1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-21 20:12:56 +02:00
llvm-mirror/lib/Target/X86/InstPrinter/X86IntelInstPrinter.cpp
Manuel Jacob b550acfd2d X86: Use enums for memory operand decoding instead of integer literals.
Summary:
X86BaseInfo.h defines an enum for the offset of each operand in a memory operand
sequence.  Some code uses it and some does not.  This patch replaces (hopefully)
all remaining locations where an integer literal was used instead of this enum.
No functionality change intended.

Reviewers: nadav

CC: llvm-commits, t.p.northover

Differential Revision: http://llvm-reviews.chandlerc.com/D3108

llvm-svn: 204158
2014-03-18 16:14:11 +00:00

259 lines
7.7 KiB
C++

//===-- X86IntelInstPrinter.cpp - Intel assembly instruction printing -----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file includes code for rendering MCInst instances as Intel-style
// assembly.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "asm-printer"
#include "X86IntelInstPrinter.h"
#include "MCTargetDesc/X86BaseInfo.h"
#include "MCTargetDesc/X86MCTargetDesc.h"
#include "X86InstComments.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FormattedStream.h"
#include <cctype>
using namespace llvm;
#include "X86GenAsmWriter1.inc"
void X86IntelInstPrinter::printRegName(raw_ostream &OS, unsigned RegNo) const {
OS << getRegisterName(RegNo);
}
void X86IntelInstPrinter::printInst(const MCInst *MI, raw_ostream &OS,
StringRef Annot) {
const MCInstrDesc &Desc = MII.get(MI->getOpcode());
uint64_t TSFlags = Desc.TSFlags;
if (TSFlags & X86II::LOCK)
OS << "\tlock\n";
printInstruction(MI, OS);
// Next always print the annotation.
printAnnotation(OS, Annot);
// If verbose assembly is enabled, we can print some informative comments.
if (CommentStream)
EmitAnyX86InstComments(MI, *CommentStream, getRegisterName);
}
void X86IntelInstPrinter::printSSECC(const MCInst *MI, unsigned Op,
raw_ostream &O) {
int64_t Imm = MI->getOperand(Op).getImm() & 0xf;
switch (Imm) {
default: llvm_unreachable("Invalid ssecc argument!");
case 0: O << "eq"; break;
case 1: O << "lt"; break;
case 2: O << "le"; break;
case 3: O << "unord"; break;
case 4: O << "neq"; break;
case 5: O << "nlt"; break;
case 6: O << "nle"; break;
case 7: O << "ord"; break;
case 8: O << "eq_uq"; break;
case 9: O << "nge"; break;
case 0xa: O << "ngt"; break;
case 0xb: O << "false"; break;
case 0xc: O << "neq_oq"; break;
case 0xd: O << "ge"; break;
case 0xe: O << "gt"; break;
case 0xf: O << "true"; break;
}
}
void X86IntelInstPrinter::printAVXCC(const MCInst *MI, unsigned Op,
raw_ostream &O) {
int64_t Imm = MI->getOperand(Op).getImm() & 0x1f;
switch (Imm) {
default: llvm_unreachable("Invalid avxcc argument!");
case 0: O << "eq"; break;
case 1: O << "lt"; break;
case 2: O << "le"; break;
case 3: O << "unord"; break;
case 4: O << "neq"; break;
case 5: O << "nlt"; break;
case 6: O << "nle"; break;
case 7: O << "ord"; break;
case 8: O << "eq_uq"; break;
case 9: O << "nge"; break;
case 0xa: O << "ngt"; break;
case 0xb: O << "false"; break;
case 0xc: O << "neq_oq"; break;
case 0xd: O << "ge"; break;
case 0xe: O << "gt"; break;
case 0xf: O << "true"; break;
case 0x10: O << "eq_os"; break;
case 0x11: O << "lt_oq"; break;
case 0x12: O << "le_oq"; break;
case 0x13: O << "unord_s"; break;
case 0x14: O << "neq_us"; break;
case 0x15: O << "nlt_uq"; break;
case 0x16: O << "nle_uq"; break;
case 0x17: O << "ord_s"; break;
case 0x18: O << "eq_us"; break;
case 0x19: O << "nge_uq"; break;
case 0x1a: O << "ngt_uq"; break;
case 0x1b: O << "false_os"; break;
case 0x1c: O << "neq_os"; break;
