1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-01 16:33:37 +01:00
llvm-mirror/lib/Transforms/Scalar/ScalarReplAggregates.cpp
Chris Lattner 4a7bce50b8 Fix the Convert to scalar to not insert dead loads in the store case. The
load is needed when we have a small store into a large alloca (at which 
point we get a load/insert/store sequence), but when you do a full-sized
store, this load ends up being dead.

This dead load is bad in really large nasty testcases where the load ends
up causing mem2reg to insert large chains of dependent phi nodes which only
ADCE can delete.  Instead of doing this, just don't insert the dead load.

This fixes rdar://6864035

llvm-svn: 91917
2009-12-22 19:33:28 +00:00

1787 lines
72 KiB
C++

//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This transformation implements the well known scalar replacement of
// aggregates transformation. This xform breaks up alloca instructions of
// aggregate type (structure or array) into individual alloca instructions for
// each member (if possible). Then, if possible, it transforms the individual
// alloca instructions into nice clean scalar SSA form.
//
// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
// often interact, especially for C++ programs. As such, iterating between
// SRoA, then Mem2Reg until we run out of things to promote works well.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "scalarrepl"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/LLVMContext.h"
#include "llvm/Pass.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/IRBuilder.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
using namespace llvm;
STATISTIC(NumReplaced, "Number of allocas broken up");
STATISTIC(NumPromoted, "Number of allocas promoted");
STATISTIC(NumConverted, "Number of aggregates converted to scalar");
STATISTIC(NumGlobals, "Number of allocas copied from constant global");
namespace {
struct SROA : public FunctionPass {
static char ID; // Pass identification, replacement for typeid
explicit SROA(signed T = -1) : FunctionPass(&ID) {
if (T == -1)
SRThreshold = 128;
else
SRThreshold = T;
}
bool runOnFunction(Function &F);
bool performScalarRepl(Function &F);
bool performPromotion(Function &F);
// getAnalysisUsage - This pass does not require any passes, but we know it
// will not alter the CFG, so say so.
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<DominatorTree>();
AU.addRequired<DominanceFrontier>();
AU.setPreservesCFG();
}
private:
TargetData *TD;
/// DeadInsts - Keep track of instructions we have made dead, so that
/// we can remove them after we are done working.
SmallVector<Value*, 32> DeadInsts;
/// AllocaInfo - When analyzing uses of an alloca instruction, this captures
/// information about the uses. All these fields are initialized to false
/// and set to true when something is learned.
struct AllocaInfo {
/// isUnsafe - This is set to true if the alloca cannot be SROA'd.
bool isUnsafe : 1;
/// needsCleanup - This is set to true if there is some use of the alloca
/// that requires cleanup.
bool needsCleanup : 1;
/// isMemCpySrc - This is true if this aggregate is memcpy'd from.
bool isMemCpySrc : 1;
/// isMemCpyDst - This is true if this aggregate is memcpy'd into.
bool isMemCpyDst : 1;
AllocaInfo()
: isUnsafe(false), needsCleanup(false),
isMemCpySrc(false), isMemCpyDst(false) {}
};
unsigned SRThreshold;
void MarkUnsafe(AllocaInfo &I) { I.isUnsafe = true; }
int isSafeAllocaToScalarRepl(AllocaInst *AI);
void isSafeForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
AllocaInfo &Info);
void isSafeGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t &Offset,
AllocaInfo &Info);
void isSafeMemAccess(AllocaInst *AI, uint64_t Offset, uint64_t MemSize,
const Type *MemOpType, bool isStore, AllocaInfo &Info);
bool TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size);
uint64_t FindElementAndOffset(const Type *&T, uint64_t &Offset,
const Type *&IdxTy);
void DoScalarReplacement(AllocaInst *AI,
std::vector<AllocaInst*> &WorkList);
void DeleteDeadInstructions();
void CleanupAllocaUsers(Value *V);
AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocaInst *Base);
void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
SmallVector<AllocaInst*, 32> &NewElts);
void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
SmallVector<AllocaInst*, 32> &NewElts);
void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
SmallVector<AllocaInst*, 32> &NewElts);
void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
AllocaInst *AI,
SmallVector<AllocaInst*, 32> &NewElts);
void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
SmallVector<AllocaInst*, 32> &NewElts);
void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
SmallVector<AllocaInst*, 32> &NewElts);
bool CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
bool &SawVec, uint64_t Offset, unsigned AllocaSize);
void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType,
uint64_t Offset, IRBuilder<> &Builder);
Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
uint64_t Offset, IRBuilder<> &Builder);
static Instruction *isOnlyCopiedFromConstantGlobal(AllocaInst *AI);
};
}
char SROA::ID = 0;
static RegisterPass<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
// Public interface to the ScalarReplAggregates pass
FunctionPass *llvm::createScalarReplAggregatesPass(signed int Threshold) {
return new SROA(Threshold);
}
bool SROA::runOnFunction(Function &F) {
TD = getAnalysisIfAvailable<TargetData>();
bool Changed = performPromotion(F);
// FIXME: ScalarRepl currently depends on TargetData more than it
// theoretically needs to. It should be refactored in order to support
// target-independent IR. Until this is done, just skip the actual
// scalar-replacement portion of this pass.
