mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 20:23:11 +01:00
865492560f
Current approach doesn't work well in cases when multiple paths are predicted to be "cold". By "cold" paths I mean those containing "unreachable" instruction, call marked with 'cold' attribute and 'unwind' handler of 'invoke' instruction. The issue is that heuristics are applied one by one until the first match and essentially ignores relative hotness/coldness of other paths. New approach unifies processing of "cold" paths by assigning predefined absolute weight to each block estimated to be "cold". Then we propagate these weights up/down IR similarly to existing approach. And finally set up edge probabilities based on estimated block weights. One important difference is how we propagate weight up. Existing approach propagates the same weight to all blocks that are post-dominated by a block with some "known" weight. This is useless at least because it always gives 50\50 distribution which is assumed by default anyway. Worse, it causes the algorithm to skip further heuristics and can miss setting more accurate probability. New algorithm propagates the weight up only to the blocks that dominates and post-dominated by a block with some "known" weight. In other words, those blocks that are either always executed or not executed together. In addition new approach processes loops in an uniform way as well. Essentially loop exit edges are estimated as "cold" paths relative to back edges and should be considered uniformly with other coldness/hotness markers. Reviewed By: yrouban Differential Revision: https://reviews.llvm.org/D79485
158 lines
5.2 KiB
C++
158 lines
5.2 KiB
C++
//===- OptimizationRemarkEmitter.cpp - Optimization Diagnostic --*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Optimization diagnostic interfaces. It's packaged as an analysis pass so
|
|
// that by using this service passes become dependent on BFI as well. BFI is
|
|
// used to compute the "hotness" of the diagnostic message.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
|
|
#include "llvm/Analysis/BranchProbabilityInfo.h"
|
|
#include "llvm/Analysis/LazyBlockFrequencyInfo.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/ProfileSummaryInfo.h"
|
|
#include "llvm/IR/DiagnosticInfo.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/InitializePasses.h"
|
|
|
|
using namespace llvm;
|
|
|
|
OptimizationRemarkEmitter::OptimizationRemarkEmitter(const Function *F)
|
|
: F(F), BFI(nullptr) {
|
|
if (!F->getContext().getDiagnosticsHotnessRequested())
|
|
return;
|
|
|
|
// First create a dominator tree.
|
|
DominatorTree DT;
|
|
DT.recalculate(*const_cast<Function *>(F));
|
|
|
|
// Generate LoopInfo from it.
|
|
LoopInfo LI;
|
|
LI.analyze(DT);
|
|
|
|
// Then compute BranchProbabilityInfo.
|
|
BranchProbabilityInfo BPI(*F, LI, nullptr, &DT, nullptr);
|
|
|
|
// Finally compute BFI.
|
|
OwnedBFI = std::make_unique<BlockFrequencyInfo>(*F, BPI, LI);
|
|
BFI = OwnedBFI.get();
|
|
}
|
|
|
|
bool OptimizationRemarkEmitter::invalidate(
|
|
Function &F, const PreservedAnalyses &PA,
|
|
FunctionAnalysisManager::Invalidator &Inv) {
|
|
if (OwnedBFI.get()) {
|
|
OwnedBFI.reset();
|
|
BFI = nullptr;
|
|
}
|
|
// This analysis has no state and so can be trivially preserved but it needs
|
|
// a fresh view of BFI if it was constructed with one.
|
|
if (BFI && Inv.invalidate<BlockFrequencyAnalysis>(F, PA))
|
|
return true;
|
|
|
|
// Otherwise this analysis result remains valid.
