1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-20 19:42:54 +02:00
llvm-mirror/lib/Target/X86/X86FixupLEAs.cpp
Craig Topper bfee814832 [X86] Add R13D to the isInefficientLEAReg in FixupLEAs.
I'm assuming the R13 restriction extends to R13D. Guessing this restriction is related to the funny encoding of this register as base always requiring a displacement to be encoded.

llvm-svn: 338806
2018-08-03 03:45:19 +00:00

598 lines
21 KiB
C++

//===-- X86FixupLEAs.cpp - use or replace LEA instructions -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the pass that finds instructions that can be
// re-written as LEA instructions in order to reduce pipeline delays.
// When optimizing for size it replaces suitable LEAs with INC or DEC.
//
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86InstrInfo.h"
#include "X86Subtarget.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetSchedule.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
namespace llvm {
void initializeFixupLEAPassPass(PassRegistry &);
}
#define FIXUPLEA_DESC "X86 LEA Fixup"
#define FIXUPLEA_NAME "x86-fixup-LEAs"
#define DEBUG_TYPE FIXUPLEA_NAME
STATISTIC(NumLEAs, "Number of LEA instructions created");
namespace {
class FixupLEAPass : public MachineFunctionPass {
enum RegUsageState { RU_NotUsed, RU_Write, RU_Read };
/// Loop over all of the instructions in the basic block
/// replacing applicable instructions with LEA instructions,
/// where appropriate.
bool processBasicBlock(MachineFunction &MF, MachineFunction::iterator MFI);
/// Given a machine register, look for the instruction
/// which writes it in the current basic block. If found,
/// try to replace it with an equivalent LEA instruction.
/// If replacement succeeds, then also process the newly created
/// instruction.
void seekLEAFixup(MachineOperand &p, MachineBasicBlock::iterator &I,
MachineFunction::iterator MFI);
/// Given a memory access or LEA instruction
/// whose address mode uses a base and/or index register, look for
/// an opportunity to replace the instruction which sets the base or index
/// register with an equivalent LEA instruction.
void processInstruction(MachineBasicBlock::iterator &I,
MachineFunction::iterator MFI);
/// Given a LEA instruction which is unprofitable
/// on Silvermont try to replace it with an equivalent ADD instruction
void processInstructionForSLM(MachineBasicBlock::iterator &I,
MachineFunction::iterator MFI);
/// Given a LEA instruction which is unprofitable
/// on SNB+ try to replace it with other instructions.
/// According to Intel's Optimization Reference Manual:
/// " For LEA instructions with three source operands and some specific
/// situations, instruction latency has increased to 3 cycles, and must
/// dispatch via port 1:
/// - LEA that has all three source operands: base, index, and offset
/// - LEA that uses base and index registers where the base is EBP, RBP,
/// or R13
/// - LEA that uses RIP relative addressing mode
/// - LEA that uses 16-bit addressing mode "
/// This function currently handles the first 2 cases only.
MachineInstr *processInstrForSlow3OpLEA(MachineInstr &MI,
MachineFunction::iterator MFI);
/// Look for LEAs that add 1 to reg or subtract 1 from reg
/// and convert them to INC or DEC respectively.
bool fixupIncDec(MachineBasicBlock::iterator &I,
MachineFunction::iterator MFI) const;
/// Determine if an instruction references a machine register
/// and, if so, whether it reads or writes the register.
RegUsageState usesRegister(MachineOperand &p, MachineBasicBlock::iterator I);
/// Step backwards through a basic block, looking
/// for an instruction which writes a register within
/// a maximum of INSTR_DISTANCE_THRESHOLD instruction latency cycles.
MachineBasicBlock::iterator searchBackwards(MachineOperand &p,
MachineBasicBlock::iterator &I,
MachineFunction::iterator MFI);
/// if an instruction can be converted to an
/// equivalent LEA, insert the new instruction into the basic block
/// and return a pointer to it. Otherwise, return zero.
