1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 03:33:20 +01:00
llvm-mirror/lib/Object/ELFObjectFile.cpp
Eli Bendersky d2042f3698 Basic runtime dynamic loading capabilities added to ELFObjectFile, implemented
in a subclass named DyldELFObject. This class supports rebasing the object file
it represents by re-mapping section addresses to the actual memory addresses
the object was placed in. This is required for MC-JIT implementation on ELF with
debugging support.

Patch reviewed on llvm-commits.

Developed together with Ashok Thirumurthi and Andrew Kaylor.

llvm-svn: 148653
2012-01-22 09:01:03 +00:00

1707 lines
65 KiB
C++

//===- ELFObjectFile.cpp - ELF object file implementation -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the ELFObjectFile and DyldELFObject classes.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ELF.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <limits>
#include <utility>
using namespace llvm;
using namespace object;
// Templates to choose Elf_Addr and Elf_Off depending on is64Bits.
namespace {
template<support::endianness target_endianness>
struct ELFDataTypeTypedefHelperCommon {
typedef support::detail::packed_endian_specific_integral
<uint16_t, target_endianness, support::aligned> Elf_Half;
typedef support::detail::packed_endian_specific_integral
<uint32_t, target_endianness, support::aligned> Elf_Word;
typedef support::detail::packed_endian_specific_integral
<int32_t, target_endianness, support::aligned> Elf_Sword;
typedef support::detail::packed_endian_specific_integral
<uint64_t, target_endianness, support::aligned> Elf_Xword;
typedef support::detail::packed_endian_specific_integral
<int64_t, target_endianness, support::aligned> Elf_Sxword;
};
}
namespace {
template<support::endianness target_endianness, bool is64Bits>
struct ELFDataTypeTypedefHelper;
/// ELF 32bit types.
template<support::endianness target_endianness>
struct ELFDataTypeTypedefHelper<target_endianness, false>
: ELFDataTypeTypedefHelperCommon<target_endianness> {
typedef uint32_t value_type;
typedef support::detail::packed_endian_specific_integral
<value_type, target_endianness, support::aligned> Elf_Addr;
typedef support::detail::packed_endian_specific_integral
<value_type, target_endianness, support::aligned> Elf_Off;
};
/// ELF 64bit types.
template<support::endianness target_endianness>
struct ELFDataTypeTypedefHelper<target_endianness, true>
: ELFDataTypeTypedefHelperCommon<target_endianness>{
typedef uint64_t value_type;
typedef support::detail::packed_endian_specific_integral
<value_type, target_endianness, support::aligned> Elf_Addr;
typedef support::detail::packed_endian_specific_integral
<value_type, target_endianness, support::aligned> Elf_Off;
};
}
// I really don't like doing this, but the alternative is copypasta.
#define LLVM_ELF_IMPORT_TYPES(target_endianness, is64Bits) \
typedef typename \
ELFDataTypeTypedefHelper<target_endianness, is64Bits>::Elf_Addr Elf_Addr; \
typedef typename \
ELFDataTypeTypedefHelper<target_endianness, is64Bits>::Elf_Off Elf_Off; \
typedef typename \
ELFDataTypeTypedefHelper<target_endianness, is64Bits>::Elf_Half Elf_Half; \
typedef typename \
ELFDataTypeTypedefHelper<target_endianness, is64Bits>::Elf_Word Elf_Word; \
typedef typename \
ELFDataTypeTypedefHelper<target_endianness, is64Bits>::Elf_Sword Elf_Sword; \
typedef typename \
ELFDataTypeTypedefHelper<target_endianness, is64Bits>::Elf_Xword Elf_Xword; \
typedef typename \
ELFDataTypeTypedefHelper<target_endianness, is64Bits>::Elf_Sxword Elf_Sxword;
// Section header.
namespace {
template<support::endianness target_endianness, bool is64Bits>
struct Elf_Shdr_Base;
template<support::endianness target_endianness>
struct Elf_Shdr_Base<target_endianness, false> {
LLVM_ELF_IMPORT_TYPES(target_endianness, false)
Elf_Word sh_name; // Section name (index into string table)
Elf_Word sh_type; // Section type (SHT_*)
Elf_Word sh_flags; // Section flags (SHF_*)
Elf_Addr sh_addr; // Address where section is to be loaded
Elf_Off sh_offset; // File offset of section data, in bytes
Elf_Word sh_size; // Size of section, in bytes
Elf_Word sh_link; // Section type-specific header table index link
Elf_Word sh_info; // Section type-specific extra information
Elf_Word sh_addralign;// Section address alignment
Elf_Word sh_entsize; // Size of records contained within the section
};
template<support::endianness target_endianness>
struct Elf_Shdr_Base<target_endianness, true> {
LLVM_ELF_IMPORT_TYPES(target_endianness, true)
Elf_Word sh_name; // Section name (index into string table)
Elf_Word sh_type; // Section type (SHT_*)
Elf_Xword sh_flags; // Section flags (SHF_*)
Elf_Addr sh_addr; // Address where section is to be loaded
Elf_Off sh_offset; // File offset of section data, in bytes
Elf_Xword sh_size; // Size of section, in bytes
Elf_Word sh_link; // Section type-specific header table index link
Elf_Word sh_info; // Section type-specific extra information
Elf_Xword sh_addralign;// Section address alignment
Elf_Xword sh_entsize; // Size of records contained within the section
};
template<support::endianness target_endianness, bool is64Bits>
struct Elf_Shdr_Impl : Elf_Shdr_Base<target_endianness, is64Bits> {
using Elf_Shdr_Base<target_endianness, is64Bits>::sh_entsize;
using Elf_Shdr_Base<target_endianness, is64Bits>::sh_size;
/// @brief Get the number of entities this section contains if it has any.
unsigned getEntityCount() const {
if (sh_entsize == 0)
return 0;
return sh_size / sh_entsize;
}
};
}
namespace {
template<support::endianness target_endianness, bool is64Bits>
struct Elf_Sym_Base;
template<support::endianness target_endianness>
struct Elf_Sym_Base<target_endianness, false> {
LLVM_ELF_IMPORT_TYPES(target_endianness, false)
Elf_Word st_name; // Symbol name (index into string table)
Elf_Addr st_value; // Value or address associated with the symbol
Elf_Word st_size; // Size of the symbol
unsigned char st_info; // Symbol's type and binding attributes
unsigned char st_other; // Must be zero; reserved
Elf_Half st_shndx; // Which section (header table index) it's defined in
};
template<support::endianness target_endianness>
struct Elf_Sym_Base<target_endianness, true> {
LLVM_ELF_IMPORT_TYPES(target_endianness, true)
Elf_Word st_name; // Symbol name (index into string table)
unsigned char st_info; // Symbol's type and binding attributes
unsigned char st_other; // Must be zero; reserved
Elf_Half st_shndx; // Which section (header table index) it's defined in
Elf_Addr st_value; // Value or address associated with the symbol
Elf_Xword st_size; // Size of the symbol
};
template<support::endianness target_endianness, bool is64Bits>
struct Elf_Sym_Impl : Elf_Sym_Base<target_endianness, is64Bits> {
using Elf_Sym_Base<target_endianness, is64Bits>::st_info;
// These accessors and mutators correspond to the ELF32_ST_BIND,
// ELF32_ST_TYPE, and ELF32_ST_INFO macros defined in the ELF specification:
unsigned char getBinding() const { return st_info >> 4; }
unsigned char getType() const { return st_info & 0x0f; }
void setBinding(unsigned char b) { setBindingAndType(b, getType()); }
void setType(unsigned char t) { setBindingAndType(getBinding(), t); }
void setBindingAndType(unsigned char b, unsigned char t) {
st_info = (b << 4) + (t & 0x0f);
}
};
}
namespace {
template<support::endianness target_endianness, bool is64Bits, bool isRela>
struct Elf_Rel_Base;
template<support::endianness target_endianness>
struct Elf_Rel_Base<target_endianness, false, false> {
LLVM_ELF_IMPORT_TYPES(target_endianness, false)
Elf_Addr r_offset; // Location (file byte offset, or program virtual addr)
Elf_Word r_info; // Symbol table index and type of relocation to apply
};
template<support::endianness target_endianness>
struct Elf_Rel_Base<target_endianness, true, false> {
LLVM_ELF_IMPORT_TYPES(target_endianness, true)
Elf_Addr r_offset; // Location (file byte offset, or program virtual addr)
Elf_Xword r_info; // Symbol table index and type of relocation to apply
};
template<support::endianness target_endianness>
struct Elf_Rel_Base<target_endianness, false, true> {
LLVM_ELF_IMPORT_TYPES(target_endianness, false)
Elf_Addr r_offset; // Location (file byte offset, or program virtual addr)
Elf_Word r_info; // Symbol table index and type of relocation to apply
Elf_Sword r_addend; // Compute value for relocatable field by adding this
};
template<support::endianness target_endianness>
struct Elf_Rel_Base<target_endianness, true, true> {
LLVM_ELF_IMPORT_TYPES(target_endianness, true)
Elf_Addr r_offset; // Location (file byte offset, or program virtual addr)
Elf_Xword r_info; // Symbol table index and type of relocation to apply
Elf_Sxword r_addend; // Compute value for relocatable field by adding this.
