mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-23 11:13:28 +01:00
70b8986c96
The traits object is only used by a few methods. Deserializing a hash table and walking it is possible without the traits object, so it shouldn't be required to build a dummy object for that use case. The TraitsT object used to be a function template parameter before r327647, this restores it to that state. This makes it clear that the traits object isn't needed at all in 1 of the current 3 uses of HashTable (and I am going to add another use that doesn't need it), and that the default PdbHashTraits isn't used outside of tests. While here, also re-enable 3 checks in the test that were commented out (which requires making HashTableInternals templated and giving FooBar an operator==). No intended behavior change. Differential Revision: https://reviews.llvm.org/D64640 llvm-svn: 365974
271 lines
8.1 KiB
C++
271 lines
8.1 KiB
C++
//===- llvm/unittest/DebugInfo/PDB/HashTableTest.cpp ----------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/DebugInfo/PDB/Native/HashTable.h"
|
|
|
|
#include "llvm/DebugInfo/PDB/Native/Hash.h"
|
|
#include "llvm/DebugInfo/PDB/Native/NamedStreamMap.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "llvm/Support/BinaryByteStream.h"
|
|
#include "llvm/Support/BinaryStreamReader.h"
|
|
#include "llvm/Support/BinaryStreamWriter.h"
|
|
#include "llvm/Support/StringSaver.h"
|
|
#include "llvm/Testing/Support/Error.h"
|
|
|
|
#include "gtest/gtest.h"
|
|
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::pdb;
|
|
using namespace llvm::support;
|
|
|
|
namespace {
|
|
|
|
struct IdentityHashTraits {
|
|
uint32_t hashLookupKey(uint32_t N) const { return N; }
|
|
uint32_t storageKeyToLookupKey(uint32_t N) const { return N; }
|
|
uint32_t lookupKeyToStorageKey(uint32_t N) { return N; }
|
|
};
|
|
|
|
template <class T = uint32_t>
|
|
class HashTableInternals : public HashTable<T> {
|
|
public:
|
|
using HashTable<T>::Buckets;
|
|
using HashTable<T>::Present;
|
|
using HashTable<T>::Deleted;
|
|
};
|
|
}
|
|
|
|
TEST(HashTableTest, TestSimple) {
|
|
HashTableInternals<> Table;
|
|
EXPECT_EQ(0u, Table.size());
|
|
EXPECT_GT(Table.capacity(), 0u);
|
|
|
|
IdentityHashTraits Traits;
|
|
Table.set_as(3u, 7, Traits);
|
|
EXPECT_EQ(1u, Table.size());
|
|
ASSERT_NE(Table.end(), Table.find_as(3u, Traits));
|
|
EXPECT_EQ(7u, Table.get(3u, Traits));
|
|
}
|
|
|
|
TEST(HashTableTest, TestCollision) {
|
|
HashTableInternals<> Table;
|
|
EXPECT_EQ(0u, Table.size());
|
|
EXPECT_GT(Table.capacity(), 0u);
|
|
|
|
// We use knowledge of the hash table's implementation details to make sure
|
|
// to add another value that is the equivalent to the first value modulo the
|
|
// hash table's capacity.
|
|
uint32_t N1 = Table.capacity() + 1;
|
|
uint32_t N2 = 2 * N1;
|
|
|
|
IdentityHashTraits Traits;
|
|
Table.set_as(N1, 7, Traits);
|
|
Table.set_as(N2, 12, Traits);
|
|
EXPECT_EQ(2u, Table.size());
|
|
ASSERT_NE(Table.end(), Table.find_as(N1, Traits));
|
|
ASSERT_NE(Table.end(), Table.find_as(N2, Traits));
|
|
|
|
EXPECT_EQ(7u, Table.get(N1, Traits));
|
|
EXPECT_EQ(12u, Table.get(N2, Traits));
|
|
}
|
|
|
|
TEST(HashTableTest, TestRemove) {
|
|
HashTableInternals<> Table;
|
|
EXPECT_EQ(0u, Table.size());
|
|
EXPECT_GT(Table.capacity(), 0u);
|
|
|
|
IdentityHashTraits Traits;
|
|
Table.set_as(1u, 2, Traits);
|
|
Table.set_as(3u, 4, Traits);
|
|
EXPECT_EQ(2u, Table.size());
|
|
ASSERT_NE(Table.end(), Table.find_as(1u, Traits));
|
|
ASSERT_NE(Table.end(), Table.find_as(3u, Traits));
|
|
|
|
EXPECT_EQ(2u, Table.get(1u, Traits));
|
|
EXPECT_EQ(4u, Table.get(3u, Traits));
|
|
}
|
|
|
|
TEST(HashTableTest, TestCollisionAfterMultipleProbes) {
|
|
HashTableInternals<> Table;
|
|
EXPECT_EQ(0u, Table.size());
|
|
EXPECT_GT(Table.capacity(), 0u);
|
|
|
|
// Probing looks for the first available slot. A slot may already be filled
|
|
// as a result of an item with a *different* hash value already being there.