if (!TD) return Changed;
while (1) {
bool LocalChange = performScalarRepl(F);
if (!LocalChange) break; // No need to repromote if no scalarrepl
Changed = true;
LocalChange = performPromotion(F);
if (!LocalChange) break; // No need to re-scalarrepl if no promotion
}
return Changed;
}
bool SROA::performPromotion(Function &F) {
std::vector<AllocaInst*> Allocas;
DominatorTree &DT = getAnalysis<DominatorTree>();
DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
BasicBlock &BB = F.getEntryBlock(); // Get the entry node for the function
bool Changed = false;
while (1) {
Allocas.clear();
// Find allocas that are safe to promote, by looking at all instructions in
// the entry node
for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) // Is it an alloca?
if (isAllocaPromotable(AI))
Allocas.push_back(AI);
if (Allocas.empty()) break;
PromoteMemToReg(Allocas, DT, DF);
NumPromoted += Allocas.size();
Changed = true;
}
return Changed;
}
/// getNumSAElements - Return the number of elements in the specific struct or
/// array.
static uint64_t getNumSAElements(const Type *T) {
if (const StructType *ST = dyn_cast<StructType>(T))
return ST->getNumElements();
return cast<ArrayType>(T)->getNumElements();
}
// performScalarRepl - This algorithm is a simple worklist driven algorithm,
// which runs on all of the malloc/alloca instructions in the function, removing
// them if they are only used by getelementptr instructions.
//
bool SROA::performScalarRepl(Function &F) {
std::vector<AllocaInst*> WorkList;
// Scan the entry basic block, adding any alloca's and mallocs to the worklist
BasicBlock &BB = F.getEntryBlock();
for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
if (AllocaInst *A = dyn_cast<AllocaInst>(I))
WorkList.push_back(A);
// Process the worklist
bool Changed = false;
while (!WorkList.empty()) {
AllocaInst *AI = WorkList.back();
WorkList.pop_back();
// Handle dead allocas trivially. These can be formed by SROA'ing arrays
// with unused elements.
if (AI->use_empty()) {
AI->eraseFromParent();
continue;
}
// If this alloca is impossible for us to promote, reject it early.
if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
continue;
// Check to see if this allocation is only modified by a memcpy/memmove from
// a constant global. If this is the case, we can change all users to use
// the constant global instead. This is commonly produced by the CFE by
// constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
// is only subsequently read.
if (Instruction *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
DEBUG(errs() << "Found alloca equal to global: " << *AI << '\n');
DEBUG(errs() << " memcpy = " << *TheCopy << '\n');
Constant *TheSrc = cast<Constant>(TheCopy->getOperand(2));
AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
TheCopy->eraseFromParent(); // Don't mutate the global.
AI->eraseFromParent();
++NumGlobals;
Changed = true;
continue;
}
// Check to see if we can perform the core SROA transformation. We cannot
// transform the allocation instruction if it is an array allocation
// (allocations OF arrays are ok though), and an allocation of a scalar
// value cannot be decomposed at all.
uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
// Do not promote [0 x %struct].
if (AllocaSize == 0) continue;
// Do not promote any struct whose size is too big.
if (AllocaSize > SRThreshold) continue;
if ((isa<StructType>(AI->getAllocatedType()) ||
isa<ArrayType>(AI->getAllocatedType())) &&
// Do not promote any struct into more than "32" separate vars.
getNumSAElements(AI->getAllocatedType()) <= SRThreshold/4) {
// Check that all of the users of the allocation are capable of being
// transformed.
switch (isSafeAllocaToScalarRepl(AI)) {
default: llvm_unreachable("Unexpected value!");
case 0: // Not safe to scalar replace.
break;
case 1: // Safe, but requires cleanup/canonicalizations first
CleanupAllocaUsers(AI);
// FALL THROUGH.
case 3: // Safe to scalar replace.
DoScalarReplacement(AI, WorkList);
Changed = true;
continue;
}
}
// If we can turn this aggregate value (potentially with casts) into a
// simple scalar value that can be mem2reg'd into a register value.
// IsNotTrivial tracks whether this is something that mem2reg could have
// promoted itself. If so, we don't want to transform it needlessly. Note
// that we can't just check based on the type: the alloca may be of an i32
// but that has pointer arithmetic to set byte 3 of it or something.
bool IsNotTrivial = false;
const Type *VectorTy = 0;
bool HadAVector = false;
if (CanConvertToScalar(AI, IsNotTrivial, VectorTy, HadAVector,
0, unsigned(AllocaSize)) && IsNotTrivial) {
AllocaInst *NewAI;
// If we were able to find a vector type that can handle this with
// insert/extract elements, and if there was at least one use that had
// a vector type, promote this to a vector. We don't want to promote
// random stuff that doesn't use vectors (e.g. <9 x double>) because then
// we just get a lot of insert/extracts. If at least one vector is
// involved, then we probably really do have a union of vector/array.
if (VectorTy && isa<VectorType>(VectorTy) && HadAVector) {
DEBUG(errs() << "CONVERT TO VECTOR: " << *AI << "\n TYPE = "
<< *VectorTy << '\n');
// Create and insert the vector alloca.
NewAI = new AllocaInst(VectorTy, 0, "", AI->getParent()->begin());
ConvertUsesToScalar(AI, NewAI, 0);
} else {
DEBUG(errs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
// Create and insert the integer alloca.
const Type *NewTy = IntegerType::get(AI->getContext(), AllocaSize*8);
NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
ConvertUsesToScalar(AI, NewAI, 0);
}
NewAI->takeName(AI);
AI->eraseFromParent();
++NumConverted;
Changed = true;
continue;
}
// Otherwise, couldn't process this alloca.