|
|
return false;
|
|
}
|
|
|
|
Optional<uint64_t> OptimizationRemarkEmitter::computeHotness(const Value *V) {
|
|
if (!BFI)
|
|
return None;
|
|
|
|
return BFI->getBlockProfileCount(cast<BasicBlock>(V));
|
|
}
|
|
|
|
void OptimizationRemarkEmitter::computeHotness(
|
|
DiagnosticInfoIROptimization &OptDiag) {
|
|
const Value *V = OptDiag.getCodeRegion();
|
|
if (V)
|
|
OptDiag.setHotness(computeHotness(V));
|
|
}
|
|
|
|
void OptimizationRemarkEmitter::emit(
|
|
DiagnosticInfoOptimizationBase &OptDiagBase) {
|
|
auto &OptDiag = cast<DiagnosticInfoIROptimization>(OptDiagBase);
|
|
computeHotness(OptDiag);
|
|
|
|
// Only emit it if its hotness meets the threshold.
|
|
if (OptDiag.getHotness().getValueOr(0) <
|
|
F->getContext().getDiagnosticsHotnessThreshold()) {
|
|
return;
|
|
}
|
|
|
|
F->getContext().diagnose(OptDiag);
|
|
}
|
|
|
|
OptimizationRemarkEmitterWrapperPass::OptimizationRemarkEmitterWrapperPass()
|
|
: FunctionPass(ID) {
|
|
initializeOptimizationRemarkEmitterWrapperPassPass(
|
|
*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool OptimizationRemarkEmitterWrapperPass::runOnFunction(Function &Fn) {
|
|
BlockFrequencyInfo *BFI;
|
|
|
|
auto &Context = Fn.getContext();
|
|
if (Context.getDiagnosticsHotnessRequested()) {
|
|
BFI = &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI();
|
|
// Get hotness threshold from PSI. This should only happen once.
|
|
if (Context.isDiagnosticsHotnessThresholdSetFromPSI()) {
|
|
if (ProfileSummaryInfo *PSI =
|
|
&getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI())
|
|
Context.setDiagnosticsHotnessThreshold(
|
|
PSI->getOrCompHotCountThreshold());
|
|
}
|
|
} else
|
|
BFI = nullptr;
|
|
|
|
ORE = std::make_unique<OptimizationRemarkEmitter>(&Fn, BFI);
|
|
return false;
|
|
}
|
|
|
|
void OptimizationRemarkEmitterWrapperPass::getAnalysisUsage(
|
|
AnalysisUsage &AU) const {
|
|
LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
|
|
AU.addRequired<ProfileSummaryInfoWrapperPass>();
|
|
AU.setPreservesAll();
|
|
}
|
|
|
|
AnalysisKey OptimizationRemarkEmitterAnalysis::Key;
|
|
|
|
OptimizationRemarkEmitter
|
|
OptimizationRemarkEmitterAnalysis::run(Function &F,
|
|
FunctionAnalysisManager &AM) {
|
|
BlockFrequencyInfo *BFI;
|
|
auto &Context = F.getContext();
|
|
|
|
if (Context.getDiagnosticsHotnessRequested()) {
|
|
BFI = &AM.getResult<BlockFrequencyAnalysis>(F);
|
|
// Get hotness threshold from PSI. This should only happen once.
|
|
if (Context.isDiagnosticsHotnessThresholdSetFromPSI()) {
|
|
auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
|
|
if (ProfileSummaryInfo *PSI =
|
|
MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()))
|
|
Context.setDiagnosticsHotnessThreshold(
|
|
PSI->getOrCompHotCountThreshold());
|
|
}
|
|
} else
|
|
BFI = nullptr;
|
|
|
|
return OptimizationRemarkEmitter(&F, BFI);
|
|
}
|
|
|
|
char OptimizationRemarkEmitterWrapperPass::ID = 0;
|
|
static const char ore_name[] = "Optimization Remark Emitter";
|
|
#define ORE_NAME "opt-remark-emitter"
|
|
|
|
INITIALIZE_PASS_BEGIN(OptimizationRemarkEmitterWrapperPass, ORE_NAME, ore_name,
|
|
false, true)
|
|
INITIALIZE_PASS_DEPENDENCY(LazyBFIPass)
|
|
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
|
|
INITIALIZE_PASS_END(OptimizationRemarkEmitterWrapperPass, ORE_NAME, ore_name,
|
|
false, true)
|