidateAllAnalysesPass"; }
|
|
};
|
|
|
|
}
|
|
|
|
#endif
|