}
return Changed;
}
/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
/// predicate, do SROA now.
void SROA::DoScalarReplacement(AllocaInst *AI,
std::vector<AllocaInst*> &WorkList) {
DEBUG(errs() << "Found inst to SROA: " << *AI << '\n');
SmallVector<AllocaInst*, 32> ElementAllocas;
if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
ElementAllocas.reserve(ST->getNumContainedTypes());
for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
AI->getAlignment(),
AI->getName() + "." + Twine(i), AI);
ElementAllocas.push_back(NA);
WorkList.push_back(NA); // Add to worklist for recursive processing
}
} else {
const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
ElementAllocas.reserve(AT->getNumElements());
const Type *ElTy = AT->getElementType();
for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
AI->getName() + "." + Twine(i), AI);
ElementAllocas.push_back(NA);
WorkList.push_back(NA); // Add to worklist for recursive processing
}
}
// Now that we have created the new alloca instructions, rewrite all the
// uses of the old alloca.
RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
// Now erase any instructions that were made dead while rewriting the alloca.
DeleteDeadInstructions();
AI->eraseFromParent();
NumReplaced++;
}
/// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
/// recursively including all their operands that become trivially dead.
void SROA::DeleteDeadInstructions() {
while (!DeadInsts.empty()) {
Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
if (Instruction *U = dyn_cast<Instruction>(*OI)) {
// Zero out the operand and see if it becomes trivially dead.
// (But, don't add allocas to the dead instruction list -- they are
// already on the worklist and will be deleted separately.)
*OI = 0;
if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
DeadInsts.push_back(U);
}
I->eraseFromParent();
}
}
/// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
/// performing scalar replacement of alloca AI. The results are flagged in
/// the Info parameter. Offset indicates the position within AI that is
/// referenced by this instruction.
void SROA::isSafeForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
AllocaInfo &Info) {
for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
Instruction *User = cast<Instruction>(*UI);
if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
isSafeForScalarRepl(BC, AI, Offset, Info);
} else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
uint64_t GEPOffset = Offset;
isSafeGEP(GEPI, AI, GEPOffset, Info);
if (!Info.isUnsafe)
isSafeForScalarRepl(GEPI, AI, GEPOffset, Info);
} else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(UI)) {
ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
if (Length)
isSafeMemAccess(AI, Offset, Length->getZExtValue(), 0,
UI.getOperandNo() == 1, Info);
else
MarkUnsafe(Info);
} else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
if (!LI->isVolatile()) {
const Type *LIType = LI->getType();
isSafeMemAccess(AI, Offset, TD->getTypeAllocSize(LIType),
LIType, false, Info);
} else
MarkUnsafe(Info);
} else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
// Store is ok if storing INTO the pointer, not storing the pointer
if (!SI->isVolatile() && SI->getOperand(0) != I) {
const Type *SIType = SI->getOperand(0)->getType();
isSafeMemAccess(AI, Offset, TD->getTypeAllocSize(SIType),
SIType, true, Info);
} else
MarkUnsafe(Info);
} else if (isa<DbgInfoIntrinsic>(UI)) {
// If one user is DbgInfoIntrinsic then check if all users are
// DbgInfoIntrinsics.
if (OnlyUsedByDbgInfoIntrinsics(I)) {
Info.needsCleanup = true;
return;
}
MarkUnsafe(Info);
} else {
DEBUG(errs() << " Transformation preventing inst: " << *User << '\n');
MarkUnsafe(Info);
}
if (Info.isUnsafe) return;
}
}
/// isSafeGEP - Check if a GEP instruction can be handled for scalar
/// replacement. It is safe when all the indices are constant, in-bounds
/// references, and when the resulting offset corresponds to an element within
/// the alloca type. The results are flagged in the Info parameter. Upon
/// return, Offset is adjusted as specified by the GEP indices.
void SROA::isSafeGEP(GetElementPtrInst *GEPI, AllocaInst *AI,
uint64_t &Offset, AllocaInfo &Info) {
gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
if (GEPIt == E)
return;
// Walk through the GEP type indices, checking the types that this indexes
// into.
for (; GEPIt != E; ++GEPIt) {
// Ignore struct elements, no extra checking needed for these.
if (isa<StructType>(*GEPIt))
continue;
ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
if (!IdxVal)
return MarkUnsafe(Info);
}
// Compute the offset due to this GEP and check if the alloca has a
// component element at that offset.
SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
&Indices[0], Indices.size());
if (!TypeHasComponent(AI->getAllocatedType(), Offset, 0))
MarkUnsafe(Info);
}
/// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
/// alloca or has an offset and size that corresponds to a component element
/// within it. The offset checked here may have been formed from a GEP with a
/// pointer bitcasted to a different type.
void SROA::isSafeMemAccess(AllocaInst *AI, uint64_t Offset, uint64_t MemSize,
const Type *MemOpType, bool isStore,
AllocaInfo &Info) {
// Check if this is a load/store of the entire alloca.
if (Offset == 0 && MemSize == TD->getTypeAllocSize(AI->getAllocatedType())) {
bool UsesAggregateType = (MemOpType == AI->getAllocatedType());
// This is safe for MemIntrinsics (where MemOpType is 0), integer types
// (which are essentially the same as the MemIntrinsics, especially with
// regard to copying padding between elements), or references using the
// aggregate type of the alloca.