};
template<support::endianness target_endianness, bool is64Bits, bool isRela>
struct Elf_Rel_Impl;
template<support::endianness target_endianness, bool isRela>
struct Elf_Rel_Impl<target_endianness, true, isRela>
: Elf_Rel_Base<target_endianness, true, isRela> {
using Elf_Rel_Base<target_endianness, true, isRela>::r_info;
LLVM_ELF_IMPORT_TYPES(target_endianness, true)
// These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
// and ELF64_R_INFO macros defined in the ELF specification:
uint64_t getSymbol() const { return (r_info >> 32); }
unsigned char getType() const {
return (unsigned char) (r_info & 0xffffffffL);
}
void setSymbol(uint64_t s) { setSymbolAndType(s, getType()); }
void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
void setSymbolAndType(uint64_t s, unsigned char t) {
r_info = (s << 32) + (t&0xffffffffL);
}
};
template<support::endianness target_endianness, bool isRela>
struct Elf_Rel_Impl<target_endianness, false, isRela>
: Elf_Rel_Base<target_endianness, false, isRela> {
using Elf_Rel_Base<target_endianness, false, isRela>::r_info;
LLVM_ELF_IMPORT_TYPES(target_endianness, false)
// These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
// and ELF32_R_INFO macros defined in the ELF specification:
uint32_t getSymbol() const { return (r_info >> 8); }
unsigned char getType() const { return (unsigned char) (r_info & 0x0ff); }
void setSymbol(uint32_t s) { setSymbolAndType(s, getType()); }
void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
void setSymbolAndType(uint32_t s, unsigned char t) {
r_info = (s << 8) + t;
}
};
}
namespace {
template<support::endianness target_endianness, bool is64Bits>
class ELFObjectFile : public ObjectFile {
LLVM_ELF_IMPORT_TYPES(target_endianness, is64Bits)
typedef Elf_Shdr_Impl<target_endianness, is64Bits> Elf_Shdr;
typedef Elf_Sym_Impl<target_endianness, is64Bits> Elf_Sym;
typedef Elf_Rel_Impl<target_endianness, is64Bits, false> Elf_Rel;
typedef Elf_Rel_Impl<target_endianness, is64Bits, true> Elf_Rela;
protected:
struct Elf_Ehdr {
unsigned char e_ident[ELF::EI_NIDENT]; // ELF Identification bytes
Elf_Half e_type; // Type of file (see ET_*)
Elf_Half e_machine; // Required architecture for this file (see EM_*)
Elf_Word e_version; // Must be equal to 1
Elf_Addr e_entry; // Address to jump to in order to start program
Elf_Off e_phoff; // Program header table's file offset, in bytes
Elf_Off e_shoff; // Section header table's file offset, in bytes
Elf_Word e_flags; // Processor-specific flags
Elf_Half e_ehsize; // Size of ELF header, in bytes
Elf_Half e_phentsize;// Size of an entry in the program header table
Elf_Half e_phnum; // Number of entries in the program header table
Elf_Half e_shentsize;// Size of an entry in the section header table
Elf_Half e_shnum; // Number of entries in the section header table
Elf_Half e_shstrndx; // Section header table index of section name
// string table
bool checkMagic() const {
return (memcmp(e_ident, ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0;
}
unsigned char getFileClass() const { return e_ident[ELF::EI_CLASS]; }
unsigned char getDataEncoding() const { return e_ident[ELF::EI_DATA]; }
};
// This flag is used for classof, to distinguish ELFObjectFile from
// its subclass. If more subclasses will be created, this flag will
// have to become an enum.
bool isDyldELFObject;
private:
typedef SmallVector<const Elf_Shdr*, 1> Sections_t;
typedef DenseMap<unsigned, unsigned> IndexMap_t;
typedef DenseMap<const Elf_Shdr*, SmallVector<uint32_t, 1> > RelocMap_t;
const Elf_Ehdr *Header;
const Elf_Shdr *SectionHeaderTable;
const Elf_Shdr *dot_shstrtab_sec; // Section header string table.
const Elf_Shdr *dot_strtab_sec; // Symbol header string table.
Sections_t SymbolTableSections;
IndexMap_t SymbolTableSectionsIndexMap;
DenseMap<const Elf_Sym*, ELF::Elf64_Word> ExtendedSymbolTable;
/// @brief Map sections to an array of relocation sections that reference
/// them sorted by section index.
RelocMap_t SectionRelocMap;
/// @brief Get the relocation section that contains \a Rel.
const Elf_Shdr *getRelSection(DataRefImpl Rel) const {
return getSection(Rel.w.b);
}
bool isRelocationHasAddend(DataRefImpl Rel) const;
template<typename T>
const T *getEntry(uint16_t Section, uint32_t Entry) const;
template<typename T>
const T *getEntry(const Elf_Shdr *Section, uint32_t Entry) const;
const Elf_Shdr *getSection(DataRefImpl index) const;
const Elf_Shdr *getSection(uint32_t index) const;
const Elf_Rel *getRel(DataRefImpl Rel) const;
const Elf_Rela *getRela(DataRefImpl Rela) const;
const char *getString(uint32_t section, uint32_t offset) const;
const char *getString(const Elf_Shdr *section, uint32_t offset) const;
error_code getSymbolName(const Elf_Sym *Symb, StringRef &Res) const;
protected:
const Elf_Sym *getSymbol(DataRefImpl Symb) const; // FIXME: Should be private?