MachineInstr *postRAConvertToLEA(MachineFunction::iterator &MFI,
MachineBasicBlock::iterator &MBBI) const;
public:
static char ID;
StringRef getPassName() const override { return FIXUPLEA_DESC; }
FixupLEAPass() : MachineFunctionPass(ID) {
initializeFixupLEAPassPass(*PassRegistry::getPassRegistry());
}
/// Loop over all of the basic blocks,
/// replacing instructions by equivalent LEA instructions
/// if needed and when possible.
bool runOnMachineFunction(MachineFunction &MF) override;
// This pass runs after regalloc and doesn't support VReg operands.
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::NoVRegs);
}
private:
TargetSchedModel TSM;
MachineFunction *MF;
const X86InstrInfo *TII; // Machine instruction info.
bool OptIncDec;
bool OptLEA;
};
}
char FixupLEAPass::ID = 0;
INITIALIZE_PASS(FixupLEAPass, FIXUPLEA_NAME, FIXUPLEA_DESC, false, false)
MachineInstr *
FixupLEAPass::postRAConvertToLEA(MachineFunction::iterator &MFI,
MachineBasicBlock::iterator &MBBI) const {
MachineInstr &MI = *MBBI;
switch (MI.getOpcode()) {
case X86::MOV32rr:
case X86::MOV64rr: {
const MachineOperand &Src = MI.getOperand(1);
const MachineOperand &Dest = MI.getOperand(0);
MachineInstr *NewMI =
BuildMI(*MF, MI.getDebugLoc(),
TII->get(MI.getOpcode() == X86::MOV32rr ? X86::LEA32r
: X86::LEA64r))
.add(Dest)
.add(Src)
.addImm(1)
.addReg(0)
.addImm(0)
.addReg(0);
MFI->insert(MBBI, NewMI); // Insert the new inst
return NewMI;
}
case X86::ADD64ri32:
case X86::ADD64ri8:
case X86::ADD64ri32_DB:
case X86::ADD64ri8_DB:
case X86::ADD32ri:
case X86::ADD32ri8:
case X86::ADD32ri_DB:
case X86::ADD32ri8_DB:
case X86::ADD16ri:
case X86::ADD16ri8:
case X86::ADD16ri_DB:
case X86::ADD16ri8_DB:
if (!MI.getOperand(2).isImm()) {
// convertToThreeAddress will call getImm()
// which requires isImm() to be true
return nullptr;
}
break;
case X86::ADD16rr:
case X86::ADD16rr_DB:
if (MI.getOperand(1).getReg() != MI.getOperand(2).getReg()) {
// if src1 != src2, then convertToThreeAddress will
// need to create a Virtual register, which we cannot do
// after register allocation.
return nullptr;
}
}
return TII->convertToThreeAddress(MFI, MI, nullptr);
}
FunctionPass *llvm::createX86FixupLEAs() { return new FixupLEAPass(); }
bool FixupLEAPass::runOnMachineFunction(MachineFunction &Func) {
if (skipFunction(Func.getFunction()))
return false;
MF = &Func;
const X86Subtarget &ST = Func.getSubtarget<X86Subtarget>();
OptIncDec = !ST.slowIncDec() || Func.getFunction().optForMinSize();
OptLEA = ST.LEAusesAG() || ST.slowLEA() || ST.slow3OpsLEA();
if (!OptLEA && !OptIncDec)
return false;
TSM.init(&Func.getSubtarget());
TII = ST.getInstrInfo();
LLVM_DEBUG(dbgs() << "Start X86FixupLEAs\n";);
// Process all basic blocks.