if (!MemOpType || isa<IntegerType>(MemOpType) || UsesAggregateType) {
if (!UsesAggregateType) {
if (isStore)
Info.isMemCpyDst = true;
else
Info.isMemCpySrc = true;
}
return;
}
}
// Check if the offset/size correspond to a component within the alloca type.
const Type *T = AI->getAllocatedType();
if (TypeHasComponent(T, Offset, MemSize))
return;
return MarkUnsafe(Info);
}
/// TypeHasComponent - Return true if T has a component type with the
/// specified offset and size. If Size is zero, do not check the size.
bool SROA::TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size) {
const Type *EltTy;
uint64_t EltSize;
if (const StructType *ST = dyn_cast<StructType>(T)) {
const StructLayout *Layout = TD->getStructLayout(ST);
unsigned EltIdx = Layout->getElementContainingOffset(Offset);
EltTy = ST->getContainedType(EltIdx);
EltSize = TD->getTypeAllocSize(EltTy);
Offset -= Layout->getElementOffset(EltIdx);
} else if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
EltTy = AT->getElementType();
EltSize = TD->getTypeAllocSize(EltTy);
if (Offset >= AT->getNumElements() * EltSize)
return false;
Offset %= EltSize;
} else {
return false;
}
if (Offset == 0 && (Size == 0 || EltSize == Size))
return true;
// Check if the component spans multiple elements.
if (Offset + Size > EltSize)
return false;
return TypeHasComponent(EltTy, Offset, Size);
}
/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
/// the instruction I, which references it, to use the separate elements.
/// Offset indicates the position within AI that is referenced by this
/// instruction.
void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
SmallVector<AllocaInst*, 32> &NewElts) {
for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
Instruction *User = cast<Instruction>(*UI);
if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
RewriteBitCast(BC, AI, Offset, NewElts);
} else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
RewriteGEP(GEPI, AI, Offset, NewElts);
} else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
uint64_t MemSize = Length->getZExtValue();
if (Offset == 0 &&
MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
// Otherwise the intrinsic can only touch a single element and the
// address operand will be updated, so nothing else needs to be done.
} else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
const Type *LIType = LI->getType();
if (LIType == AI->getAllocatedType()) {
// Replace:
// %res = load { i32, i32 }* %alloc
// with:
// %load.0 = load i32* %alloc.0
// %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
// %load.1 = load i32* %alloc.1
// %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
// (Also works for arrays instead of structs)
Value *Insert = UndefValue::get(LIType);
for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
Value *Load = new LoadInst(NewElts[i], "load", LI);
Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
}
LI->replaceAllUsesWith(Insert);
DeadInsts.push_back(LI);
} else if (isa<IntegerType>(LIType) &&
TD->getTypeAllocSize(LIType) ==
TD->getTypeAllocSize(AI->getAllocatedType())) {
// If this is a load of the entire alloca to an integer, rewrite it.
RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
}
} else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
Value *Val = SI->getOperand(0);
const Type *SIType = Val->getType();
if (SIType == AI->getAllocatedType()) {
// Replace:
// store { i32, i32 } %val, { i32, i32 }* %alloc
// with:
// %val.0 = extractvalue { i32, i32 } %val, 0
// store i32 %val.0, i32* %alloc.0
// %val.1 = extractvalue { i32, i32 } %val, 1
// store i32 %val.1, i32* %alloc.1
// (Also works for arrays instead of structs)
for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
new StoreInst(Extract, NewElts[i], SI);
}
DeadInsts.push_back(SI);
} else if (isa<IntegerType>(SIType) &&
TD->getTypeAllocSize(SIType) ==
TD->getTypeAllocSize(AI->getAllocatedType())) {
// If this is a store of the entire alloca from an integer, rewrite it.
RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
}
}
}
}
/// RewriteBitCast - Update a bitcast reference to the alloca being replaced
/// and recursively continue updating all of its uses.
void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
SmallVector<AllocaInst*, 32> &NewElts) {
RewriteForScalarRepl(BC, AI, Offset, NewElts);
if (BC->getOperand(0) != AI)
return;
// The bitcast references the original alloca. Replace its uses with
// references to the first new element alloca.
Instruction *Val = NewElts[0];
if (Val->getType() != BC->getDestTy()) {
Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
Val->takeName(BC);
}
BC->replaceAllUsesWith(Val);
DeadInsts.push_back(BC);
}
/// FindElementAndOffset - Return the index of the element containing Offset
/// within the specified type, which must be either a struct or an array.
/// Sets T to the type of the element and Offset to the offset within that
/// element. IdxTy is set to the type of the index result to be used in a
/// GEP instruction.
uint64_t SROA::FindElementAndOffset(const Type *&T, uint64_t &Offset,
const Type *&IdxTy) {
uint64_t Idx = 0;
if (const StructType *ST = dyn_cast<StructType>(T)) {
const StructLayout *Layout = TD->getStructLayout(ST);
Idx = Layout->getElementContainingOffset(Offset);
T = ST->getContainedType(Idx);
Offset -= Layout->getElementOffset(Idx);
IdxTy = Type::getInt32Ty(T->getContext());
return Idx;
}
const ArrayType *AT = cast<ArrayType>(T);
T = AT->getElementType();
uint64_t EltSize = TD->getTypeAllocSize(T);
Idx = Offset / EltSize;
Offset -= Idx * EltSize;
IdxTy = Type::getInt64Ty(T->getContext());
return Idx;
}
/// RewriteGEP - Check if this GEP instruction moves the pointer across
/// elements of the alloca that are being split apart, and if so, rewrite
/// the GEP to be relative to the new element.
void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
SmallVector<AllocaInst*, 32> &NewElts) {
uint64_t OldOffset = Offset;
SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
&Indices[0], Indices.size());
RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
const Type *T = AI->getAllocatedType();
const Type *IdxTy;
uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
if (GEPI->getOperand(0) == AI)
OldIdx = ~0ULL; // Force the GEP to be rewritten.
