1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-29 23:12:55 +01:00
llvm-mirror/lib/CodeGen/LiveVariables.cpp

567 lines
21 KiB
C++

//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LiveVariable analysis pass. For each machine
// instruction in the function, this pass calculates the set of registers that
// are immediately dead after the instruction (i.e., the instruction calculates
// the value, but it is never used) and the set of registers that are used by
// the instruction, but are never used after the instruction (i.e., they are
// killed).
//
// This class computes live variables using are sparse implementation based on
// the machine code SSA form. This class computes live variable information for
// each virtual and _register allocatable_ physical register in a function. It
// uses the dominance properties of SSA form to efficiently compute live
// variables for virtual registers, and assumes that physical registers are only
// live within a single basic block (allowing it to do a single local analysis
// to resolve physical register lifetimes in each basic block). If a physical
// register is not register allocatable, it is not tracked. This is useful for
// things like the stack pointer and condition codes.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Config/alloca.h"
#include <algorithm>
using namespace llvm;
static RegisterPass<LiveVariables> X("livevars", "Live Variable Analysis");
void LiveVariables::VarInfo::dump() const {
cerr << "Register Defined by: ";
if (DefInst)
cerr << *DefInst;
else
cerr << "<null>\n";
cerr << " Alive in blocks: ";
for (unsigned i = 0, e = AliveBlocks.size(); i != e; ++i)
if (AliveBlocks[i]) cerr << i << ", ";
cerr << "\n Killed by:";
if (Kills.empty())
cerr << " No instructions.\n";
else {
for (unsigned i = 0, e = Kills.size(); i != e; ++i)
cerr << "\n #" << i << ": " << *Kills[i];
cerr << "\n";
}
}
LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) {
assert(MRegisterInfo::isVirtualRegister(RegIdx) &&
"getVarInfo: not a virtual register!");
RegIdx -= MRegisterInfo::FirstVirtualRegister;
if (RegIdx >= VirtRegInfo.size()) {
if (RegIdx >= 2*VirtRegInfo.size())
VirtRegInfo.resize(RegIdx*2);
else
VirtRegInfo.resize(2*VirtRegInfo.size());
}
VarInfo &VI = VirtRegInfo[RegIdx];
VI.AliveBlocks.resize(MF->getNumBlockIDs());
return VI;
}
bool LiveVariables::KillsRegister(MachineInstr *MI, unsigned Reg) const {
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (MO.isReg() && MO.isKill()) {
if ((MO.getReg() == Reg) ||
(MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
MRegisterInfo::isPhysicalRegister(Reg) &&
RegInfo->isSubRegister(MO.getReg(), Reg)))
return true;
}
}
return false;
}
bool LiveVariables::RegisterDefIsDead(MachineInstr *MI, unsigned Reg) const {
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (MO.isReg() && MO.isDead()) {
if ((MO.getReg() == Reg) ||
(MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
MRegisterInfo::isPhysicalRegister(Reg) &&
RegInfo->isSubRegister(MO.getReg(), Reg)))
return true;
}
}
return false;
}
bool LiveVariables::ModifiesRegister(MachineInstr *MI, unsigned Reg) const {
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (MO.isReg() && MO.isDef() && MO.getReg() == Reg)
return true;
}
return false;
}
void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
MachineBasicBlock *MBB) {
unsigned BBNum = MBB->getNumber();
// Check to see if this basic block is one of the killing blocks. If so,
// remove it...
for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
if (VRInfo.Kills[i]->getParent() == MBB) {
VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry
break;
}
if (MBB == VRInfo.DefInst->getParent()) return; // Terminate recursion
if (VRInfo.AliveBlocks[BBNum])
return; // We already know the block is live
// Mark the variable known alive in this bb
VRInfo.AliveBlocks[BBNum] = true;
for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
E = MBB->pred_end(); PI != E; ++PI)
MarkVirtRegAliveInBlock(VRInfo, *PI);
}
void LiveVariables::HandleVirtRegUse(VarInfo &VRInfo, MachineBasicBlock *MBB,
MachineInstr *MI) {
assert(VRInfo.DefInst && "Register use before def!");
VRInfo.NumUses++;
// Check to see if this basic block is already a kill block...
if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) {
// Yes, this register is killed in this basic block already. Increase the
// live range by updating the kill instruction.
