mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-26 04:32:44 +01:00
9d60f59b55
benchmarks hitting an assertion. Adds LiveIntervalUnion::collectInterferingVRegs. Fixes "late spilling" by checking for any unspillable live vregs among all physReg aliases. llvm-svn: 118701
530 lines
19 KiB
C++
530 lines
19 KiB
C++
//===-- RegAllocBasic.cpp - basic register allocator ----------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the RABasic function pass, which provides a minimal
|
|
// implementation of the basic register allocator.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "regalloc"
|
|
#include "LiveIntervalUnion.h"
|
|
#include "RegAllocBase.h"
|
|
#include "RenderMachineFunction.h"
|
|
#include "Spiller.h"
|
|
#include "VirtRegMap.h"
|
|
#include "VirtRegRewriter.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/PassAnalysisSupport.h"
|
|
#include "llvm/CodeGen/CalcSpillWeights.h"
|
|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
|
|
#include "llvm/CodeGen/LiveStackAnalysis.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/RegAllocRegistry.h"
|
|
#include "llvm/CodeGen/RegisterCoalescer.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#ifndef NDEBUG
|
|
#include "llvm/ADT/SparseBitVector.h"
|
|
#endif
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
#include <vector>
|
|
#include <queue>
|
|
|
|
using namespace llvm;
|
|
|
|
static RegisterRegAlloc basicRegAlloc("basic", "basic register allocator",
|
|
createBasicRegisterAllocator);
|
|
|
|
// Temporary verification option until we can put verification inside
|
|
// MachineVerifier.
|
|
static cl::opt<bool>
|
|
VerifyRegAlloc("verify-regalloc",
|
|
cl::desc("Verify live intervals before renaming"));
|
|
|
|
class PhysicalRegisterDescription : public AbstractRegisterDescription {
|
|
const TargetRegisterInfo *tri_;
|
|
public:
|
|
PhysicalRegisterDescription(const TargetRegisterInfo *tri): tri_(tri) {}
|
|
virtual const char *getName(unsigned reg) const { return tri_->getName(reg); }
|
|
};
|
|
|
|
namespace {
|
|
|
|
/// RABasic provides a minimal implementation of the basic register allocation
|
|
/// algorithm. It prioritizes live virtual registers by spill weight and spills
|
|
/// whenever a register is unavailable. This is not practical in production but
|
|
/// provides a useful baseline both for measuring other allocators and comparing
|
|
/// the speed of the basic algorithm against other styles of allocators.
|
|
class RABasic : public MachineFunctionPass, public RegAllocBase
|
|
{
|
|
// context
|
|
MachineFunction *mf_;
|
|
const TargetMachine *tm_;
|
|
MachineRegisterInfo *mri_;
|
|
|
|
// analyses
|
|
LiveStacks *ls_;
|
|
RenderMachineFunction *rmf_;
|
|
|
|
// state
|
|
std::auto_ptr<Spiller> spiller_;
|
|
|
|
public:
|
|
RABasic();
|
|
|
|
/// Return the pass name.
|
|
virtual const char* getPassName() const {
|
|
return "Basic Register Allocator";
|
|
}
|
|
|
|
/// RABasic analysis usage.
|
|
virtual void getAnalysisUsage(AnalysisUsage &au) const;
|
|
|
|
virtual void releaseMemory();
|
|
|
|
virtual Spiller &spiller() { return *spiller_; }
|
|
|
|
virtual unsigned selectOrSplit(LiveInterval &lvr,
|
|
SmallVectorImpl<LiveInterval*> &splitLVRs);
|
|
|
|
/// Perform register allocation.
|
|
virtual bool runOnMachineFunction(MachineFunction &mf);
|
|
|
|
static char ID;
|
|
};
|
|
|
|
char RABasic::ID = 0;
|
|
|
|
} // end anonymous namespace
|
|
|
|
// We should not need to publish the initializer as long as no other passes
|
|
// require RABasic.