T = AI->getAllocatedType();
uint64_t EltOffset = Offset;
uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
// If this GEP does not move the pointer across elements of the alloca
// being split, then it does not needs to be rewritten.
if (Idx == OldIdx)
return;
const Type *i32Ty = Type::getInt32Ty(AI->getContext());
SmallVector<Value*, 8> NewArgs;
NewArgs.push_back(Constant::getNullValue(i32Ty));
while (EltOffset != 0) {
uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
}
Instruction *Val = NewElts[Idx];
if (NewArgs.size() > 1) {
Val = GetElementPtrInst::CreateInBounds(Val, NewArgs.begin(),
NewArgs.end(), "", GEPI);
Val->takeName(GEPI);
}
if (Val->getType() != GEPI->getType())
Val = new BitCastInst(Val, GEPI->getType(), Val->getNameStr(), GEPI);
GEPI->replaceAllUsesWith(Val);
DeadInsts.push_back(GEPI);
}
/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
/// Rewrite it to copy or set the elements of the scalarized memory.
void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
AllocaInst *AI,
SmallVector<AllocaInst*, 32> &NewElts) {
// If this is a memcpy/memmove, construct the other pointer as the
// appropriate type. The "Other" pointer is the pointer that goes to memory
// that doesn't have anything to do with the alloca that we are promoting. For
// memset, this Value* stays null.
Value *OtherPtr = 0;
LLVMContext &Context = MI->getContext();
unsigned MemAlignment = MI->getAlignment();
if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
if (Inst == MTI->getRawDest())
OtherPtr = MTI->getRawSource();
else {
assert(Inst == MTI->getRawSource());
OtherPtr = MTI->getRawDest();
}
}
// If there is an other pointer, we want to convert it to the same pointer
// type as AI has, so we can GEP through it safely.
if (OtherPtr) {
// Remove bitcasts and all-zero GEPs from OtherPtr. This is an
// optimization, but it's also required to detect the corner case where
// both pointer operands are referencing the same memory, and where
// OtherPtr may be a bitcast or GEP that currently being rewritten. (This
// function is only called for mem intrinsics that access the whole
// aggregate, so non-zero GEPs are not an issue here.)
while (1) {
if (BitCastInst *BC = dyn_cast<BitCastInst>(OtherPtr)) {
OtherPtr = BC->getOperand(0);
continue;
}
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(OtherPtr)) {
// All zero GEPs are effectively bitcasts.
if (GEP->hasAllZeroIndices()) {
OtherPtr = GEP->getOperand(0);
continue;
}
}
break;
}
// If OtherPtr has already been rewritten, this intrinsic will be dead.
if (OtherPtr == NewElts[0])
return;
if (ConstantExpr *BCE = dyn_cast<ConstantExpr>(OtherPtr))
if (BCE->getOpcode() == Instruction::BitCast)
OtherPtr = BCE->getOperand(0);
// If the pointer is not the right type, insert a bitcast to the right
// type.
if (OtherPtr->getType() != AI->getType())
OtherPtr = new BitCastInst(OtherPtr, AI->getType(), OtherPtr->getName(),
MI);
}
// Process each element of the aggregate.
Value *TheFn = MI->getOperand(0);
const Type *BytePtrTy = MI->getRawDest()->getType();
bool SROADest = MI->getRawDest() == Inst;
Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
// If this is a memcpy/memmove, emit a GEP of the other element address.
Value *OtherElt = 0;
unsigned OtherEltAlign = MemAlignment;
if (OtherPtr == AI) {
OtherElt = NewElts[i];
OtherEltAlign = 0;
} else if (OtherPtr) {
Value *Idx[2] = { Zero,
ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx, Idx + 2,
OtherPtr->getNameStr()+"."+Twine(i),
MI);
uint64_t EltOffset;
const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
if (const StructType *ST =
dyn_cast<StructType>(OtherPtrTy->getElementType())) {
EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
} else {
const Type *EltTy =
cast<SequentialType>(OtherPtr->getType())->getElementType();
EltOffset = TD->getTypeAllocSize(EltTy)*i;
}
// The alignment of the other pointer is the guaranteed alignment of the
// element, which is affected by both the known alignment of the whole
// mem intrinsic and the alignment of the element. If the alignment of
// the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
// known alignment is just 4 bytes.
OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
}
Value *EltPtr = NewElts[i];
const Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
// If we got down to a scalar, insert a load or store as appropriate.
if (EltTy->isSingleValueType()) {
if (isa<MemTransferInst>(MI)) {
if (SROADest) {
// From Other to Alloca.
Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
new StoreInst(Elt, EltPtr, MI);
} else {
// From Alloca to Other.
Value *Elt = new LoadInst(EltPtr, "tmp", MI);
new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
}
continue;
}
assert(isa<MemSetInst>(MI));
// If the stored element is zero (common case), just store a null
// constant.