void validateSymbol(DataRefImpl Symb) const;
protected:
virtual error_code getSymbolNext(DataRefImpl Symb, SymbolRef &Res) const;
virtual error_code getSymbolName(DataRefImpl Symb, StringRef &Res) const;
virtual error_code getSymbolFileOffset(DataRefImpl Symb, uint64_t &Res) const;
virtual error_code getSymbolAddress(DataRefImpl Symb, uint64_t &Res) const;
virtual error_code getSymbolSize(DataRefImpl Symb, uint64_t &Res) const;
virtual error_code getSymbolNMTypeChar(DataRefImpl Symb, char &Res) const;
virtual error_code isSymbolInternal(DataRefImpl Symb, bool &Res) const;
virtual error_code isSymbolGlobal(DataRefImpl Symb, bool &Res) const;
virtual error_code isSymbolWeak(DataRefImpl Symb, bool &Res) const;
virtual error_code getSymbolType(DataRefImpl Symb, SymbolRef::Type &Res) const;
virtual error_code isSymbolAbsolute(DataRefImpl Symb, bool &Res) const;
virtual error_code getSymbolSection(DataRefImpl Symb,
section_iterator &Res) const;
virtual error_code getSectionNext(DataRefImpl Sec, SectionRef &Res) const;
virtual error_code getSectionName(DataRefImpl Sec, StringRef &Res) const;
virtual error_code getSectionAddress(DataRefImpl Sec, uint64_t &Res) const;
virtual error_code getSectionSize(DataRefImpl Sec, uint64_t &Res) const;
virtual error_code getSectionContents(DataRefImpl Sec, StringRef &Res) const;
virtual error_code getSectionAlignment(DataRefImpl Sec, uint64_t &Res) const;
virtual error_code isSectionText(DataRefImpl Sec, bool &Res) const;
virtual error_code isSectionData(DataRefImpl Sec, bool &Res) const;
virtual error_code isSectionBSS(DataRefImpl Sec, bool &Res) const;
virtual error_code sectionContainsSymbol(DataRefImpl Sec, DataRefImpl Symb,
bool &Result) const;
virtual relocation_iterator getSectionRelBegin(DataRefImpl Sec) const;
virtual relocation_iterator getSectionRelEnd(DataRefImpl Sec) const;
virtual error_code getRelocationNext(DataRefImpl Rel,
RelocationRef &Res) const;
virtual error_code getRelocationAddress(DataRefImpl Rel,
uint64_t &Res) const;
virtual error_code getRelocationOffset(DataRefImpl Rel,
uint64_t &Res) const;
virtual error_code getRelocationSymbol(DataRefImpl Rel,
SymbolRef &Res) const;
virtual error_code getRelocationType(DataRefImpl Rel,
uint64_t &Res) const;
virtual error_code getRelocationTypeName(DataRefImpl Rel,
SmallVectorImpl<char> &Result) const;
virtual error_code getRelocationAdditionalInfo(DataRefImpl Rel,
int64_t &Res) const;
virtual error_code getRelocationValueString(DataRefImpl Rel,
SmallVectorImpl<char> &Result) const;
public:
ELFObjectFile(MemoryBuffer *Object, error_code &ec);
virtual symbol_iterator begin_symbols() const;
virtual symbol_iterator end_symbols() const;
virtual section_iterator begin_sections() const;
virtual section_iterator end_sections() const;
virtual uint8_t getBytesInAddress() const;
virtual StringRef getFileFormatName() const;
virtual unsigned getArch() const;
uint64_t getNumSections() const;
uint64_t getStringTableIndex() const;
ELF::Elf64_Word getSymbolTableIndex(const Elf_Sym *symb) const;
const Elf_Shdr *getSection(const Elf_Sym *symb) const;
// Methods for type inquiry through isa, cast, and dyn_cast
bool isDyldType() const { return isDyldELFObject; }
static inline bool classof(const Binary *v) {
return v->getType() == Binary::isELF;
}
static inline bool classof(const ELFObjectFile *v) { return true; }
};
} // end namespace
template<support::endianness target_endianness, bool is64Bits>
void ELFObjectFile<target_endianness, is64Bits>
::validateSymbol(DataRefImpl Symb) const {
const Elf_Sym *symb = getSymbol(Symb);
const Elf_Shdr *SymbolTableSection = SymbolTableSections[Symb.d.b];
// FIXME: We really need to do proper error handling in the case of an invalid
// input file. Because we don't use exceptions, I think we'll just pass
// an error object around.
if (!( symb
&& SymbolTableSection
&& symb >= (const Elf_Sym*)(base()
+ SymbolTableSection->sh_offset)
&& symb < (const Elf_Sym*)(base()
+ SymbolTableSection->sh_offset
+ SymbolTableSection->sh_size)))
// FIXME: Proper error handling.
report_fatal_error("Symb must point to a valid symbol!");
}
template<support::endianness target_endianness, bool is64Bits>
error_code ELFObjectFile<target_endianness, is64Bits>
::getSymbolNext(DataRefImpl Symb,
SymbolRef &Result) const {
validateSymbol(Symb);
const Elf_Shdr *SymbolTableSection = SymbolTableSections[Symb.d.b];
++Symb.d.a;
// Check to see if we are at the end of this symbol table.
if (Symb.d.a >= SymbolTableSection->getEntityCount()) {
// We are at the end. If there are other symbol tables, jump to them.
++Symb.d.b;
Symb.d.a = 1; // The 0th symbol in ELF is fake.
// Otherwise return the terminator.
if (Symb.d.b >= SymbolTableSections.size()) {
Symb.d.a = std::numeric_limits<uint32_t>::max();
Symb.d.b = std::numeric_limits<uint32_t>::max();
}
}
Result = SymbolRef(Symb, this);
return object_error::success;
}
template<support::endianness target_endianness, bool is64Bits>
error_code ELFObjectFile<target_endianness, is64Bits>
::getSymbolName(DataRefImpl Symb,
StringRef &Result) const {
validateSymbol(Symb);
const Elf_Sym *symb = getSymbol(Symb);
return getSymbolName(symb, Result);
}
template<support::endianness target_endianness, bool is64Bits>
ELF::Elf64_Word ELFObjectFile<target_endianness, is64Bits>
::getSymbolTableIndex(const Elf_Sym *symb) const {
if (symb->st_shndx == ELF::SHN_XINDEX)
return ExtendedSymbolTable.lookup(symb);
return symb->st_shndx;
}
template<support::endianness target_endianness, bool is64Bits>
const typename ELFObjectFile<target_endianness, is64Bits>::Elf_Shdr *
ELFObjectFile<target_endianness, is64Bits>
::getSection(const Elf_Sym *symb) const {
if (symb->st_shndx == ELF::SHN_XINDEX)
return getSection(ExtendedSymbolTable.lookup(symb));
if (symb->st_shndx >= ELF::SHN_LORESERVE)
return 0;
return getSection(symb->st_shndx);
}
template<support::endianness target_endianness, bool is64Bits>
error_code ELFObjectFile<target_endianness, is64Bits>
::getSymbolFileOffset(DataRefImpl Symb,
uint64_t &Result) const {
validateSymbol(Symb);
const Elf_Sym *symb = getSymbol(Symb);
const Elf_Shdr *Section;
switch (getSymbolTableIndex(symb)) {
case ELF::SHN_COMMON:
// Unintialized symbols have no offset in the object file
case ELF::SHN_UNDEF:
Result = UnknownAddressOrSize;
return object_error::success;
case ELF::SHN_ABS:
Result = symb->st_value;
return object_error::success;
default: Section = getSection(symb);
}
switch (symb->getType()) {
case ELF::STT_SECTION:
Result = Section ? Section->sh_addr : UnknownAddressOrSize;
return object_error::success;
case ELF::STT_FUNC:
case ELF::STT_OBJECT:
case ELF::STT_NOTYPE:
Result = symb->st_value +
(Section ? Section->sh_offset : 0);
return object_error::success;
default:
Result = UnknownAddressOrSize;
return object_error::success;
}
}
template<support::endianness target_endianness, bool is64Bits>
error_code ELFObjectFile<target_endianness, is64Bits>
::getSymbolAddress(DataRefImpl Symb,
uint64_t &Result) const {
validateSymbol(Symb);
const Elf_Sym *symb = getSymbol(Symb);
const Elf_Shdr *Section;
switch (getSymbolTableIndex(symb)) {
case ELF::SHN_COMMON:
case ELF::SHN_UNDEF:
Result = UnknownAddressOrSize;
return object_error::success;
case ELF::SHN_ABS:
Result = symb->st_value;
return object_error::success;
default: Section = getSection(symb);
}
switch (symb->getType()) {
case ELF::STT_SECTION:
Result = Section ? Section->sh_addr : UnknownAddressOrSize;
return object_error::success;
case ELF::STT_FUNC:
case ELF::STT_OBJECT:
case ELF::STT_NOTYPE:
Result = symb->st_value + (Section ? Section->sh_addr : 0);
return object_error::success;
default:
Result = UnknownAddressOrSize;
return object_error::success;
}
}
template<support::endianness target_endianness, bool is64Bits>
error_code ELFObjectFile<target_endianness, is64Bits>
::getSymbolSize(DataRefImpl Symb,
uint64_t &Result) const {
validateSymbol(Symb);
const Elf_Sym *symb = getSymbol(Symb);
if (symb->st_size == 0)
Result = UnknownAddressOrSize;
Result = symb->st_size;
return object_error::success;
}
template<support::endianness target_endianness, bool is64Bits>
error_code ELFObjectFile<target_endianness, is64Bits>
::getSymbolNMTypeChar(DataRefImpl Symb,
char &Result) const {
validateSymbol(Symb);
const Elf_Sym *symb = getSymbol(Symb);
const Elf_Shdr *Section = getSection(symb);
char ret = '?';
if (Section) {
switch (Section->sh_type) {
case ELF::SHT_PROGBITS:
case ELF::SHT_DYNAMIC:
switch (Section->sh_flags) {
case (ELF::SHF_ALLOC | ELF::SHF_EXECINSTR):
ret = 't'; break;
case (ELF::SHF_ALLOC | ELF::SHF_WRITE):
ret = 'd'; break;
case ELF::SHF_ALLOC:
case (ELF::SHF_ALLOC | ELF::SHF_MERGE):
case (ELF::SHF_ALLOC | ELF::SHF_MERGE | ELF::SHF_STRINGS):
ret = 'r'; break;
}
break;
case ELF::SHT_NOBITS: ret = 'b';
}
}
switch (getSymbolTableIndex(symb)) {
case ELF::SHN_UNDEF:
if (ret == '?')