VRInfo.Kills.back() = MI;
return;
}
#ifndef NDEBUG
for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!");
#endif
assert(MBB != VRInfo.DefInst->getParent() &&
"Should have kill for defblock!");
// Add a new kill entry for this basic block.
// If this virtual register is already marked as alive in this basic block,
// that means it is alive in at least one of the successor block, it's not
// a kill.
if (!VRInfo.AliveBlocks[MBB->getNumber()])
VRInfo.Kills.push_back(MI);
// Update all dominating blocks to mark them known live.
for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
E = MBB->pred_end(); PI != E; ++PI)
MarkVirtRegAliveInBlock(VRInfo, *PI);
}
bool LiveVariables::addRegisterKilled(unsigned IncomingReg, MachineInstr *MI,
bool AddIfNotFound) {
bool Found = false;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (MO.isReg() && MO.isUse()) {
unsigned Reg = MO.getReg();
if (!Reg)
continue;
if (Reg == IncomingReg) {
MO.setIsKill();
Found = true;
break;
} else if (MRegisterInfo::isPhysicalRegister(Reg) &&
MRegisterInfo::isPhysicalRegister(IncomingReg) &&
RegInfo->isSuperRegister(IncomingReg, Reg) &&
MO.isKill())
// A super-register kill already exists.
return true;
}
}
// If not found, this means an alias of one of the operand is killed. Add a
// new implicit operand if required.
if (!Found && AddIfNotFound) {
MI->addRegOperand(IncomingReg, false/*IsDef*/,true/*IsImp*/,true/*IsKill*/);
return true;
}
return Found;
}
bool LiveVariables::addRegisterDead(unsigned IncomingReg, MachineInstr *MI,
bool AddIfNotFound) {
bool Found = false;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (MO.isReg() && MO.isDef()) {
unsigned Reg = MO.getReg();
if (!Reg)
continue;
if (Reg == IncomingReg) {
MO.setIsDead();
Found = true;
break;
} else if (MRegisterInfo::isPhysicalRegister(Reg) &&
MRegisterInfo::isPhysicalRegister(IncomingReg) &&
RegInfo->isSuperRegister(IncomingReg, Reg) &&
MO.isDead())
// There exists a super-register that's marked dead.
return true;
}
}
// If not found, this means an alias of one of the operand is dead. Add a
// new implicit operand.
if (!Found && AddIfNotFound) {
MI->addRegOperand(IncomingReg, true/*IsDef*/,true/*IsImp*/,false/*IsKill*/,
true/*IsDead*/);
return true;
}
return Found;
}
void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
// There is a now a proper use, forget about the last partial use.
PhysRegPartUse[Reg] = NULL;
// Turn previous partial def's into read/mod/write.
for (unsigned i = 0, e = PhysRegPartDef[Reg].size(); i != e; ++i) {
MachineInstr *Def = PhysRegPartDef[Reg][i];
// First one is just a def. This means the use is reading some undef bits.
if (i != 0)
Def->addRegOperand(Reg, false/*IsDef*/,true/*IsImp*/,true/*IsKill*/);
Def->addRegOperand(Reg, true/*IsDef*/,true/*IsImp*/);
}
PhysRegPartDef[Reg].clear();
// There was an earlier def of a super-register. Add implicit def to that MI.
// A: EAX = ...