Constant *StoreVal;
if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getOperand(2))) {
if (CI->isZero()) {
StoreVal = Constant::getNullValue(EltTy); // 0.0, null, 0, <0,0>
} else {
// If EltTy is a vector type, get the element type.
const Type *ValTy = EltTy->getScalarType();
// Construct an integer with the right value.
unsigned EltSize = TD->getTypeSizeInBits(ValTy);
APInt OneVal(EltSize, CI->getZExtValue());
APInt TotalVal(OneVal);
// Set each byte.
for (unsigned i = 0; 8*i < EltSize; ++i) {
TotalVal = TotalVal.shl(8);
TotalVal |= OneVal;
}
// Convert the integer value to the appropriate type.
StoreVal = ConstantInt::get(Context, TotalVal);
if (isa<PointerType>(ValTy))
StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
else if (ValTy->isFloatingPoint())
StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
assert(StoreVal->getType() == ValTy && "Type mismatch!");
// If the requested value was a vector constant, create it.
if (EltTy != ValTy) {
unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
StoreVal = ConstantVector::get(&Elts[0], NumElts);
}
}
new StoreInst(StoreVal, EltPtr, MI);
continue;
}
// Otherwise, if we're storing a byte variable, use a memset call for
// this element.
}
// Cast the element pointer to BytePtrTy.
if (EltPtr->getType() != BytePtrTy)
EltPtr = new BitCastInst(EltPtr, BytePtrTy, EltPtr->getNameStr(), MI);
// Cast the other pointer (if we have one) to BytePtrTy.
if (OtherElt && OtherElt->getType() != BytePtrTy)
OtherElt = new BitCastInst(OtherElt, BytePtrTy,OtherElt->getNameStr(),
MI);
unsigned EltSize = TD->getTypeAllocSize(EltTy);
// Finally, insert the meminst for this element.
if (isa<MemTransferInst>(MI)) {
Value *Ops[] = {
SROADest ? EltPtr : OtherElt, // Dest ptr
SROADest ? OtherElt : EltPtr, // Src ptr
ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
// Align
ConstantInt::get(Type::getInt32Ty(MI->getContext()), OtherEltAlign)
};
CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
} else {
assert(isa<MemSetInst>(MI));
Value *Ops[] = {
EltPtr, MI->getOperand(2), // Dest, Value,
ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
Zero // Align
};
CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
}
}
DeadInsts.push_back(MI);
}
/// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
/// overwrites the entire allocation. Extract out the pieces of the stored
/// integer and store them individually.
void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
SmallVector<AllocaInst*, 32> &NewElts){
// Extract each element out of the integer according to its structure offset
// and store the element value to the individual alloca.
Value *SrcVal = SI->getOperand(0);
const Type *AllocaEltTy = AI->getAllocatedType();
uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
// Handle tail padding by extending the operand
if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
SrcVal = new ZExtInst(SrcVal,
IntegerType::get(SI->getContext(), AllocaSizeBits),
"", SI);
DEBUG(errs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
<< '\n');
// There are two forms here: AI could be an array or struct. Both cases
// have different ways to compute the element offset.
if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
const StructLayout *Layout = TD->getStructLayout(EltSTy);
for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
// Get the number of bits to shift SrcVal to get the value.
const Type *FieldTy = EltSTy->getElementType(i);
uint64_t Shift = Layout->getElementOffsetInBits(i);
if (TD->isBigEndian())
Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
Value *EltVal = SrcVal;
if (Shift) {
Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
"sroa.store.elt", SI);
}
// Truncate down to an integer of the right size.
uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
// Ignore zero sized fields like {}, they obviously contain no data.
if (FieldSizeBits == 0) continue;
if (FieldSizeBits != AllocaSizeBits)
EltVal = new TruncInst(EltVal,
IntegerType::get(SI->getContext(), FieldSizeBits),
"", SI);
Value *DestField = NewElts[i];
if (EltVal->getType() == FieldTy) {
// Storing to an integer field of this size, just do it.
} else if (FieldTy->isFloatingPoint() || isa<VectorType>(FieldTy)) {
// Bitcast to the right element type (for fp/vector values).
EltVal = new BitCastInst(EltVal, FieldTy, "", SI);
} else {
// Otherwise, bitcast the dest pointer (for aggregates).
DestField = new BitCastInst(DestField,
PointerType::getUnqual(EltVal->getType()),
"", SI);
}
new StoreInst(EltVal, DestField, SI);
}
} else {
const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
const Type *ArrayEltTy = ATy->getElementType();
uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
uint64_t Shift;
if (TD->isBigEndian())
Shift = AllocaSizeBits-ElementOffset;
else
Shift = 0;
for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
// Ignore zero sized fields like {}, they obviously contain no data.
if (ElementSizeBits == 0) continue;
Value *EltVal = SrcVal;
if (Shift) {
Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
"sroa.store.elt", SI);
}
// Truncate down to an integer of the right size.
if (ElementSizeBits != AllocaSizeBits)
EltVal = new TruncInst(EltVal,
IntegerType::get(SI->getContext(),
ElementSizeBits),"",SI);
Value *DestField = NewElts[i];
if (EltVal->getType() == ArrayEltTy) {
// Storing to an integer field of this size, just do it.
} else if (ArrayEltTy->isFloatingPoint() || isa<VectorType>(ArrayEltTy)) {
// Bitcast to the right element type (for fp/vector values).