ret = 'U';
break;
case ELF::SHN_ABS: ret = 'a'; break;
case ELF::SHN_COMMON: ret = 'c'; break;
}
switch (symb->getBinding()) {
case ELF::STB_GLOBAL: ret = ::toupper(ret); break;
case ELF::STB_WEAK:
if (getSymbolTableIndex(symb) == ELF::SHN_UNDEF)
ret = 'w';
else
if (symb->getType() == ELF::STT_OBJECT)
ret = 'V';
else
ret = 'W';
}
if (ret == '?' && symb->getType() == ELF::STT_SECTION) {
StringRef name;
if (error_code ec = getSymbolName(Symb, name))
return ec;
Result = StringSwitch<char>(name)
.StartsWith(".debug", 'N')
.StartsWith(".note", 'n')
.Default('?');
return object_error::success;
}
Result = ret;
return object_error::success;
}
template<support::endianness target_endianness, bool is64Bits>
error_code ELFObjectFile<target_endianness, is64Bits>
::getSymbolType(DataRefImpl Symb,
SymbolRef::Type &Result) const {
validateSymbol(Symb);
const Elf_Sym *symb = getSymbol(Symb);
if (getSymbolTableIndex(symb) == ELF::SHN_UNDEF) {
Result = SymbolRef::ST_External;
return object_error::success;
}
switch (symb->getType()) {
case ELF::STT_SECTION:
Result = SymbolRef::ST_Debug;
break;
case ELF::STT_FILE:
Result = SymbolRef::ST_File;
break;
case ELF::STT_FUNC:
Result = SymbolRef::ST_Function;
break;
case ELF::STT_OBJECT:
Result = SymbolRef::ST_Data;
break;
default:
Result = SymbolRef::ST_Other;
break;
}
return object_error::success;
}
template<support::endianness target_endianness, bool is64Bits>
error_code ELFObjectFile<target_endianness, is64Bits>
::isSymbolGlobal(DataRefImpl Symb,
bool &Result) const {
validateSymbol(Symb);
const Elf_Sym *symb = getSymbol(Symb);
Result = symb->getBinding() == ELF::STB_GLOBAL;
return object_error::success;
}
template<support::endianness target_endianness, bool is64Bits>
error_code ELFObjectFile<target_endianness, is64Bits>
::isSymbolWeak(DataRefImpl Symb,
bool &Result) const {
validateSymbol(Symb);
const Elf_Sym *symb = getSymbol(Symb);
Result = symb->getBinding() == ELF::STB_WEAK;
return object_error::success;
}
template<support::endianness target_endianness, bool is64Bits>
error_code ELFObjectFile<target_endianness, is64Bits>
::isSymbolAbsolute(DataRefImpl Symb, bool &Res) const {
validateSymbol(Symb);
const Elf_Sym *symb = getSymbol(Symb);
Res = symb->st_shndx == ELF::SHN_ABS;
return object_error::success;
}
template<support::endianness target_endianness, bool is64Bits>
error_code ELFObjectFile<target_endianness, is64Bits>
::getSymbolSection(DataRefImpl Symb,
section_iterator &Res) const {
validateSymbol(Symb);
const Elf_Sym *symb = getSymbol(Symb);
const Elf_Shdr *sec = getSection(symb);
if (!sec)
Res = end_sections();
else {
DataRefImpl Sec;
Sec.p = reinterpret_cast<intptr_t>(sec);
Res = section_iterator(SectionRef(Sec, this));
}
return object_error::success;
}
template<support::endianness target_endianness, bool is64Bits>
error_code ELFObjectFile<target_endianness, is64Bits>
::isSymbolInternal(DataRefImpl Symb,
bool &Result) const {
validateSymbol(Symb);
const Elf_Sym *symb = getSymbol(Symb);
if ( symb->getType() == ELF::STT_FILE
|| symb->getType() == ELF::STT_SECTION)
Result = true;
Result = false;
return object_error::success;
}
template<support::endianness target_endianness, bool is64Bits>
error_code ELFObjectFile<target_endianness, is64Bits>
::getSectionNext(DataRefImpl Sec, SectionRef &Result) const {
const uint8_t *sec = reinterpret_cast<const uint8_t *>(Sec.p);
sec += Header->e_shentsize;
Sec.p = reinterpret_cast<intptr_t>(sec);
Result = SectionRef(Sec, this);
return object_error::success;
}
template<support::endianness target_endianness, bool is64Bits>
error_code ELFObjectFile<target_endianness, is64Bits>
::getSectionName(DataRefImpl Sec,
StringRef &Result) const {
const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
Result = StringRef(getString(dot_shstrtab_sec, sec->sh_name));
return object_error::success;
}
template<support::endianness target_endianness, bool is64Bits>
error_code ELFObjectFile<target_endianness, is64Bits>
::getSectionAddress(DataRefImpl Sec,
uint64_t &Result) const {
const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
Result = sec->sh_addr;
return object_error::success;
}
template<support::endianness target_endianness, bool is64Bits>
error_code ELFObjectFile<target_endianness, is64Bits>
::getSectionSize(DataRefImpl Sec,
uint64_t &Result) const {
const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
Result = sec->sh_size;
return object_error::success;
}
template<support::endianness target_endianness, bool is64Bits>
error_code ELFObjectFile<target_endianness, is64Bits>
::getSectionContents(DataRefImpl Sec,
StringRef &Result) const {
const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
const char *start = (const char*)base() + sec->sh_offset;
Result = StringRef(start, sec->sh_size);
return object_error::success;
}
template<support::endianness target_endianness, bool is64Bits>
error_code ELFObjectFile<target_endianness, is64Bits>
::getSectionAlignment(DataRefImpl Sec,
uint64_t &Result) const {
const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
Result = sec->sh_addralign;
return object_error::success;
}
template<support::endianness target_endianness, bool is64Bits>
error_code ELFObjectFile<target_endianness, is64Bits>
::isSectionText(DataRefImpl Sec,
bool &Result) const {
const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
if (sec->sh_flags & ELF::SHF_EXECINSTR)
Result = true;
else
Result = false;
return object_error::success;
}
template<support::endianness target_endianness, bool is64Bits>
error_code ELFObjectFile<target_endianness, is64Bits>
::isSectionData(DataRefImpl Sec,
bool &Result) const {
const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
if (sec->sh_flags & (ELF::SHF_ALLOC | ELF::SHF_WRITE)
&& sec->sh_type == ELF::SHT_PROGBITS)
Result = true;
else
Result = false;
return object_error::success;
}
template<support::endianness target_endianness, bool is64Bits>
error_code ELFObjectFile<target_endianness, is64Bits>
::isSectionBSS(DataRefImpl Sec,
bool &Result) const {
const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
if (sec->sh_flags & (ELF::SHF_ALLOC | ELF::SHF_WRITE)
&& sec->sh_type == ELF::SHT_NOBITS)
Result = true;
else
Result = false;
return object_error::success;
}
template<support::endianness target_endianness, bool is64Bits>
error_code ELFObjectFile<target_endianness, is64Bits>
::sectionContainsSymbol(DataRefImpl Sec,
DataRefImpl Symb,
bool &Result) const {
// FIXME: Unimplemented.