|
|
#if 0 // disable INITIALIZE_PASS
|
|
INITIALIZE_PASS_BEGIN(RABasic, "basic-regalloc",
|
|
"Basic Register Allocator", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
|
|
INITIALIZE_PASS_DEPENDENCY(StrongPHIElimination)
|
|
INITIALIZE_AG_DEPENDENCY(RegisterCoalescer)
|
|
INITIALIZE_PASS_DEPENDENCY(CalculateSpillWeights)
|
|
INITIALIZE_PASS_DEPENDENCY(LiveStacks)
|
|
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
|
|
INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
|
|
#ifndef NDEBUG
|
|
INITIALIZE_PASS_DEPENDENCY(RenderMachineFunction)
|
|
#endif
|
|
INITIALIZE_PASS_END(RABasic, "basic-regalloc",
|
|
"Basic Register Allocator", false, false)
|
|
#endif // disable INITIALIZE_PASS
|
|
|
|
RABasic::RABasic(): MachineFunctionPass(ID) {
|
|
initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
|
|
initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
|
|
initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
|
|
initializeRegisterCoalescerAnalysisGroup(*PassRegistry::getPassRegistry());
|
|
initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
|
|
initializeLiveStacksPass(*PassRegistry::getPassRegistry());
|
|
initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
|
|
initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
|
|
initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
|
|
initializeRenderMachineFunctionPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void RABasic::getAnalysisUsage(AnalysisUsage &au) const {
|
|
au.setPreservesCFG();
|
|
au.addRequired<LiveIntervals>();
|
|
au.addPreserved<SlotIndexes>();
|
|
if (StrongPHIElim)
|
|
au.addRequiredID(StrongPHIEliminationID);
|
|
au.addRequiredTransitive<RegisterCoalescer>();
|
|
au.addRequired<CalculateSpillWeights>();
|
|
au.addRequired<LiveStacks>();
|
|
au.addPreserved<LiveStacks>();
|
|
au.addRequiredID(MachineDominatorsID);
|
|
au.addPreservedID(MachineDominatorsID);
|
|
au.addRequired<MachineLoopInfo>();
|
|
au.addPreserved<MachineLoopInfo>();
|
|
au.addRequired<VirtRegMap>();
|
|
au.addPreserved<VirtRegMap>();
|
|
DEBUG(au.addRequired<RenderMachineFunction>());
|
|
MachineFunctionPass::getAnalysisUsage(au);
|
|
}
|
|
|
|
void RABasic::releaseMemory() {
|
|
spiller_.reset(0);
|
|
RegAllocBase::releaseMemory();
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
// Verify each LiveIntervalUnion.
|
|
void RegAllocBase::verify() {
|
|
LvrBitSet visitedVRegs;
|
|
OwningArrayPtr<LvrBitSet> unionVRegs(new LvrBitSet[physReg2liu_.numRegs()]);
|
|
// Verify disjoint unions.
|
|
for (unsigned preg = 0; preg < physReg2liu_.numRegs(); ++preg) {
|
|
DEBUG(PhysicalRegisterDescription prd(tri_); physReg2liu_[preg].dump(&prd));
|
|
LvrBitSet &vregs = unionVRegs[preg];
|
|
physReg2liu_[preg].verify(vregs);
|
|
// Union + intersection test could be done efficiently in one pass, but
|
|
// don't add a method to SparseBitVector unless we really need it.
|
|
assert(!visitedVRegs.intersects(vregs) && "vreg in multiple unions");
|
|
visitedVRegs |= vregs;
|
|
}
|
|
// Verify vreg coverage.
|
|
for (LiveIntervals::iterator liItr = lis_->begin(), liEnd = lis_->end();
|
|
liItr != liEnd; ++liItr) {
|
|
unsigned reg = liItr->first;
|
|
LiveInterval &li = *liItr->second;
|
|
if (li.empty() ) continue;
|
|
if (TargetRegisterInfo::isPhysicalRegister(reg)) continue;
|
|
if (!vrm_->hasPhys(reg)) continue; // spilled?