case 0x1d: O << "ge_oq"; break;
case 0x1e: O << "gt_oq"; break;
case 0x1f: O << "true_us"; break;
}
}
void X86IntelInstPrinter::printRoundingControl(const MCInst *MI, unsigned Op,
raw_ostream &O) {
int64_t Imm = MI->getOperand(Op).getImm() & 0x3;
switch (Imm) {
case 0: O << "{rn-sae}"; break;
case 1: O << "{rd-sae}"; break;
case 2: O << "{ru-sae}"; break;
case 3: O << "{rz-sae}"; break;
}
}
/// printPCRelImm - This is used to print an immediate value that ends up
/// being encoded as a pc-relative value.
void X86IntelInstPrinter::printPCRelImm(const MCInst *MI, unsigned OpNo,
raw_ostream &O) {
const MCOperand &Op = MI->getOperand(OpNo);
if (Op.isImm())
O << formatImm(Op.getImm());
else {
assert(Op.isExpr() && "unknown pcrel immediate operand");
// If a symbolic branch target was added as a constant expression then print
// that address in hex.
const MCConstantExpr *BranchTarget = dyn_cast<MCConstantExpr>(Op.getExpr());
int64_t Address;
if (BranchTarget && BranchTarget->EvaluateAsAbsolute(Address)) {
O << formatHex((uint64_t)Address);
}
else {
// Otherwise, just print the expression.
O << *Op.getExpr();
}
}
}
void X86IntelInstPrinter::printOperand(const MCInst *MI, unsigned OpNo,
raw_ostream &O) {
const MCOperand &Op = MI->getOperand(OpNo);
if (Op.isReg()) {
printRegName(O, Op.getReg());
} else if (Op.isImm()) {
O << formatImm((int64_t)Op.getImm());
} else {
assert(Op.isExpr() && "unknown operand kind in printOperand");
O << *Op.getExpr();
}
}
void X86IntelInstPrinter::printMemReference(const MCInst *MI, unsigned Op,
raw_ostream &O) {
const MCOperand &BaseReg = MI->getOperand(Op+X86::AddrBaseReg);
unsigned ScaleVal = MI->getOperand(Op+X86::AddrScaleAmt).getImm();
const MCOperand &IndexReg = MI->getOperand(Op+X86::AddrIndexReg);
const MCOperand &DispSpec = MI->getOperand(Op+X86::AddrDisp);
const MCOperand &SegReg = MI->getOperand(Op+X86::AddrSegmentReg);
// If this has a segment register, print it.
if (SegReg.getReg()) {
printOperand(MI, Op+X86::AddrSegmentReg, O);
O << ':';
}
O << '[';
bool NeedPlus = false;
if (BaseReg.getReg()) {
printOperand(MI, Op+X86::AddrBaseReg, O);
NeedPlus = true;
}
if (IndexReg.getReg()) {
if (NeedPlus) O << " + ";
if (ScaleVal != 1)
O << ScaleVal << '*';
printOperand(MI, Op+X86::AddrIndexReg, O);
NeedPlus = true;
}
if (!DispSpec.isImm()) {
if (NeedPlus) O << " + ";
assert(DispSpec.isExpr() && "non-immediate displacement for LEA?");
O << *DispSpec.getExpr();
} else {
int64_t DispVal = DispSpec.getImm();
if (DispVal || (!IndexReg.getReg() && !BaseReg.getReg())) {
if (NeedPlus) {
if (DispVal > 0)
O << " + ";
else {
O << " - ";
DispVal = -DispVal;
}
}
O << formatImm(DispVal);
}
}
O << ']';
}
void X86IntelInstPrinter::printSrcIdx(const MCInst *MI, unsigned Op,
raw_ostream &O) {
const MCOperand &SegReg = MI->getOperand(Op+1);
// If this has a segment register, print it.
if (SegReg.getReg()) {
printOperand(MI, Op+1, O);
O << ':';
}
O << '[';
printOperand(MI, Op, O);
O << ']';
}
void X86IntelInstPrinter::printDstIdx(const MCInst *MI, unsigned Op,
raw_ostream &O) {
// DI accesses are always ES-based.
O << "es:[";
printOperand(MI, Op, O);
O << ']';
}
void X86IntelInstPrinter::printMemOffset(const MCInst *MI, unsigned Op,
raw_ostream &O) {
const MCOperand &DispSpec = MI->getOperand(Op);
const MCOperand &SegReg = MI->getOperand(Op+1);
// If this has a segment register, print it.
if (SegReg.getReg()) {
printOperand(MI, Op+1, O);
O << ':';
}
O << '[';
if (DispSpec.isImm()) {
O << formatImm(DispSpec.getImm());
} else {
assert(DispSpec.isExpr() && "non-immediate displacement?");
O << *DispSpec.getExpr();
}
O << ']';
}