Result = false;
return object_error::success;
}
template<support::endianness target_endianness, bool is64Bits>
relocation_iterator ELFObjectFile<target_endianness, is64Bits>
::getSectionRelBegin(DataRefImpl Sec) const {
DataRefImpl RelData;
memset(&RelData, 0, sizeof(RelData));
const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
typename RelocMap_t::const_iterator ittr = SectionRelocMap.find(sec);
if (sec != 0 && ittr != SectionRelocMap.end()) {
RelData.w.a = getSection(ittr->second[0])->sh_info;
RelData.w.b = ittr->second[0];
RelData.w.c = 0;
}
return relocation_iterator(RelocationRef(RelData, this));
}
template<support::endianness target_endianness, bool is64Bits>
relocation_iterator ELFObjectFile<target_endianness, is64Bits>
::getSectionRelEnd(DataRefImpl Sec) const {
DataRefImpl RelData;
memset(&RelData, 0, sizeof(RelData));
const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
typename RelocMap_t::const_iterator ittr = SectionRelocMap.find(sec);
if (sec != 0 && ittr != SectionRelocMap.end()) {
// Get the index of the last relocation section for this section.
std::size_t relocsecindex = ittr->second[ittr->second.size() - 1];
const Elf_Shdr *relocsec = getSection(relocsecindex);
RelData.w.a = relocsec->sh_info;
RelData.w.b = relocsecindex;
RelData.w.c = relocsec->sh_size / relocsec->sh_entsize;
}
return relocation_iterator(RelocationRef(RelData, this));
}
// Relocations
template<support::endianness target_endianness, bool is64Bits>
error_code ELFObjectFile<target_endianness, is64Bits>
::getRelocationNext(DataRefImpl Rel,
RelocationRef &Result) const {
++Rel.w.c;
const Elf_Shdr *relocsec = getSection(Rel.w.b);
if (Rel.w.c >= (relocsec->sh_size / relocsec->sh_entsize)) {
// We have reached the end of the relocations for this section. See if there
// is another relocation section.
typename RelocMap_t::mapped_type relocseclist =
SectionRelocMap.lookup(getSection(Rel.w.a));
// Do a binary search for the current reloc section index (which must be
// present). Then get the next one.
typename RelocMap_t::mapped_type::const_iterator loc =
std::lower_bound(relocseclist.begin(), relocseclist.end(), Rel.w.b);
++loc;
// If there is no next one, don't do anything. The ++Rel.w.c above sets Rel
// to the end iterator.
if (loc != relocseclist.end()) {
Rel.w.b = *loc;
Rel.w.a = 0;
}
}
Result = RelocationRef(Rel, this);
return object_error::success;
}
template<support::endianness target_endianness, bool is64Bits>
error_code ELFObjectFile<target_endianness, is64Bits>
::getRelocationSymbol(DataRefImpl Rel,
SymbolRef &Result) const {
uint32_t symbolIdx;
const Elf_Shdr *sec = getSection(Rel.w.b);
switch (sec->sh_type) {
default :
report_fatal_error("Invalid section type in Rel!");
case ELF::SHT_REL : {
symbolIdx = getRel(Rel)->getSymbol();
break;
}
case ELF::SHT_RELA : {
symbolIdx = getRela(Rel)->getSymbol();
break;
}
}
DataRefImpl SymbolData;
IndexMap_t::const_iterator it = SymbolTableSectionsIndexMap.find(sec->sh_link);
if (it == SymbolTableSectionsIndexMap.end())
report_fatal_error("Relocation symbol table not found!");
SymbolData.d.a = symbolIdx;
SymbolData.d.b = it->second;
Result = SymbolRef(SymbolData, this);
return object_error::success;
}
template<support::endianness target_endianness, bool is64Bits>
error_code ELFObjectFile<target_endianness, is64Bits>
::getRelocationAddress(DataRefImpl Rel,
uint64_t &Result) const {
uint64_t offset;
const Elf_Shdr *sec = getSection(Rel.w.b);
switch (sec->sh_type) {
default :
report_fatal_error("Invalid section type in Rel!");
case ELF::SHT_REL : {
offset = getRel(Rel)->r_offset;
break;
}
case ELF::SHT_RELA : {
offset = getRela(Rel)->r_offset;
break;
}
}
Result = offset;
return object_error::success;
}
template<support::endianness target_endianness, bool is64Bits>
error_code ELFObjectFile<target_endianness, is64Bits>
::getRelocationOffset(DataRefImpl Rel,
uint64_t &Result) const {
uint64_t offset;
const Elf_Shdr *sec = getSection(Rel.w.b);
switch (sec->sh_type) {
default :
report_fatal_error("Invalid section type in Rel!");
case ELF::SHT_REL : {
offset = getRel(Rel)->r_offset;
break;
}
case ELF::SHT_RELA : {
offset = getRela(Rel)->r_offset;
break;
}
}
Result = offset - sec->sh_addr;
return object_error::success;
}
template<support::endianness target_endianness, bool is64Bits>
error_code ELFObjectFile<target_endianness, is64Bits>
::getRelocationType(DataRefImpl Rel,
uint64_t &Result) const {
const Elf_Shdr *sec = getSection(Rel.w.b);
switch (sec->sh_type) {
default :
report_fatal_error("Invalid section type in Rel!");
case ELF::SHT_REL : {
Result = getRel(Rel)->getType();
break;
}
case ELF::SHT_RELA : {
Result = getRela(Rel)->getType();
break;
}
}
return object_error::success;
}
#define LLVM_ELF_SWITCH_RELOC_TYPE_NAME(enum) \
case ELF::enum: res = #enum; break;
template<support::endianness target_endianness, bool is64Bits>
error_code ELFObjectFile<target_endianness, is64Bits>
::getRelocationTypeName(DataRefImpl Rel,
SmallVectorImpl<char> &Result) const {
const Elf_Shdr *sec = getSection(Rel.w.b);
uint8_t type;
StringRef res;
switch (sec->sh_type) {
default :
return object_error::parse_failed;
case ELF::SHT_REL : {
type = getRel(Rel)->getType();
break;
}
case ELF::SHT_RELA : {
type = getRela(Rel)->getType();
break;
}
}
switch (Header->e_machine) {
case ELF::EM_X86_64:
switch (type) {
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_NONE);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_64);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PC32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOT32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PLT32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_COPY);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GLOB_DAT);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_JUMP_SLOT);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_RELATIVE);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTPCREL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_32S);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PC16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_8);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PC8);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_DTPMOD64);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_DTPOFF64);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TPOFF64);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TLSGD);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TLSLD);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_DTPOFF32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTTPOFF);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TPOFF32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PC64);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTOFF64);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTPC32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_SIZE32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_SIZE64);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTPC32_TLSDESC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TLSDESC_CALL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TLSDESC);
default:
res = "Unknown";
}
break;
case ELF::EM_386:
switch (type) {
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_NONE);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_PC32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_GOT32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_PLT32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_COPY);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_GLOB_DAT);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_JUMP_SLOT);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_RELATIVE);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_GOTOFF);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_GOTPC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_32PLT);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_TPOFF);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_IE);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GOTIE);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LE);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_PC16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_8);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_PC8);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD_32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD_PUSH);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD_CALL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD_POP);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM_32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM_PUSH);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM_CALL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM_POP);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDO_32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_IE_32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LE_32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_DTPMOD32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_DTPOFF32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_TPOFF32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GOTDESC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_DESC_CALL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_DESC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_IRELATIVE);
default:
res = "Unknown";
}
break;
default:
res = "Unknown";
}
Result.append(res.begin(), res.end());
return object_error::success;
}
#undef LLVM_ELF_SWITCH_RELOC_TYPE_NAME
template<support::endianness target_endianness, bool is64Bits>
error_code ELFObjectFile<target_endianness, is64Bits>
::getRelocationAdditionalInfo(DataRefImpl Rel,
int64_t &Result) const {
const Elf_Shdr *sec = getSection(Rel.w.b);
switch (sec->sh_type) {
default :
report_fatal_error("Invalid section type in Rel!");
case ELF::SHT_REL : {
Result = 0;
return object_error::success;
}
case ELF::SHT_RELA : {
Result = getRela(Rel)->r_addend;
return object_error::success;
}
}
}
template<support::endianness target_endianness, bool is64Bits>
error_code ELFObjectFile<target_endianness, is64Bits>
::getRelocationValueString(DataRefImpl Rel,
SmallVectorImpl<char> &Result) const {
const Elf_Shdr *sec = getSection(Rel.w.b);
uint8_t type;
StringRef res;
int64_t addend = 0;
uint16_t symbol_index = 0;
switch (sec->sh_type) {
default :
return object_error::parse_failed;
case ELF::SHT_REL : {
type = getRel(Rel)->getType();
symbol_index = getRel(Rel)->getSymbol();
// TODO: Read implicit addend from section data.