|
|
unsigned preg = vrm_->getPhys(reg);
|
|
if (!unionVRegs[preg].test(reg)) {
|
|
dbgs() << "LiveVirtReg " << reg << " not in union " <<
|
|
tri_->getName(preg) << "\n";
|
|
llvm_unreachable("unallocated live vreg");
|
|
}
|
|
}
|
|
// FIXME: I'm not sure how to verify spilled intervals.
|
|
}
|
|
#endif //!NDEBUG
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// RegAllocBase Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Instantiate a LiveIntervalUnion for each physical register.
|
|
void RegAllocBase::LIUArray::init(unsigned nRegs) {
|
|
array_.reset(new LiveIntervalUnion[nRegs]);
|
|
nRegs_ = nRegs;
|
|
for (unsigned pr = 0; pr < nRegs; ++pr) {
|
|
array_[pr].init(pr);
|
|
}
|
|
}
|
|
|
|
void RegAllocBase::init(const TargetRegisterInfo &tri, VirtRegMap &vrm,
|
|
LiveIntervals &lis) {
|
|
tri_ = &tri;
|
|
vrm_ = &vrm;
|
|
lis_ = &lis;
|
|
physReg2liu_.init(tri_->getNumRegs());
|
|
// Cache an interferece query for each physical reg
|
|
queries_.reset(new LiveIntervalUnion::Query[physReg2liu_.numRegs()]);
|
|
}
|
|
|
|
void RegAllocBase::LIUArray::clear() {
|
|
nRegs_ = 0;
|
|
array_.reset(0);
|
|
}
|
|
|
|
void RegAllocBase::releaseMemory() {
|
|
physReg2liu_.clear();
|
|
}
|
|
|
|
namespace llvm {
|
|
/// This class defines a queue of live virtual registers prioritized by spill
|
|
/// weight. The heaviest vreg is popped first.
|
|
///
|
|
/// Currently, this is trivial wrapper that gives us an opaque type in the
|
|
/// header, but we may later give it a virtual interface for register allocators
|
|
/// to override the priority queue comparator.
|
|
class LiveVirtRegQueue {
|
|
typedef std::priority_queue
|
|
<LiveInterval*, std::vector<LiveInterval*>, LessSpillWeightPriority> PQ;
|
|
PQ pq_;
|
|
|
|
public:
|
|
// Is the queue empty?
|
|
bool empty() { return pq_.empty(); }
|
|
|
|
// Get the highest priority lvr (top + pop)
|
|
LiveInterval *get() {
|
|
LiveInterval *lvr = pq_.top();
|
|
pq_.pop();
|
|
return lvr;
|
|
}
|
|
// Add this lvr to the queue
|
|
void push(LiveInterval *lvr) {
|
|
pq_.push(lvr);
|
|
}
|
|
};
|
|
} // end namespace llvm
|
|
|
|
// Visit all the live virtual registers. If they are already assigned to a
|
|
// physical register, unify them with the corresponding LiveIntervalUnion,
|
|
// otherwise push them on the priority queue for later assignment.
|
|
void RegAllocBase::seedLiveVirtRegs(LiveVirtRegQueue &lvrQ) {
|
|
for (LiveIntervals::iterator liItr = lis_->begin(), liEnd = lis_->end();
|
|
liItr != liEnd; ++liItr) {
|
|
unsigned reg = liItr->first;
|
|
LiveInterval &li = *liItr->second;
|
|
if (li.empty()) continue;
|
|
if (TargetRegisterInfo::isPhysicalRegister(reg)) {
|
|
physReg2liu_[reg].unify(li);
|
|
}
|
|
else {
|
|
lvrQ.push(&li);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Top-level driver to manage the queue of unassigned LiveVirtRegs and call the
|
|
// selectOrSplit implementation.