for (MachineFunction::iterator I = Func.begin(), E = Func.end(); I != E; ++I)
processBasicBlock(Func, I);
LLVM_DEBUG(dbgs() << "End X86FixupLEAs\n";);
return true;
}
FixupLEAPass::RegUsageState
FixupLEAPass::usesRegister(MachineOperand &p, MachineBasicBlock::iterator I) {
RegUsageState RegUsage = RU_NotUsed;
MachineInstr &MI = *I;
for (unsigned int i = 0; i < MI.getNumOperands(); ++i) {
MachineOperand &opnd = MI.getOperand(i);
if (opnd.isReg() && opnd.getReg() == p.getReg()) {
if (opnd.isDef())
return RU_Write;
RegUsage = RU_Read;
}
}
return RegUsage;
}
/// getPreviousInstr - Given a reference to an instruction in a basic
/// block, return a reference to the previous instruction in the block,
/// wrapping around to the last instruction of the block if the block
/// branches to itself.
static inline bool getPreviousInstr(MachineBasicBlock::iterator &I,
MachineFunction::iterator MFI) {
if (I == MFI->begin()) {
if (MFI->isPredecessor(&*MFI)) {
I = --MFI->end();
return true;
} else
return false;
}
--I;
return true;
}
MachineBasicBlock::iterator
FixupLEAPass::searchBackwards(MachineOperand &p, MachineBasicBlock::iterator &I,
MachineFunction::iterator MFI) {
int InstrDistance = 1;
MachineBasicBlock::iterator CurInst;
static const int INSTR_DISTANCE_THRESHOLD = 5;
CurInst = I;
bool Found;
Found = getPreviousInstr(CurInst, MFI);
while (Found && I != CurInst) {
if (CurInst->isCall() || CurInst->isInlineAsm())
break;
if (InstrDistance > INSTR_DISTANCE_THRESHOLD)
break; // too far back to make a difference
if (usesRegister(p, CurInst) == RU_Write) {
return CurInst;
}
InstrDistance += TSM.computeInstrLatency(&*CurInst);
Found = getPreviousInstr(CurInst, MFI);
}
return MachineBasicBlock::iterator();
}
static inline bool isLEA(const int Opcode) {
return Opcode == X86::LEA16r || Opcode == X86::LEA32r ||
Opcode == X86::LEA64r || Opcode == X86::LEA64_32r;
}
static inline bool isInefficientLEAReg(unsigned int Reg) {
return Reg == X86::EBP || Reg == X86::RBP ||
Reg == X86::R13D || Reg == X86::R13;
}
static inline bool isRegOperand(const MachineOperand &Op) {
return Op.isReg() && Op.getReg() != X86::NoRegister;
}
/// hasIneffecientLEARegs - LEA that uses base and index registers
/// where the base is EBP, RBP, or R13
// TODO: use a variant scheduling class to model the latency profile
// of LEA instructions, and implement this logic as a scheduling predicate.
static inline bool hasInefficientLEABaseReg(const MachineOperand &Base,
const MachineOperand &Index) {
return Base.isReg() && isInefficientLEAReg(Base.getReg()) &&
isRegOperand(Index);
}
static inline bool hasLEAOffset(const MachineOperand &Offset) {
return (Offset.isImm() && Offset.getImm() != 0) || Offset.isGlobal();
}
static inline int getADDrrFromLEA(int LEAOpcode) {
switch (LEAOpcode) {
default:
llvm_unreachable("Unexpected LEA instruction");
case X86::LEA16r:
return X86::ADD16rr;
case X86::LEA32r:
return X86::ADD32rr;