break;
}
case ELF::SHT_RELA : {
type = getRela(Rel)->getType();
symbol_index = getRela(Rel)->getSymbol();
addend = getRela(Rel)->r_addend;
break;
}
}
const Elf_Sym *symb = getEntry<Elf_Sym>(sec->sh_link, symbol_index);
StringRef symname;
if (error_code ec = getSymbolName(symb, symname))
return ec;
switch (Header->e_machine) {
case ELF::EM_X86_64:
switch (type) {
case ELF::R_X86_64_32S:
res = symname;
break;
case ELF::R_X86_64_PC32: {
std::string fmtbuf;
raw_string_ostream fmt(fmtbuf);
fmt << symname << (addend < 0 ? "" : "+") << addend << "-P";
fmt.flush();
Result.append(fmtbuf.begin(), fmtbuf.end());
}
break;
default:
res = "Unknown";
}
break;
default:
res = "Unknown";
}
if (Result.empty())
Result.append(res.begin(), res.end());
return object_error::success;
}
template<support::endianness target_endianness, bool is64Bits>
ELFObjectFile<target_endianness, is64Bits>::ELFObjectFile(MemoryBuffer *Object
, error_code &ec)
: ObjectFile(Binary::isELF, Object, ec)
, isDyldELFObject(false)
, SectionHeaderTable(0)
, dot_shstrtab_sec(0)
, dot_strtab_sec(0) {
Header = reinterpret_cast<const Elf_Ehdr *>(base());
if (Header->e_shoff == 0)
return;
SectionHeaderTable =
reinterpret_cast<const Elf_Shdr *>(base() + Header->e_shoff);
uint64_t SectionTableSize = getNumSections() * Header->e_shentsize;
if ((const uint8_t *)SectionHeaderTable + SectionTableSize
> base() + Data->getBufferSize()) {
// FIXME: Proper error handling.
report_fatal_error("Section table goes past end of file!");
}
// To find the symbol tables we walk the section table to find SHT_SYMTAB.
const Elf_Shdr* SymbolTableSectionHeaderIndex = 0;
const Elf_Shdr* sh = reinterpret_cast<const Elf_Shdr*>(SectionHeaderTable);
for (uint64_t i = 0, e = getNumSections(); i != e; ++i) {
if (sh->sh_type == ELF::SHT_SYMTAB_SHNDX) {
if (SymbolTableSectionHeaderIndex)
// FIXME: Proper error handling.
report_fatal_error("More than one .symtab_shndx!");
SymbolTableSectionHeaderIndex = sh;
}
if (sh->sh_type == ELF::SHT_SYMTAB) {
SymbolTableSectionsIndexMap[i] = SymbolTableSections.size();
SymbolTableSections.push_back(sh);
}
if (sh->sh_type == ELF::SHT_REL || sh->sh_type == ELF::SHT_RELA) {
SectionRelocMap[getSection(sh->sh_info)].push_back(i);
}
++sh;
}
// Sort section relocation lists by index.
for (typename RelocMap_t::iterator i = SectionRelocMap.begin(),
e = SectionRelocMap.end(); i != e; ++i) {
std::sort(i->second.begin(), i->second.end());
}
// Get string table sections.
dot_shstrtab_sec = getSection(getStringTableIndex());
if (dot_shstrtab_sec) {
// Verify that the last byte in the string table in a null.
if (((const char*)base() + dot_shstrtab_sec->sh_offset)
[dot_shstrtab_sec->sh_size - 1] != 0)
// FIXME: Proper error handling.
report_fatal_error("String table must end with a null terminator!");
}
// Merge this into the above loop.
for (const char *i = reinterpret_cast<const char *>(SectionHeaderTable),
*e = i + getNumSections() * Header->e_shentsize;
i != e; i += Header->e_shentsize) {
const Elf_Shdr *sh = reinterpret_cast<const Elf_Shdr*>(i);
if (sh->sh_type == ELF::SHT_STRTAB) {
StringRef SectionName(getString(dot_shstrtab_sec, sh->sh_name));
if (SectionName == ".strtab") {
if (dot_strtab_sec != 0)
// FIXME: Proper error handling.
report_fatal_error("Already found section named .strtab!");
dot_strtab_sec = sh;
const char *dot_strtab = (const char*)base() + sh->sh_offset;
if (dot_strtab[sh->sh_size - 1] != 0)
// FIXME: Proper error handling.
report_fatal_error("String table must end with a null terminator!");
}
}
}
// Build symbol name side-mapping if there is one.
if (SymbolTableSectionHeaderIndex) {
const Elf_Word *ShndxTable = reinterpret_cast<const Elf_Word*>(base() +
SymbolTableSectionHeaderIndex->sh_offset);
error_code ec;
for (symbol_iterator si = begin_symbols(),
se = end_symbols(); si != se; si.increment(ec)) {
if (ec)
report_fatal_error("Fewer extended symbol table entries than symbols!");
if (*ShndxTable != ELF::SHN_UNDEF)
ExtendedSymbolTable[getSymbol(si->getRawDataRefImpl())] = *ShndxTable;
++ShndxTable;
}
}
}
template<support::endianness target_endianness, bool is64Bits>
symbol_iterator ELFObjectFile<target_endianness, is64Bits>
::begin_symbols() const {
DataRefImpl SymbolData;
memset(&SymbolData, 0, sizeof(SymbolData));
if (SymbolTableSections.size() == 0) {
SymbolData.d.a = std::numeric_limits<uint32_t>::max();
SymbolData.d.b = std::numeric_limits<uint32_t>::max();
} else {
SymbolData.d.a = 1; // The 0th symbol in ELF is fake.