// B: = AX
// Add implicit def to A.
if (PhysRegInfo[Reg] && !PhysRegUsed[Reg]) {
MachineInstr *Def = PhysRegInfo[Reg];
if (!Def->findRegisterDefOperand(Reg))
Def->addRegOperand(Reg, true/*IsDef*/,true/*IsImp*/);
}
PhysRegInfo[Reg] = MI;
PhysRegUsed[Reg] = true;
for (const unsigned *SubRegs = RegInfo->getSubRegisters(Reg);
unsigned SubReg = *SubRegs; ++SubRegs) {
PhysRegInfo[SubReg] = MI;
PhysRegUsed[SubReg] = true;
}
// Remember the partial uses.
for (const unsigned *SuperRegs = RegInfo->getSuperRegisters(Reg);
unsigned SuperReg = *SuperRegs; ++SuperRegs)
PhysRegPartUse[SuperReg] = MI;
}
void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) {
// Does this kill a previous version of this register?
if (MachineInstr *LastRef = PhysRegInfo[Reg]) {
if (PhysRegUsed[Reg])
addRegisterKilled(Reg, LastRef);
else if (PhysRegPartUse[Reg])
// Add implicit use / kill to last use of a sub-register.
addRegisterKilled(Reg, PhysRegPartUse[Reg], true);
else
addRegisterDead(Reg, LastRef);
}
PhysRegInfo[Reg] = MI;
PhysRegUsed[Reg] = false;
PhysRegPartUse[Reg] = NULL;
for (const unsigned *SubRegs = RegInfo->getSubRegisters(Reg);
unsigned SubReg = *SubRegs; ++SubRegs) {
if (MachineInstr *LastRef = PhysRegInfo[SubReg]) {
if (PhysRegUsed[SubReg])
addRegisterKilled(SubReg, LastRef);
else if (PhysRegPartUse[SubReg])
// Add implicit use / kill to last use of a sub-register.
addRegisterKilled(SubReg, PhysRegPartUse[SubReg], true);
else
addRegisterDead(SubReg, LastRef);
}
PhysRegInfo[SubReg] = MI;
PhysRegUsed[SubReg] = false;
}
if (MI)
for (const unsigned *SuperRegs = RegInfo->getSuperRegisters(Reg);
unsigned SuperReg = *SuperRegs; ++SuperRegs) {
if (PhysRegInfo[SuperReg]) {
// The larger register is previously defined. Now a smaller part is
// being re-defined. Treat it as read/mod/write.
// EAX =
// AX = EAX<imp-use,kill>, EAX<imp-def>
MI->addRegOperand(SuperReg, false/*IsDef*/,true/*IsImp*/,true/*IsKill*/);
MI->addRegOperand(SuperReg, true/*IsDef*/,true/*IsImp*/);
PhysRegInfo[SuperReg] = MI;
PhysRegUsed[SuperReg] = false;
} else {
// Remember this partial def.
PhysRegPartDef[SuperReg].push_back(MI);
}
}
}
bool LiveVariables::runOnMachineFunction(MachineFunction &mf) {
MF = &mf;
const TargetInstrInfo &TII = *MF->getTarget().getInstrInfo();
RegInfo = MF->getTarget().getRegisterInfo();
assert(RegInfo && "Target doesn't have register information?");
ReservedRegisters = RegInfo->getReservedRegs(mf);
unsigned NumRegs = RegInfo->getNumRegs();
PhysRegInfo = new MachineInstr*[NumRegs];
PhysRegUsed = new bool[NumRegs];
PhysRegPartUse = new MachineInstr*[NumRegs];
PhysRegPartDef = new SmallVector<MachineInstr*,4>[NumRegs];
PHIVarInfo = new SmallVector<unsigned, 4>[MF->getNumBlockIDs()];
std::fill(PhysRegInfo, PhysRegInfo + NumRegs, (MachineInstr*)0);
std::fill(PhysRegUsed, PhysRegUsed + NumRegs, false);
std::fill(PhysRegPartUse, PhysRegPartUse + NumRegs, (MachineInstr*)0);
/// Get some space for a respectable number of registers...
VirtRegInfo.resize(64);
analyzePHINodes(mf);
// Calculate live variable information in depth first order on the CFG of the
// function. This guarantees that we will see the definition of a virtual
// register before its uses due to dominance properties of SSA (except for PHI
// nodes, which are treated as a special case).