|
|
void RegAllocBase::allocatePhysRegs() {
|
|
LiveVirtRegQueue lvrQ;
|
|
seedLiveVirtRegs(lvrQ);
|
|
while (!lvrQ.empty()) {
|
|
LiveInterval *lvr = lvrQ.get();
|
|
typedef SmallVector<LiveInterval*, 4> LVRVec;
|
|
LVRVec splitLVRs;
|
|
unsigned availablePhysReg = selectOrSplit(*lvr, splitLVRs);
|
|
if (availablePhysReg) {
|
|
DEBUG(dbgs() << "allocating: " << tri_->getName(availablePhysReg) <<
|
|
" " << *lvr << '\n');
|
|
assert(!vrm_->hasPhys(lvr->reg) && "duplicate vreg in interval unions");
|
|
vrm_->assignVirt2Phys(lvr->reg, availablePhysReg);
|
|
physReg2liu_[availablePhysReg].unify(*lvr);
|
|
}
|
|
for (LVRVec::iterator lvrI = splitLVRs.begin(), lvrEnd = splitLVRs.end();
|
|
lvrI != lvrEnd; ++lvrI) {
|
|
if ((*lvrI)->empty()) continue;
|
|
DEBUG(dbgs() << "queuing new interval: " << **lvrI << "\n");
|
|
assert(TargetRegisterInfo::isVirtualRegister((*lvrI)->reg) &&
|
|
"expect split value in virtual register");
|
|
lvrQ.push(*lvrI);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check if this live virtual reg interferes with a physical register. If not,
|
|
// then check for interference on each register that aliases with the physical
|
|
// register. Return the interfering register.
|
|
unsigned RegAllocBase::checkPhysRegInterference(LiveInterval &lvr,
|
|
unsigned preg) {
|
|
queries_[preg].init(&lvr, &physReg2liu_[preg]);
|
|
if (queries_[preg].checkInterference())
|
|
return preg;
|
|
for (const unsigned *asI = tri_->getAliasSet(preg); *asI; ++asI) {
|
|
queries_[*asI].init(&lvr, &physReg2liu_[*asI]);
|
|
if (queries_[*asI].checkInterference())
|
|
return *asI;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Sort live virtual registers by their register number.
|
|
struct LessLiveVirtualReg
|
|
: public std::binary_function<LiveInterval, LiveInterval, bool> {
|
|
bool operator()(const LiveInterval *left, const LiveInterval *right) const {
|
|
return left->reg < right->reg;
|
|
}
|
|
};
|
|
|
|
// Spill all interferences currently assigned to this physical register.
|
|
void RegAllocBase::spillReg(unsigned reg,
|
|
SmallVectorImpl<LiveInterval*> &splitLVRs) {
|
|
LiveIntervalUnion::Query &query = queries_[reg];
|
|
const SmallVectorImpl<LiveInterval*> &pendingSpills =
|
|
query.interferingVRegs();
|
|
for (SmallVectorImpl<LiveInterval*>::const_iterator I = pendingSpills.begin(),
|
|
E = pendingSpills.end(); I != E; ++I) {
|
|
LiveInterval &lvr = **I;
|
|
DEBUG(dbgs() <<
|
|
"extracting from " << tri_->getName(reg) << " " << lvr << '\n');
|
|
|
|
// Deallocate the interfering vreg by removing it from the union.
|
|
// A LiveInterval instance may not be in a union during modification!
|
|
physReg2liu_[reg].extract(lvr);
|
|
|
|
// After extracting segments, the query's results are invalid.
|
|
query.clear();
|
|
|
|
// Clear the vreg assignment.
|
|
vrm_->clearVirt(lvr.reg);
|
|
|
|
// Spill the extracted interval.
|
|
spiller().spill(&lvr, splitLVRs, pendingSpills);
|
|
}
|
|
}
|
|
|
|
// Spill or split all live virtual registers currently unified under preg that
|
|
// interfere with lvr. The newly spilled or split live intervals are returned by
|
|
// appending them to splitLVRs.