SymbolData.d.b = 0;
}
return symbol_iterator(SymbolRef(SymbolData, this));
}
template<support::endianness target_endianness, bool is64Bits>
symbol_iterator ELFObjectFile<target_endianness, is64Bits>
::end_symbols() const {
DataRefImpl SymbolData;
memset(&SymbolData, 0, sizeof(SymbolData));
SymbolData.d.a = std::numeric_limits<uint32_t>::max();
SymbolData.d.b = std::numeric_limits<uint32_t>::max();
return symbol_iterator(SymbolRef(SymbolData, this));
}
template<support::endianness target_endianness, bool is64Bits>
section_iterator ELFObjectFile<target_endianness, is64Bits>
::begin_sections() const {
DataRefImpl ret;
memset(&ret, 0, sizeof(DataRefImpl));
ret.p = reinterpret_cast<intptr_t>(base() + Header->e_shoff);
return section_iterator(SectionRef(ret, this));
}
template<support::endianness target_endianness, bool is64Bits>
section_iterator ELFObjectFile<target_endianness, is64Bits>
::end_sections() const {
DataRefImpl ret;
memset(&ret, 0, sizeof(DataRefImpl));
ret.p = reinterpret_cast<intptr_t>(base()
+ Header->e_shoff
+ (Header->e_shentsize*getNumSections()));
return section_iterator(SectionRef(ret, this));
}
template<support::endianness target_endianness, bool is64Bits>
uint8_t ELFObjectFile<target_endianness, is64Bits>::getBytesInAddress() const {
return is64Bits ? 8 : 4;
}
template<support::endianness target_endianness, bool is64Bits>
StringRef ELFObjectFile<target_endianness, is64Bits>
::getFileFormatName() const {
switch(Header->e_ident[ELF::EI_CLASS]) {
case ELF::ELFCLASS32:
switch(Header->e_machine) {
case ELF::EM_386:
return "ELF32-i386";
case ELF::EM_X86_64:
return "ELF32-x86-64";
case ELF::EM_ARM:
return "ELF32-arm";
default:
return "ELF32-unknown";
}
case ELF::ELFCLASS64:
switch(Header->e_machine) {
case ELF::EM_386:
return "ELF64-i386";
case ELF::EM_X86_64:
return "ELF64-x86-64";
default:
return "ELF64-unknown";
}
default:
// FIXME: Proper error handling.
report_fatal_error("Invalid ELFCLASS!");
}
}
template<support::endianness target_endianness, bool is64Bits>
unsigned ELFObjectFile<target_endianness, is64Bits>::getArch() const {
switch(Header->e_machine) {
case ELF::EM_386:
return Triple::x86;
case ELF::EM_X86_64:
return Triple::x86_64;
case ELF::EM_ARM:
return Triple::arm;
default:
return Triple::UnknownArch;
}
}
template<support::endianness target_endianness, bool is64Bits>
uint64_t ELFObjectFile<target_endianness, is64Bits>::getNumSections() const {
if (Header->e_shnum == ELF::SHN_UNDEF)
return SectionHeaderTable->sh_size;
return Header->e_shnum;
}
template<support::endianness target_endianness, bool is64Bits>
uint64_t
ELFObjectFile<target_endianness, is64Bits>::getStringTableIndex() const {
if (Header->e_shnum == ELF::SHN_UNDEF) {
if (Header->e_shstrndx == ELF::SHN_HIRESERVE)
return SectionHeaderTable->sh_link;
if (Header->e_shstrndx >= getNumSections())
return 0;
}
return Header->e_shstrndx;
}
template<support::endianness target_endianness, bool is64Bits>
template<typename T>
inline const T *
ELFObjectFile<target_endianness, is64Bits>::getEntry(uint16_t Section,
uint32_t Entry) const {
return getEntry<T>(getSection(Section), Entry);
}
template<support::endianness target_endianness, bool is64Bits>
template<typename T>
inline const T *
ELFObjectFile<target_endianness, is64Bits>::getEntry(const Elf_Shdr * Section,
uint32_t Entry) const {
return reinterpret_cast<const T *>(
base()
+ Section->sh_offset
+ (Entry * Section->sh_entsize));
}
template<support::endianness target_endianness, bool is64Bits>
const typename ELFObjectFile<target_endianness, is64Bits>::Elf_Sym *
ELFObjectFile<target_endianness, is64Bits>::getSymbol(DataRefImpl Symb) const {
return getEntry<Elf_Sym>(SymbolTableSections[Symb.d.b], Symb.d.a);
}
template<support::endianness target_endianness, bool is64Bits>
const typename ELFObjectFile<target_endianness, is64Bits>::Elf_Rel *
ELFObjectFile<target_endianness, is64Bits>::getRel(DataRefImpl Rel) const {
return getEntry<Elf_Rel>(Rel.w.b, Rel.w.c);
}
template<support::endianness target_endianness, bool is64Bits>
const typename ELFObjectFile<target_endianness, is64Bits>::Elf_Rela *
ELFObjectFile<target_endianness, is64Bits>::getRela(DataRefImpl Rela) const {
return getEntry<Elf_Rela>(Rela.w.b, Rela.w.c);
}
template<support::endianness target_endianness, bool is64Bits>
const typename ELFObjectFile<target_endianness, is64Bits>::Elf_Shdr *
ELFObjectFile<target_endianness, is64Bits>::getSection(DataRefImpl Symb) const {
const Elf_Shdr *sec = getSection(Symb.d.b);
if (sec->sh_type != ELF::SHT_SYMTAB || sec->sh_type != ELF::SHT_DYNSYM)
// FIXME: Proper error handling.
report_fatal_error("Invalid symbol table section!");
return sec;
}
template<support::endianness target_endianness, bool is64Bits>
const typename ELFObjectFile<target_endianness, is64Bits>::Elf_Shdr *
ELFObjectFile<target_endianness, is64Bits>::getSection(uint32_t index) const {
if (index == 0)
return 0;
if (!SectionHeaderTable || index >= getNumSections())
// FIXME: Proper error handling.
report_fatal_error("Invalid section index!");
return reinterpret_cast<const Elf_Shdr *>(
reinterpret_cast<const char *>(SectionHeaderTable)
+ (index * Header->e_shentsize));
}
template<support::endianness target_endianness, bool is64Bits>
const char *ELFObjectFile<target_endianness, is64Bits>
::getString(uint32_t section,
ELF::Elf32_Word offset) const {
return getString(getSection(section), offset);
}
template<support::endianness target_endianness, bool is64Bits>
const char *ELFObjectFile<target_endianness, is64Bits>
::getString(const Elf_Shdr *section,
ELF::Elf32_Word offset) const {
assert(section && section->sh_type == ELF::SHT_STRTAB && "Invalid section!");
if (offset >= section->sh_size)
// FIXME: Proper error handling.
report_fatal_error("Symbol name offset outside of string table!");
return (const char *)base() + section->sh_offset + offset;
}
template<support::endianness target_endianness, bool is64Bits>
error_code ELFObjectFile<target_endianness, is64Bits>
::getSymbolName(const Elf_Sym *symb,
StringRef &Result) const {
if (symb->st_name == 0) {
const Elf_Shdr *section = getSection(symb);
if (!section)
Result = "";
else
Result = getString(dot_shstrtab_sec, section->sh_name);
return object_error::success;
}
// Use the default symbol table name section.
Result = getString(dot_strtab_sec, symb->st_name);
return object_error::success;
}
// EI_CLASS, EI_DATA.
