1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 18:54:02 +01:00
llvm-mirror/unittests/FuzzMutate/ReservoirSamplerTest.cpp
Chandler Carruth ae65e281f3 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00

69 lines
2.1 KiB
C++

//===- ReservoirSampler.cpp - Tests for the ReservoirSampler --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/FuzzMutate/Random.h"
#include "gtest/gtest.h"
#include <random>
using namespace llvm;
TEST(ReservoirSamplerTest, OneItem) {
std::mt19937 Rand;
auto Sampler = makeSampler(Rand, 7, 1);
ASSERT_FALSE(Sampler.isEmpty());
ASSERT_EQ(7, Sampler.getSelection());
}
TEST(ReservoirSamplerTest, NoWeight) {
std::mt19937 Rand;
auto Sampler = makeSampler(Rand, 7, 0);
ASSERT_TRUE(Sampler.isEmpty());
}
TEST(ReservoirSamplerTest, Uniform) {
std::mt19937 Rand;
// Run three chi-squared tests to check that the distribution is reasonably
// uniform.
std::vector<int> Items = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
int Failures = 0;
for (int Run = 0; Run < 3; ++Run) {
std::vector<int> Counts(Items.size(), 0);
// We need $np_s > 5$ at minimum, but we're better off going a couple of
// orders of magnitude larger.
int N = Items.size() * 5 * 100;
for (int I = 0; I < N; ++I) {
auto Sampler = makeSampler(Rand, Items);
Counts[Sampler.getSelection()] += 1;
}
// Knuth. TAOCP Vol. 2, 3.3.1 (8):
// $V = \frac{1}{n} \sum_{s=1}^{k} \left(\frac{Y_s^2}{p_s}\right) - n$
double Ps = 1.0 / Items.size();
double Sum = 0.0;
for (int Ys : Counts)
Sum += Ys * Ys / Ps;
double V = (Sum / N) - N;
assert(Items.size() == 10 && "Our chi-squared values assume 10 items");
// Since we have 10 items, there are 9 degrees of freedom and the table of
// chi-squared values is as follows:
//
// | p=1% | 5% | 25% | 50% | 75% | 95% | 99% |
// v=9 | 2.088 | 3.325 | 5.899 | 8.343 | 11.39 | 16.92 | 21.67 |
//
// Check that we're in the likely range of results.
//if (V < 2.088 || V > 21.67)
if (V < 2.088 || V > 21.67)
++Failures;
}
EXPECT_LT(Failures, 3) << "Non-uniform distribution?";
}