|
|
bool
|
|
RegAllocBase::spillInterferences(unsigned preg,
|
|
SmallVectorImpl<LiveInterval*> &splitLVRs) {
|
|
// Record each interference and determine if all are spillable before mutating
|
|
// either the union or live intervals.
|
|
std::vector<LiveInterval*> spilledLVRs;
|
|
|
|
unsigned numInterferences = queries_[preg].collectInterferingVRegs();
|
|
if (queries_[preg].seenUnspillableVReg()) {
|
|
return false;
|
|
}
|
|
for (const unsigned *asI = tri_->getAliasSet(preg); *asI; ++asI) {
|
|
numInterferences += queries_[*asI].collectInterferingVRegs();
|
|
if (queries_[*asI].seenUnspillableVReg()) {
|
|
return false;
|
|
}
|
|
}
|
|
DEBUG(dbgs() << "spilling " << tri_->getName(preg) <<
|
|
" interferences with " << queries_[preg].lvr() << "\n");
|
|
assert(numInterferences > 0 && "expect interference");
|
|
|
|
// Spill each interfering vreg allocated to preg or an alias.
|
|
spillReg(preg, splitLVRs);
|
|
for (const unsigned *asI = tri_->getAliasSet(preg); *asI; ++asI)
|
|
spillReg(*asI, splitLVRs);
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// RABasic Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Driver for the register assignment and splitting heuristics.
|
|
// Manages iteration over the LiveIntervalUnions.
|
|
//
|
|
// Minimal implementation of register assignment and splitting--spills whenever
|
|
// we run out of registers.
|
|
//
|
|
// selectOrSplit can only be called once per live virtual register. We then do a
|
|
// single interference test for each register the correct class until we find an
|
|
// available register. So, the number of interference tests in the worst case is
|
|
// |vregs| * |machineregs|. And since the number of interference tests is
|
|
// minimal, there is no value in caching them.
|
|
unsigned RABasic::selectOrSplit(LiveInterval &lvr,
|
|
SmallVectorImpl<LiveInterval*> &splitLVRs) {
|
|
// Populate a list of physical register spill candidates.
|
|
std::vector<unsigned> pregSpillCands;
|
|
|
|
// Check for an available register in this class.
|
|
const TargetRegisterClass *trc = mri_->getRegClass(lvr.reg);
|
|
for (TargetRegisterClass::iterator trcI = trc->allocation_order_begin(*mf_),
|
|
trcEnd = trc->allocation_order_end(*mf_);
|
|
trcI != trcEnd; ++trcI) {
|
|
unsigned preg = *trcI;
|
|
// Check interference and intialize queries for this lvr as a side effect.
|
|
unsigned interfReg = checkPhysRegInterference(lvr, preg);
|
|
if (interfReg == 0) {
|
|
// Found an available register.
|
|
return preg;
|
|
}
|
|
LiveInterval *interferingVirtReg =
|
|
queries_[interfReg].firstInterference().liuSegPos()->liveVirtReg;
|
|
|
|
// The current lvr must either spillable, or one of its interferences must
|
|
// have less spill weight.
|
|
if (interferingVirtReg->weight < lvr.weight ) {
|
|
pregSpillCands.push_back(preg);
|
|
}
|
|
}
|
|
// Try to spill another interfering reg with less spill weight.
|
|
//
|
|
// FIXME: RAGreedy will sort this list by spill weight.