//
MachineBasicBlock *Entry = MF->begin();
std::set<MachineBasicBlock*> Visited;
for (df_ext_iterator<MachineBasicBlock*> DFI = df_ext_begin(Entry, Visited),
E = df_ext_end(Entry, Visited); DFI != E; ++DFI) {
MachineBasicBlock *MBB = *DFI;
// Mark live-in registers as live-in.
for (MachineBasicBlock::const_livein_iterator II = MBB->livein_begin(),
EE = MBB->livein_end(); II != EE; ++II) {
assert(MRegisterInfo::isPhysicalRegister(*II) &&
"Cannot have a live-in virtual register!");
HandlePhysRegDef(*II, 0);
}
// Loop over all of the instructions, processing them.
for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
I != E; ++I) {
MachineInstr *MI = I;
// Process all of the operands of the instruction...
unsigned NumOperandsToProcess = MI->getNumOperands();
// Unless it is a PHI node. In this case, ONLY process the DEF, not any
// of the uses. They will be handled in other basic blocks.
if (MI->getOpcode() == TargetInstrInfo::PHI)
NumOperandsToProcess = 1;
// Process all uses...
for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (MO.isRegister() && MO.isUse() && MO.getReg()) {
if (MRegisterInfo::isVirtualRegister(MO.getReg())){
HandleVirtRegUse(getVarInfo(MO.getReg()), MBB, MI);
} else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
!ReservedRegisters[MO.getReg()]) {
HandlePhysRegUse(MO.getReg(), MI);
}
}
}
// Process all defs...
for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (MO.isRegister() && MO.isDef() && MO.getReg()) {
if (MRegisterInfo::isVirtualRegister(MO.getReg())) {
VarInfo &VRInfo = getVarInfo(MO.getReg());
assert(VRInfo.DefInst == 0 && "Variable multiply defined!");
VRInfo.DefInst = MI;
// Defaults to dead
VRInfo.Kills.push_back(MI);
} else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
!ReservedRegisters[MO.getReg()]) {
HandlePhysRegDef(MO.getReg(), MI);
}
}
}
}
// Handle any virtual assignments from PHI nodes which might be at the
// bottom of this basic block. We check all of our successor blocks to see
// if they have PHI nodes, and if so, we simulate an assignment at the end
// of the current block.
if (!PHIVarInfo[MBB->getNumber()].empty()) {
SmallVector<unsigned, 4>& VarInfoVec = PHIVarInfo[MBB->getNumber()];
for (SmallVector<unsigned, 4>::iterator I = VarInfoVec.begin(),
E = VarInfoVec.end(); I != E; ++I) {
VarInfo& VRInfo = getVarInfo(*I);
assert(VRInfo.DefInst && "Register use before def (or no def)!");
// Only mark it alive only in the block we are representing.
MarkVirtRegAliveInBlock(VRInfo, MBB);
}
}
// Finally, if the last instruction in the block is a return, make sure to mark
// it as using all of the live-out values in the function.
if (!MBB->empty() && TII.isReturn(MBB->back().getOpcode())) {
MachineInstr *Ret = &MBB->back();
for (MachineFunction::liveout_iterator I = MF->liveout_begin(),
E = MF->liveout_end(); I != E; ++I) {
assert(MRegisterInfo::isPhysicalRegister(*I) &&
"Cannot have a live-in virtual register!");
HandlePhysRegUse(*I, Ret);
// Add live-out registers as implicit uses.
if (Ret->findRegisterUseOperandIdx(*I) == -1)
Ret->addRegOperand(*I, false, true);
}
}
// Loop over PhysRegInfo, killing any registers that are available at the
// end of the basic block. This also resets the PhysRegInfo map.
for (unsigned i = 0; i != NumRegs; ++i)
if (PhysRegInfo[i])
HandlePhysRegDef(i, 0);
// Clear some states between BB's. These are purely local information.
for (unsigned i = 0; i != NumRegs; ++i)
PhysRegPartDef[i].clear();
std::fill(PhysRegPartUse, PhysRegPartUse + NumRegs, (MachineInstr*)0);
}
// Convert and transfer the dead / killed information we have gathered into
// VirtRegInfo onto MI's.