EltVal = new BitCastInst(EltVal, ArrayEltTy, "", SI);
} else {
// Otherwise, bitcast the dest pointer (for aggregates).
DestField = new BitCastInst(DestField,
PointerType::getUnqual(EltVal->getType()),
"", SI);
}
new StoreInst(EltVal, DestField, SI);
if (TD->isBigEndian())
Shift -= ElementOffset;
else
Shift += ElementOffset;
}
}
DeadInsts.push_back(SI);
}
/// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
/// an integer. Load the individual pieces to form the aggregate value.
void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
SmallVector<AllocaInst*, 32> &NewElts) {
// Extract each element out of the NewElts according to its structure offset
// and form the result value.
const Type *AllocaEltTy = AI->getAllocatedType();
uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
DEBUG(errs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
<< '\n');
// There are two forms here: AI could be an array or struct. Both cases
// have different ways to compute the element offset.
const StructLayout *Layout = 0;
uint64_t ArrayEltBitOffset = 0;
if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
Layout = TD->getStructLayout(EltSTy);
} else {
const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
}
Value *ResultVal =
Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
// Load the value from the alloca. If the NewElt is an aggregate, cast
// the pointer to an integer of the same size before doing the load.
Value *SrcField = NewElts[i];
const Type *FieldTy =
cast<PointerType>(SrcField->getType())->getElementType();
uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
// Ignore zero sized fields like {}, they obviously contain no data.
if (FieldSizeBits == 0) continue;
const IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
FieldSizeBits);
if (!isa<IntegerType>(FieldTy) && !FieldTy->isFloatingPoint() &&
!isa<VectorType>(FieldTy))
SrcField = new BitCastInst(SrcField,
PointerType::getUnqual(FieldIntTy),
"", LI);
SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
// If SrcField is a fp or vector of the right size but that isn't an
// integer type, bitcast to an integer so we can shift it.
if (SrcField->getType() != FieldIntTy)
SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
// Zero extend the field to be the same size as the final alloca so that
// we can shift and insert it.
if (SrcField->getType() != ResultVal->getType())
SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
// Determine the number of bits to shift SrcField.
uint64_t Shift;
if (Layout) // Struct case.
Shift = Layout->getElementOffsetInBits(i);
else // Array case.
Shift = i*ArrayEltBitOffset;
if (TD->isBigEndian())
Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
if (Shift) {
Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
}
ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
}
// Handle tail padding by truncating the result
if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
LI->replaceAllUsesWith(ResultVal);
DeadInsts.push_back(LI);
}
/// HasPadding - Return true if the specified type has any structure or
/// alignment padding, false otherwise.
static bool HasPadding(const Type *Ty, const TargetData &TD) {
if (const StructType *STy = dyn_cast<StructType>(Ty)) {
const StructLayout *SL = TD.getStructLayout(STy);
unsigned PrevFieldBitOffset = 0;
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
// Padding in sub-elements?
if (HasPadding(STy->getElementType(i), TD))
return true;
// Check to see if there is any padding between this element and the
// previous one.
if (i) {
unsigned PrevFieldEnd =
PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
if (PrevFieldEnd < FieldBitOffset)
return true;
}
PrevFieldBitOffset = FieldBitOffset;
}
// Check for tail padding.
if (unsigned EltCount = STy->getNumElements()) {
unsigned PrevFieldEnd = PrevFieldBitOffset +
TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
if (PrevFieldEnd < SL->getSizeInBits())
return true;
}
} else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
return HasPadding(ATy->getElementType(), TD);
} else if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
return HasPadding(VTy->getElementType(), TD);
}
return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
}
/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
/// an aggregate can be broken down into elements. Return 0 if not, 3 if safe,
/// or 1 if safe after canonicalization has been performed.
int SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
// Loop over the use list of the alloca. We can only transform it if all of
// the users are safe to transform.
AllocaInfo Info;
isSafeForScalarRepl(AI, AI, 0, Info);
if (Info.isUnsafe) {
DEBUG(errs() << "Cannot transform: " << *AI << '\n');
return 0;
}
// Okay, we know all the users are promotable. If the aggregate is a memcpy
// source and destination, we have to be careful. In particular, the memcpy
// could be moving around elements that live in structure padding of the LLVM
// types, but may actually be used. In these cases, we refuse to promote the
// struct.
if (Info.isMemCpySrc && Info.isMemCpyDst &&
HasPadding(AI->getAllocatedType(), *TD))
return 0;
// If we require cleanup, return 1, otherwise return 3.
return Info.needsCleanup ? 1 : 3;
}
/// CleanupAllocaUsers - If SROA reported that it can promote the specified
/// allocation, but only if cleaned up, perform the cleanups required.
void SROA::CleanupAllocaUsers(Value *V) {
for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
UI != E; ) {
User *U = *UI++;
Instruction *I = cast<Instruction>(U);
SmallVector<DbgInfoIntrinsic *, 2> DbgInUses;
if (!isa<StoreInst>(I) && OnlyUsedByDbgInfoIntrinsics(I, &DbgInUses)) {
// Safe to remove debug info uses.
while (!DbgInUses.empty()) {
DbgInfoIntrinsic *DI = DbgInUses.back(); DbgInUses.pop_back();
DI->eraseFromParent();
}
I->eraseFromParent();
}
}
}
/// MergeInType - Add the 'In' type to the accumulated type (Accum) so far at
/// the offset specified by Offset (which is specified in bytes).