|
|
for (std::vector<unsigned>::iterator pregI = pregSpillCands.begin(),
|
|
pregE = pregSpillCands.end(); pregI != pregE; ++pregI) {
|
|
|
|
if (!spillInterferences(*pregI, splitLVRs)) continue;
|
|
|
|
unsigned interfReg = checkPhysRegInterference(lvr, *pregI);
|
|
if (interfReg != 0) {
|
|
const LiveSegment &seg =
|
|
*queries_[interfReg].firstInterference().liuSegPos();
|
|
dbgs() << "spilling cannot free " << tri_->getName(*pregI) <<
|
|
" for " << lvr.reg << " with interference " << seg.liveVirtReg << "\n";
|
|
llvm_unreachable("Interference after spill.");
|
|
}
|
|
// Tell the caller to allocate to this newly freed physical register.
|
|
return *pregI;
|
|
}
|
|
// No other spill candidates were found, so spill the current lvr.
|
|
DEBUG(dbgs() << "spilling: " << lvr << '\n');
|
|
SmallVector<LiveInterval*, 1> pendingSpills;
|
|
spiller().spill(&lvr, splitLVRs, pendingSpills);
|
|
|
|
// The live virtual register requesting allocation was spilled, so tell
|
|
// the caller not to allocate anything during this round.
|
|
return 0;
|
|
}
|
|
|
|
namespace llvm {
|
|
Spiller *createInlineSpiller(MachineFunctionPass &pass,
|
|
MachineFunction &mf,
|
|
VirtRegMap &vrm);
|
|
}
|
|
|
|
bool RABasic::runOnMachineFunction(MachineFunction &mf) {
|
|
DEBUG(dbgs() << "********** BASIC REGISTER ALLOCATION **********\n"
|
|
<< "********** Function: "
|
|
<< ((Value*)mf.getFunction())->getName() << '\n');
|
|
|
|
mf_ = &mf;
|
|
tm_ = &mf.getTarget();
|
|
mri_ = &mf.getRegInfo();
|
|
|
|
DEBUG(rmf_ = &getAnalysis<RenderMachineFunction>());
|
|
|
|
RegAllocBase::init(*tm_->getRegisterInfo(), getAnalysis<VirtRegMap>(),
|
|
getAnalysis<LiveIntervals>());
|
|
|
|
// We may want to force InlineSpiller for this register allocator. For
|
|
// now we're also experimenting with the standard spiller.
|
|
//
|
|
//spiller_.reset(createInlineSpiller(*this, *mf_, *vrm_));
|
|
spiller_.reset(createSpiller(*this, *mf_, *vrm_));
|
|
|
|
allocatePhysRegs();
|
|
|
|
// Diagnostic output before rewriting
|
|
DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *vrm_ << "\n");
|
|
|
|
// optional HTML output
|
|
DEBUG(rmf_->renderMachineFunction("After basic register allocation.", vrm_));
|
|
|
|
// FIXME: Verification currently must run before VirtRegRewriter. We should
|
|
// make the rewriter a separate pass and override verifyAnalysis instead. When
|
|
// that happens, verification naturally falls under VerifyMachineCode.
|
|
#ifndef NDEBUG
|
|
if (VerifyRegAlloc) {
|
|
// Verify accuracy of LiveIntervals. The standard machine code verifier
|
|
// ensures that each LiveIntervals covers all uses of the virtual reg.
|
|
|
|
// FIXME: MachineVerifier is currently broken when using the standard
|
|
// spiller. Enable it for InlineSpiller only.
|
|
// mf_->verify(this);
|
|
|
|
// Verify that LiveIntervals are partitioned into unions and disjoint within
|
|
// the unions.
|
|
verify();
|
|
}
|
|
#endif // !NDEBUG
|
|
|
|
// Run rewriter
|
|
std::auto_ptr<VirtRegRewriter> rewriter(createVirtRegRewriter());
|
|
rewriter->runOnMachineFunction(*mf_, *vrm_, lis_);
|
|
|
|
// The pass output is in VirtRegMap. Release all the transient data.
|
|
releaseMemory();
|
|
|
|
return true;
|
|
}
|
|
|
|
FunctionPass* llvm::createBasicRegisterAllocator()
|
|
{
|
|
return new RABasic();
|
|
}
|