//
for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i)
for (unsigned j = 0, e2 = VirtRegInfo[i].Kills.size(); j != e2; ++j) {
if (VirtRegInfo[i].Kills[j] == VirtRegInfo[i].DefInst)
addRegisterDead(i + MRegisterInfo::FirstVirtualRegister,
VirtRegInfo[i].Kills[j]);
else
addRegisterKilled(i + MRegisterInfo::FirstVirtualRegister,
VirtRegInfo[i].Kills[j]);
}
// Check to make sure there are no unreachable blocks in the MC CFG for the
// function. If so, it is due to a bug in the instruction selector or some
// other part of the code generator if this happens.
#ifndef NDEBUG
for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i)
assert(Visited.count(&*i) != 0 && "unreachable basic block found");
#endif
delete[] PhysRegInfo;
delete[] PhysRegUsed;
delete[] PhysRegPartUse;
delete[] PhysRegPartDef;
delete[] PHIVarInfo;
return false;
}
/// instructionChanged - When the address of an instruction changes, this
/// method should be called so that live variables can update its internal
/// data structures. This removes the records for OldMI, transfering them to
/// the records for NewMI.
void LiveVariables::instructionChanged(MachineInstr *OldMI,
MachineInstr *NewMI) {
// If the instruction defines any virtual registers, update the VarInfo,
// kill and dead information for the instruction.
for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = OldMI->getOperand(i);
if (MO.isRegister() && MO.getReg() &&
MRegisterInfo::isVirtualRegister(MO.getReg())) {
unsigned Reg = MO.getReg();
VarInfo &VI = getVarInfo(Reg);
if (MO.isDef()) {
if (MO.isDead()) {
MO.unsetIsDead();
addVirtualRegisterDead(Reg, NewMI);
}
// Update the defining instruction.
if (VI.DefInst == OldMI)
VI.DefInst = NewMI;
}
if (MO.isUse()) {
if (MO.isKill()) {
MO.unsetIsKill();
addVirtualRegisterKilled(Reg, NewMI);
}
// If this is a kill of the value, update the VI kills list.
if (VI.removeKill(OldMI))
VI.Kills.push_back(NewMI); // Yes, there was a kill of it
}
}
}
}
/// removeVirtualRegistersKilled - Remove all killed info for the specified
/// instruction.
void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) {
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (MO.isReg() && MO.isKill()) {
MO.unsetIsKill();
unsigned Reg = MO.getReg();
if (MRegisterInfo::isVirtualRegister(Reg)) {
bool removed = getVarInfo(Reg).removeKill(MI);
assert(removed && "kill not in register's VarInfo?");
}
}
}
}
/// removeVirtualRegistersDead - Remove all of the dead registers for the
/// specified instruction from the live variable information.
void LiveVariables::removeVirtualRegistersDead(MachineInstr *MI) {
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (MO.isReg() && MO.isDead()) {
MO.unsetIsDead();
unsigned Reg = MO.getReg();
if (MRegisterInfo::isVirtualRegister(Reg)) {
bool removed = getVarInfo(Reg).removeKill(MI);
assert(removed && "kill not in register's VarInfo?");
}
}
}
}
/// analyzePHINodes - Gather information about the PHI nodes in here. In
/// particular, we want to map the variable information of a virtual
/// register which is used in a PHI node. We map that to the BB the vreg is
/// coming from.
///
void LiveVariables::analyzePHINodes(const MachineFunction& Fn) {
for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
I != E; ++I)
for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
PHIVarInfo[BBI->getOperand(i + 1).getMachineBasicBlock()->getNumber()].
push_back(BBI->getOperand(i).getReg());
}