case X86::LEA64_32r:
case X86::LEA64r:
return X86::ADD64rr;
}
}
static inline int getADDriFromLEA(int LEAOpcode, const MachineOperand &Offset) {
bool IsInt8 = Offset.isImm() && isInt<8>(Offset.getImm());
switch (LEAOpcode) {
default:
llvm_unreachable("Unexpected LEA instruction");
case X86::LEA16r:
return IsInt8 ? X86::ADD16ri8 : X86::ADD16ri;
case X86::LEA32r:
case X86::LEA64_32r:
return IsInt8 ? X86::ADD32ri8 : X86::ADD32ri;
case X86::LEA64r:
return IsInt8 ? X86::ADD64ri8 : X86::ADD64ri32;
}
}
/// isLEASimpleIncOrDec - Does this LEA have one these forms:
/// lea %reg, 1(%reg)
/// lea %reg, -1(%reg)
static inline bool isLEASimpleIncOrDec(MachineInstr &LEA) {
unsigned SrcReg = LEA.getOperand(1 + X86::AddrBaseReg).getReg();
unsigned DstReg = LEA.getOperand(0).getReg();
unsigned AddrDispOp = 1 + X86::AddrDisp;
return SrcReg == DstReg &&
LEA.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
LEA.getOperand(1 + X86::AddrSegmentReg).getReg() == 0 &&
LEA.getOperand(AddrDispOp).isImm() &&
(LEA.getOperand(AddrDispOp).getImm() == 1 ||
LEA.getOperand(AddrDispOp).getImm() == -1);
}
bool FixupLEAPass::fixupIncDec(MachineBasicBlock::iterator &I,
MachineFunction::iterator MFI) const {
MachineInstr &MI = *I;
int Opcode = MI.getOpcode();
if (!isLEA(Opcode))
return false;
if (isLEASimpleIncOrDec(MI) && TII->isSafeToClobberEFLAGS(*MFI, I)) {
int NewOpcode;
bool isINC = MI.getOperand(4).getImm() == 1;
switch (Opcode) {
case X86::LEA16r:
NewOpcode = isINC ? X86::INC16r : X86::DEC16r;
break;
case X86::LEA32r:
case X86::LEA64_32r:
NewOpcode = isINC ? X86::INC32r : X86::DEC32r;
break;
case X86::LEA64r:
NewOpcode = isINC ? X86::INC64r : X86::DEC64r;
break;
}
MachineInstr *NewMI =
BuildMI(*MFI, I, MI.getDebugLoc(), TII->get(NewOpcode))
.add(MI.getOperand(0))
.add(MI.getOperand(1));
MFI->erase(I);
I = static_cast<MachineBasicBlock::iterator>(NewMI);
return true;
}
return false;
}
void FixupLEAPass::processInstruction(MachineBasicBlock::iterator &I,
MachineFunction::iterator MFI) {
// Process a load, store, or LEA instruction.
MachineInstr &MI = *I;
const MCInstrDesc &Desc = MI.getDesc();
int AddrOffset = X86II::getMemoryOperandNo(Desc.TSFlags);
if (AddrOffset >= 0) {
AddrOffset += X86II::getOperandBias(Desc);
MachineOperand &p = MI.getOperand(AddrOffset + X86::AddrBaseReg);
if (p.isReg() && p.getReg() != X86::ESP) {
seekLEAFixup(p, I, MFI);
}
MachineOperand &q = MI.getOperand(AddrOffset + X86::AddrIndexReg);
if (q.isReg() && q.getReg() != X86::ESP) {
seekLEAFixup(q, I, MFI);
}
}
}
void FixupLEAPass::seekLEAFixup(MachineOperand &p,
MachineBasicBlock::iterator &I,
MachineFunction::iterator MFI) {
MachineBasicBlock::iterator MBI = searchBackwards(p, I, MFI);
if (MBI != MachineBasicBlock::iterator()) {
MachineInstr *NewMI = postRAConvertToLEA(MFI, MBI);
if (NewMI) {
++NumLEAs;
LLVM_DEBUG(dbgs() << "FixLEA: Candidate to replace:"; MBI->dump(););
// now to replace with an equivalent LEA...