|
|
// Test that when this happens, the probe still finds the value.
|
|
uint32_t N1 = Table.capacity() + 1;
|
|
uint32_t N2 = N1 + 1;
|
|
uint32_t N3 = 2 * N1;
|
|
|
|
IdentityHashTraits Traits;
|
|
Table.set_as(N1, 7, Traits);
|
|
Table.set_as(N2, 11, Traits);
|
|
Table.set_as(N3, 13, Traits);
|
|
EXPECT_EQ(3u, Table.size());
|
|
ASSERT_NE(Table.end(), Table.find_as(N1, Traits));
|
|
ASSERT_NE(Table.end(), Table.find_as(N2, Traits));
|
|
ASSERT_NE(Table.end(), Table.find_as(N3, Traits));
|
|
|
|
EXPECT_EQ(7u, Table.get(N1, Traits));
|
|
EXPECT_EQ(11u, Table.get(N2, Traits));
|
|
EXPECT_EQ(13u, Table.get(N3, Traits));
|
|
}
|
|
|
|
TEST(HashTableTest, Grow) {
|
|
// So that we are independent of the load factor, `capacity` items, which is
|
|
// guaranteed to trigger a grow. Then verify that the size is the same, the
|
|
// capacity is larger, and all the original items are still in the table.
|
|
|
|
HashTableInternals<> Table;
|
|
IdentityHashTraits Traits;
|
|
uint32_t OldCapacity = Table.capacity();
|
|
for (uint32_t I = 0; I < OldCapacity; ++I) {
|
|
Table.set_as(OldCapacity + I * 2 + 1, I * 2 + 3, Traits);
|
|
}
|
|
EXPECT_EQ(OldCapacity, Table.size());
|
|
EXPECT_GT(Table.capacity(), OldCapacity);
|
|
for (uint32_t I = 0; I < OldCapacity; ++I) {
|
|
ASSERT_NE(Table.end(), Table.find_as(OldCapacity + I * 2 + 1, Traits));
|
|
EXPECT_EQ(I * 2 + 3, Table.get(OldCapacity + I * 2 + 1, Traits));
|
|
}
|
|
}
|
|
|
|
TEST(HashTableTest, Serialization) {
|
|
HashTableInternals<> Table;
|
|
IdentityHashTraits Traits;
|
|
uint32_t Cap = Table.capacity();
|
|
for (uint32_t I = 0; I < Cap; ++I) {
|
|
Table.set_as(Cap + I * 2 + 1, I * 2 + 3, Traits);
|
|
}
|
|
|
|
std::vector<uint8_t> Buffer(Table.calculateSerializedLength());
|
|
MutableBinaryByteStream Stream(Buffer, little);
|
|
BinaryStreamWriter Writer(Stream);
|
|
EXPECT_THAT_ERROR(Table.commit(Writer), Succeeded());
|
|
// We should have written precisely the number of bytes we calculated earlier.
|
|
EXPECT_EQ(Buffer.size(), Writer.getOffset());
|
|
|
|
HashTableInternals<> Table2;
|
|
BinaryStreamReader Reader(Stream);
|
|
EXPECT_THAT_ERROR(Table2.load(Reader), Succeeded());
|
|
// We should have read precisely the number of bytes we calculated earlier.
|
|
EXPECT_EQ(Buffer.size(), Reader.getOffset());
|
|
|
|
EXPECT_EQ(Table.size(), Table2.size());
|
|
EXPECT_EQ(Table.capacity(), Table2.capacity());
|
|
EXPECT_EQ(Table.Buckets, Table2.Buckets);
|
|
EXPECT_EQ(Table.Present, Table2.Present);
|
|
EXPECT_EQ(Table.Deleted, Table2.Deleted);
|
|
}
|
|
|
|
TEST(HashTableTest, NamedStreamMap) {
|
|
std::vector<StringRef> Streams = {"One", "Two", "Three", "Four",
|
|
"Five", "Six", "Seven"};
|
|
StringMap<uint32_t> ExpectedIndices;
|
|
for (uint32_t I = 0; I < Streams.size(); ++I)
|
|
ExpectedIndices[Streams[I]] = I + 1;
|
|
|
|
// To verify the hash table actually works, we want to verify that insertion
|
|
// order doesn't matter. So try inserting in every possible order of 7 items.