static std::pair<unsigned char, unsigned char>
getElfArchType(MemoryBuffer *Object) {
if (Object->getBufferSize() < ELF::EI_NIDENT)
return std::make_pair((uint8_t)ELF::ELFCLASSNONE,(uint8_t)ELF::ELFDATANONE);
return std::make_pair( (uint8_t)Object->getBufferStart()[ELF::EI_CLASS]
, (uint8_t)Object->getBufferStart()[ELF::EI_DATA]);
}
namespace {
template<support::endianness target_endianness, bool is64Bits>
class DyldELFObject : public ELFObjectFile<target_endianness, is64Bits> {
LLVM_ELF_IMPORT_TYPES(target_endianness, is64Bits)
typedef Elf_Shdr_Impl<target_endianness, is64Bits> Elf_Shdr;
typedef Elf_Sym_Impl<target_endianness, is64Bits> Elf_Sym;
typedef Elf_Rel_Impl<target_endianness, is64Bits, false> Elf_Rel;
typedef Elf_Rel_Impl<target_endianness, is64Bits, true> Elf_Rela;
typedef typename ELFObjectFile<target_endianness, is64Bits>::
Elf_Ehdr Elf_Ehdr;
Elf_Ehdr *Header;
// Update section headers according to the current location in memory
virtual void rebaseObject(std::vector<uint8_t*> *MemoryMap);
// Record memory addresses for cleanup
virtual void saveAddress(std::vector<uint8_t*> *MemoryMap, uint8_t *addr);
protected:
virtual error_code getSymbolAddress(DataRefImpl Symb, uint64_t &Res) const;
public:
DyldELFObject(MemoryBuffer *Object, std::vector<uint8_t*> *MemoryMap,
error_code &ec);
// Methods for type inquiry through isa, cast, and dyn_cast
static inline bool classof(const Binary *v) {
return (isa<ELFObjectFile<target_endianness, is64Bits> >(v)
&& classof(cast<ELFObjectFile<target_endianness, is64Bits> >(v)));
}
static inline bool classof(
const ELFObjectFile<target_endianness, is64Bits> *v) {
return v->isDyldType();
}
static inline bool classof(const DyldELFObject *v) {
return true;
}
};
} // end anonymous namespace
template<support::endianness target_endianness, bool is64Bits>
DyldELFObject<target_endianness, is64Bits>::DyldELFObject(MemoryBuffer *Object,
std::vector<uint8_t*> *MemoryMap, error_code &ec)
: ELFObjectFile<target_endianness, is64Bits>(Object, ec)
, Header(0) {
this->isDyldELFObject = true;
Header = const_cast<Elf_Ehdr *>(
reinterpret_cast<const Elf_Ehdr *>(this->base()));
if (Header->e_shoff == 0)
return;
// Mark the image as a dynamic shared library
Header->e_type = ELF::ET_DYN;
rebaseObject(MemoryMap);
}
// Walk through the ELF headers, updating virtual addresses to reflect where
// the object is currently loaded in memory
template<support::endianness target_endianness, bool is64Bits>
void DyldELFObject<target_endianness, is64Bits>::rebaseObject(
std::vector<uint8_t*> *MemoryMap) {
typedef typename ELFDataTypeTypedefHelper<
target_endianness, is64Bits>::value_type addr_type;
uint8_t *base_p = const_cast<uint8_t *>(this->base());
Elf_Shdr *sectionTable =
reinterpret_cast<Elf_Shdr *>(base_p + Header->e_shoff);
uint64_t numSections = this->getNumSections();
// Allocate memory space for NOBITS sections (such as .bss), which only exist
// in memory, but don't occupy space in the object file.
// Update the address in the section headers to reflect this allocation.
for (uint64_t index = 0; index < numSections; index++) {
Elf_Shdr *sec = reinterpret_cast<Elf_Shdr *>(
reinterpret_cast<char *>(sectionTable) + index * Header->e_shentsize);
// Only update sections that are meant to be present in program memory
if (sec->sh_flags & ELF::SHF_ALLOC) {
uint8_t *addr = base_p + sec->sh_offset;
if (sec->sh_type == ELF::SHT_NOBITS) {
addr = static_cast<uint8_t *>(calloc(sec->sh_size, 1));
saveAddress(MemoryMap, addr);
}
else {
// FIXME: Currently memory with RWX permissions is allocated. In the
// future, make sure that permissions are as necessary
if (sec->sh_flags & ELF::SHF_WRITE) {
// see FIXME above
}
if (sec->sh_flags & ELF::SHF_EXECINSTR) {
// see FIXME above
}
}
assert(sizeof(addr_type) == sizeof(intptr_t) &&
"Cross-architecture ELF dy-load is not supported!");
sec->sh_addr = static_cast<addr_type>(intptr_t(addr));
}
}
// Now allocate actual space for COMMON symbols, which also don't occupy
// space in the object file.
// We want to allocate space for all COMMON symbols at once, so the flow is:
// 1. Go over all symbols, find those that are in COMMON. For each such
// symbol, record its size and the value field in its symbol header in a
// special vector.
// 2. Allocate memory for all COMMON symbols in one fell swoop.
// 3. Using the recorded information from (1), update the address fields in
// the symbol headers of the COMMON symbols to reflect their allocated
// address.
uint64_t TotalSize = 0;
std::vector<std::pair<Elf_Addr *, uint64_t> > SymbAddrInfo;
error_code ec = object_error::success;
for (symbol_iterator si = this->begin_symbols(),
se = this->end_symbols(); si != se; si.increment(ec)) {
uint64_t Size = 0;
ec = si->getSize(Size);
Elf_Sym* symb = const_cast<Elf_Sym*>(
this->getSymbol(si->getRawDataRefImpl()));
if (ec == object_error::success &&
this->getSymbolTableIndex(symb) == ELF::SHN_COMMON && Size > 0) {
SymbAddrInfo.push_back(std::make_pair(&(symb->st_value), Size));
TotalSize += Size;
}
}
uint8_t* SectionPtr = (uint8_t *)calloc(TotalSize, 1);
saveAddress(MemoryMap, SectionPtr);
typedef typename std::vector<std::pair<Elf_Addr *, uint64_t> >::iterator
AddrInfoIterator;
AddrInfoIterator EndIter = SymbAddrInfo.end();
for (AddrInfoIterator AddrIter = SymbAddrInfo.begin();
AddrIter != EndIter; ++AddrIter) {
assert(sizeof(addr_type) == sizeof(intptr_t) &&
"Cross-architecture ELF dy-load is not supported!");
*(AddrIter->first) = static_cast<addr_type>(intptr_t(SectionPtr));
SectionPtr += AddrIter->second;
}
}
// Record memory addresses for callers
template<support::endianness target_endianness, bool is64Bits>
void DyldELFObject<target_endianness, is64Bits>::saveAddress(
std::vector<uint8_t*> *MemoryMap, uint8_t* addr) {
if (MemoryMap)
MemoryMap->push_back(addr);
else
errs() << "WARNING: Memory leak - cannot record memory for ELF dyld.";
}
template<support::endianness target_endianness, bool is64Bits>
error_code DyldELFObject<target_endianness, is64Bits>::getSymbolAddress(
DataRefImpl Symb, uint64_t &Result) const {
this->validateSymbol(Symb);
const Elf_Sym *symb = this->getSymbol(Symb);
if (this->getSymbolTableIndex(symb) == ELF::SHN_COMMON) {
Result = symb->st_value;
return object_error::success;
}
else {
return ELFObjectFile<target_endianness, is64Bits>::getSymbolAddress(
Symb, Result);
}
}
namespace llvm {
// Creates an in-memory object-file by default: createELFObjectFile(Buffer)
// Set doDyld to true to create a live (executable/debug-worthy) image
// If doDyld is true, any memory allocated for non-resident sections and
// symbols is recorded in MemoryMap.
ObjectFile *ObjectFile::createELFObjectFile(MemoryBuffer *Object,
bool doDyld, std::vector<uint8_t *> *MemoryMap) {
std::pair<unsigned char, unsigned char> Ident = getElfArchType(Object);
error_code ec;
if (doDyld) {
if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2LSB)
return new DyldELFObject<support::little, false>(Object, MemoryMap, ec);
else if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2MSB)
return new DyldELFObject<support::big, false>(Object, MemoryMap, ec);
else if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2MSB)
return new DyldELFObject<support::big, true>(Object, MemoryMap, ec);
else if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2LSB) {
DyldELFObject<support::little, true> *result =
new DyldELFObject<support::little, true>(Object, MemoryMap, ec);
// Unit testing for type inquiry
bool isBinary = isa<Binary>(result);
bool isDyld = isa<DyldELFObject<support::little, true> >(result);
bool isFile = isa<ELFObjectFile<support::little, true> >(result);
assert(isBinary && isDyld && isFile &&
"Type inquiry failed for ELF object!");
return result;
}
}
if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2LSB)
return new ELFObjectFile<support::little, false>(Object, ec);
else if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2MSB)
return new ELFObjectFile<support::big, false>(Object, ec);
else if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2MSB)
return new ELFObjectFile<support::big, true>(Object, ec);
else if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2LSB) {
ELFObjectFile<support::little, true> *result =
new ELFObjectFile<support::little, true>(Object, ec);
// Unit testing for type inquiry
bool isBinary = isa<Binary>(result);
bool isDyld = isa<DyldELFObject<support::little, true> >(result);
bool isFile = isa<ELFObjectFile<support::little, true> >(result);
assert(isBinary && isFile && !isDyld &&
"Type inquiry failed for ELF object!");
return result;
}
report_fatal_error("Buffer is not an ELF object file!");
}
} // end namespace llvm