LLVM_DEBUG(dbgs() << "FixLEA: Replaced by: "; NewMI->dump(););
MFI->erase(MBI);
MachineBasicBlock::iterator J =
static_cast<MachineBasicBlock::iterator>(NewMI);
processInstruction(J, MFI);
}
}
}
void FixupLEAPass::processInstructionForSLM(MachineBasicBlock::iterator &I,
MachineFunction::iterator MFI) {
MachineInstr &MI = *I;
const int Opcode = MI.getOpcode();
if (!isLEA(Opcode))
return;
if (MI.getOperand(5).getReg() != 0 || !MI.getOperand(4).isImm() ||
!TII->isSafeToClobberEFLAGS(*MFI, I))
return;
const unsigned DstR = MI.getOperand(0).getReg();
const unsigned SrcR1 = MI.getOperand(1).getReg();
const unsigned SrcR2 = MI.getOperand(3).getReg();
if ((SrcR1 == 0 || SrcR1 != DstR) && (SrcR2 == 0 || SrcR2 != DstR))
return;
if (MI.getOperand(2).getImm() > 1)
return;
LLVM_DEBUG(dbgs() << "FixLEA: Candidate to replace:"; I->dump(););
LLVM_DEBUG(dbgs() << "FixLEA: Replaced by: ";);
MachineInstr *NewMI = nullptr;
// Make ADD instruction for two registers writing to LEA's destination
if (SrcR1 != 0 && SrcR2 != 0) {
const MCInstrDesc &ADDrr = TII->get(getADDrrFromLEA(Opcode));
const MachineOperand &Src = MI.getOperand(SrcR1 == DstR ? 3 : 1);
NewMI =
BuildMI(*MFI, I, MI.getDebugLoc(), ADDrr, DstR).addReg(DstR).add(Src);
LLVM_DEBUG(NewMI->dump(););
}
// Make ADD instruction for immediate
if (MI.getOperand(4).getImm() != 0) {
const MCInstrDesc &ADDri =
TII->get(getADDriFromLEA(Opcode, MI.getOperand(4)));
const MachineOperand &SrcR = MI.getOperand(SrcR1 == DstR ? 1 : 3);
NewMI = BuildMI(*MFI, I, MI.getDebugLoc(), ADDri, DstR)
.add(SrcR)
.addImm(MI.getOperand(4).getImm());
LLVM_DEBUG(NewMI->dump(););
}
if (NewMI) {
MFI->erase(I);
I = NewMI;
}
}
MachineInstr *
FixupLEAPass::processInstrForSlow3OpLEA(MachineInstr &MI,
MachineFunction::iterator MFI) {
const int LEAOpcode = MI.getOpcode();
if (!isLEA(LEAOpcode))
return nullptr;
const MachineOperand &Dst = MI.getOperand(0);
const MachineOperand &Base = MI.getOperand(1);
const MachineOperand &Scale = MI.getOperand(2);
const MachineOperand &Index = MI.getOperand(3);
const MachineOperand &Offset = MI.getOperand(4);
const MachineOperand &Segment = MI.getOperand(5);
if (!(TII->isThreeOperandsLEA(MI) ||
hasInefficientLEABaseReg(Base, Index)) ||
!TII->isSafeToClobberEFLAGS(*MFI, MI) ||
Segment.getReg() != X86::NoRegister)
return nullptr;
unsigned int DstR = Dst.getReg();
unsigned int BaseR = Base.getReg();
unsigned int IndexR = Index.getReg();
unsigned SSDstR =
(LEAOpcode == X86::LEA64_32r) ? getX86SubSuperRegister(DstR, 64) : DstR;
bool IsScale1 = Scale.getImm() == 1;
bool IsInefficientBase = isInefficientLEAReg(BaseR);
bool IsInefficientIndex = isInefficientLEAReg(IndexR);
// Skip these cases since it takes more than 2 instructions
// to replace the LEA instruction.
if (IsInefficientBase && SSDstR == BaseR && !IsScale1)
return nullptr;
if (LEAOpcode == X86::LEA64_32r && IsInefficientBase &&
(IsInefficientIndex || !IsScale1))
return nullptr;
const DebugLoc DL = MI.getDebugLoc();
const MCInstrDesc &ADDrr = TII->get(getADDrrFromLEA(LEAOpcode));
const MCInstrDesc &ADDri = TII->get(getADDriFromLEA(LEAOpcode, Offset));
LLVM_DEBUG(dbgs() << "FixLEA: Candidate to replace:"; MI.dump(););
LLVM_DEBUG(dbgs() << "FixLEA: Replaced by: ";);
// First try to replace LEA with one or two (for the 3-op LEA case)
// add instructions:
// 1.lea (%base,%index,1), %base => add %index,%base
// 2.lea (%base,%index,1), %index => add %base,%index
if (IsScale1 && (DstR == BaseR || DstR == IndexR)) {
const MachineOperand &Src = DstR == BaseR ? Index : Base;
MachineInstr *NewMI =
BuildMI(*MFI, MI, DL, ADDrr, DstR).addReg(DstR).add(Src);
LLVM_DEBUG(NewMI->dump(););
// Create ADD instruction for the Offset in case of 3-Ops LEA.