|
|
do {
|
|
NamedStreamMap NSM;
|
|
for (StringRef S : Streams)
|
|
NSM.set(S, ExpectedIndices[S]);
|
|
|
|
EXPECT_EQ(Streams.size(), NSM.size());
|
|
|
|
uint32_t N;
|
|
EXPECT_TRUE(NSM.get("One", N));
|
|
EXPECT_EQ(1U, N);
|
|
|
|
EXPECT_TRUE(NSM.get("Two", N));
|
|
EXPECT_EQ(2U, N);
|
|
|
|
EXPECT_TRUE(NSM.get("Three", N));
|
|
EXPECT_EQ(3U, N);
|
|
|
|
EXPECT_TRUE(NSM.get("Four", N));
|
|
EXPECT_EQ(4U, N);
|
|
|
|
EXPECT_TRUE(NSM.get("Five", N));
|
|
EXPECT_EQ(5U, N);
|
|
|
|
EXPECT_TRUE(NSM.get("Six", N));
|
|
EXPECT_EQ(6U, N);
|
|
|
|
EXPECT_TRUE(NSM.get("Seven", N));
|
|
EXPECT_EQ(7U, N);
|
|
} while (std::next_permutation(Streams.begin(), Streams.end()));
|
|
}
|
|
|
|
struct FooBar {
|
|
uint32_t X;
|
|
uint32_t Y;
|
|
|
|
bool operator==(const FooBar &RHS) const {
|
|
return X == RHS.X && Y == RHS.Y;
|
|
}
|
|
};
|
|
|
|
struct FooBarHashTraits {
|
|
std::vector<char> Buffer;
|
|
|
|
FooBarHashTraits() { Buffer.push_back(0); }
|
|
|
|
uint32_t hashLookupKey(StringRef S) const {
|
|
return llvm::pdb::hashStringV1(S);
|
|
}
|
|
|
|
StringRef storageKeyToLookupKey(uint32_t N) const {
|
|
if (N >= Buffer.size())
|
|
return StringRef();
|
|
|
|
return StringRef(Buffer.data() + N);
|
|
}
|
|
|
|
uint32_t lookupKeyToStorageKey(StringRef S) {
|
|
uint32_t N = Buffer.size();
|
|
Buffer.insert(Buffer.end(), S.begin(), S.end());
|
|
Buffer.push_back('\0');
|
|
return N;
|
|
}
|
|
};
|
|
|
|
TEST(HashTableTest, NonTrivialValueType) {
|
|
HashTableInternals<FooBar> Table;
|
|
FooBarHashTraits Traits;
|
|
uint32_t Cap = Table.capacity();
|
|
for (uint32_t I = 0; I < Cap; ++I) {
|
|
FooBar F;
|
|
F.X = I;
|
|
F.Y = I + 1;
|
|
Table.set_as(utostr(I), F, Traits);
|
|
}
|
|
|
|
std::vector<uint8_t> Buffer(Table.calculateSerializedLength());
|
|
MutableBinaryByteStream Stream(Buffer, little);
|
|
BinaryStreamWriter Writer(Stream);
|
|
EXPECT_THAT_ERROR(Table.commit(Writer), Succeeded());
|
|
// We should have written precisely the number of bytes we calculated earlier.
|
|
EXPECT_EQ(Buffer.size(), Writer.getOffset());
|
|
|
|
HashTableInternals<FooBar> Table2;
|
|
BinaryStreamReader Reader(Stream);
|
|
EXPECT_THAT_ERROR(Table2.load(Reader), Succeeded());
|
|
// We should have read precisely the number of bytes we calculated earlier.
|
|
EXPECT_EQ(Buffer.size(), Reader.getOffset());
|
|
|
|
EXPECT_EQ(Table.size(), Table2.size());
|
|
EXPECT_EQ(Table.capacity(), Table2.capacity());
|
|
EXPECT_EQ(Table.Buckets, Table2.Buckets);
|
|
EXPECT_EQ(Table.Present, Table2.Present);
|
|
EXPECT_EQ(Table.Deleted, Table2.Deleted);
|
|
}
|