if (hasLEAOffset(Offset)) {
NewMI = BuildMI(*MFI, MI, DL, ADDri, DstR).addReg(DstR).add(Offset);
LLVM_DEBUG(NewMI->dump(););
}
return NewMI;
}
// If the base is inefficient try switching the index and base operands,
// otherwise just break the 3-Ops LEA inst into 2-Ops LEA + ADD instruction:
// lea offset(%base,%index,scale),%dst =>
// lea (%base,%index,scale); add offset,%dst
if (!IsInefficientBase || (!IsInefficientIndex && IsScale1)) {
MachineInstr *NewMI = BuildMI(*MFI, MI, DL, TII->get(LEAOpcode))
.add(Dst)
.add(IsInefficientBase ? Index : Base)
.add(Scale)
.add(IsInefficientBase ? Base : Index)
.addImm(0)
.add(Segment);
LLVM_DEBUG(NewMI->dump(););
// Create ADD instruction for the Offset in case of 3-Ops LEA.
if (hasLEAOffset(Offset)) {
NewMI = BuildMI(*MFI, MI, DL, ADDri, DstR).addReg(DstR).add(Offset);
LLVM_DEBUG(NewMI->dump(););
}
return NewMI;
}
// Handle the rest of the cases with inefficient base register:
assert(SSDstR != BaseR && "SSDstR == BaseR should be handled already!");
assert(IsInefficientBase && "efficient base should be handled already!");
// lea (%base,%index,1), %dst => mov %base,%dst; add %index,%dst
if (IsScale1 && !hasLEAOffset(Offset)) {
bool BIK = Base.isKill() && BaseR != IndexR;
TII->copyPhysReg(*MFI, MI, DL, DstR, BaseR, BIK);
LLVM_DEBUG(MI.getPrevNode()->dump(););
MachineInstr *NewMI =
BuildMI(*MFI, MI, DL, ADDrr, DstR).addReg(DstR).add(Index);
LLVM_DEBUG(NewMI->dump(););
return NewMI;
}
// lea offset(%base,%index,scale), %dst =>
// lea offset( ,%index,scale), %dst; add %base,%dst
MachineInstr *NewMI = BuildMI(*MFI, MI, DL, TII->get(LEAOpcode))
.add(Dst)
.addReg(0)
.add(Scale)
.add(Index)
.add(Offset)
.add(Segment);
LLVM_DEBUG(NewMI->dump(););
NewMI = BuildMI(*MFI, MI, DL, ADDrr, DstR).addReg(DstR).add(Base);
LLVM_DEBUG(NewMI->dump(););
return NewMI;
}
bool FixupLEAPass::processBasicBlock(MachineFunction &MF,
MachineFunction::iterator MFI) {
for (MachineBasicBlock::iterator I = MFI->begin(); I != MFI->end(); ++I) {
if (OptIncDec)
if (fixupIncDec(I, MFI))
continue;
if (OptLEA) {
if (MF.getSubtarget<X86Subtarget>().slowLEA())
processInstructionForSLM(I, MFI);
else {
if (MF.getSubtarget<X86Subtarget>().slow3OpsLEA()) {
if (auto *NewMI = processInstrForSlow3OpLEA(*I, MFI)) {
MFI->erase(I);
I = NewMI;
}
} else
processInstruction(I, MFI);
}
}
}
return false;
}