///
/// There are two cases we handle here:
/// 1) A union of vector types of the same size and potentially its elements.
/// Here we turn element accesses into insert/extract element operations.
/// This promotes a <4 x float> with a store of float to the third element
/// into a <4 x float> that uses insert element.
/// 2) A fully general blob of memory, which we turn into some (potentially
/// large) integer type with extract and insert operations where the loads
/// and stores would mutate the memory.
static void MergeInType(const Type *In, uint64_t Offset, const Type *&VecTy,
unsigned AllocaSize, const TargetData &TD,
LLVMContext &Context) {
// If this could be contributing to a vector, analyze it.
if (VecTy != Type::getVoidTy(Context)) { // either null or a vector type.
// If the In type is a vector that is the same size as the alloca, see if it
// matches the existing VecTy.
if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
// If we're storing/loading a vector of the right size, allow it as a
// vector. If this the first vector we see, remember the type so that
// we know the element size.
if (VecTy == 0)
VecTy = VInTy;
return;
}
} else if (In->isFloatTy() || In->isDoubleTy() ||
(isa<IntegerType>(In) && In->getPrimitiveSizeInBits() >= 8 &&
isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
// If we're accessing something that could be an element of a vector, see
// if the implied vector agrees with what we already have and if Offset is
// compatible with it.
unsigned EltSize = In->getPrimitiveSizeInBits()/8;
if (Offset % EltSize == 0 &&
AllocaSize % EltSize == 0 &&
(VecTy == 0 ||
cast<VectorType>(VecTy)->getElementType()
->getPrimitiveSizeInBits()/8 == EltSize)) {
if (VecTy == 0)
VecTy = VectorType::get(In, AllocaSize/EltSize);
return;
}
}
}
// Otherwise, we have a case that we can't handle with an optimized vector
// form. We can still turn this into a large integer.
VecTy = Type::getVoidTy(Context);
}
/// CanConvertToScalar - V is a pointer. If we can convert the pointee and all
/// its accesses to a single vector type, return true and set VecTy to
/// the new type. If we could convert the alloca into a single promotable
/// integer, return true but set VecTy to VoidTy. Further, if the use is not a
/// completely trivial use that mem2reg could promote, set IsNotTrivial. Offset
/// is the current offset from the base of the alloca being analyzed.
///
/// If we see at least one access to the value that is as a vector type, set the
/// SawVec flag.
bool SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
bool &SawVec, uint64_t Offset,
unsigned AllocaSize) {
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
Instruction *User = cast<Instruction>(*UI);
if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
// Don't break volatile loads.
if (LI->isVolatile())
return false;
MergeInType(LI->getType(), Offset, VecTy,
AllocaSize, *TD, V->getContext());
SawVec |= isa<VectorType>(LI->getType());
continue;
}
if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
// Storing the pointer, not into the value?
if (SI->getOperand(0) == V || SI->isVolatile()) return 0;
MergeInType(SI->getOperand(0)->getType(), Offset,
VecTy, AllocaSize, *TD, V->getContext());
SawVec |= isa<VectorType>(SI->getOperand(0)->getType());
continue;
}
if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
if (!CanConvertToScalar(BCI, IsNotTrivial, VecTy, SawVec, Offset,
AllocaSize))
return false;
IsNotTrivial = true;
continue;
}
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
// If this is a GEP with a variable indices, we can't handle it.
if (!GEP->hasAllConstantIndices())
return false;
// Compute the offset that this GEP adds to the pointer.
SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
uint64_t GEPOffset = TD->getIndexedOffset(GEP->getPointerOperandType(),
&Indices[0], Indices.size());
// See if all uses can be converted.
if (!CanConvertToScalar(GEP, IsNotTrivial, VecTy, SawVec,Offset+GEPOffset,
AllocaSize))
return false;
IsNotTrivial = true;
continue;
}
// If this is a constant sized memset of a constant value (e.g. 0) we can
// handle it.
if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
// Store of constant value and constant size.
if (isa<ConstantInt>(MSI->getValue()) &&
isa<ConstantInt>(MSI->getLength())) {
IsNotTrivial = true;
continue;
}
}
// If this is a memcpy or memmove into or out of the whole allocation, we
// can handle it like a load or store of the scalar type.
if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
if (ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength()))
if (Len->getZExtValue() == AllocaSize && Offset == 0) {
IsNotTrivial = true;
continue;
}
}
// Ignore dbg intrinsic.
if (isa<DbgInfoIntrinsic>(User))
continue;
// Otherwise, we cannot handle this!
return false;
}
return true;
}
/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
/// directly. This happens when we are converting an "integer union" to a
/// single integer scalar, or when we are converting a "vector union" to a
/// vector with insert/extractelement instructions.
///
/// Offset is an offset from the original alloca, in bits that need to be
/// shifted to the right. By the end of this, there should be no uses of Ptr.
void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset) {
while (!Ptr->use_empty()) {
Instruction *User = cast<Instruction>(Ptr->use_back());
if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
ConvertUsesToScalar(CI, NewAI, Offset);
CI->eraseFromParent();
continue;
}
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
// Compute the offset that this GEP adds to the pointer.
SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
uint64_t GEPOffset = TD->getIndexedOffset(GEP->getPointerOperandType(),
&Indices[0], Indices.size());
ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
GEP->eraseFromParent();
continue;
}
IRBuilder<> Builder(User->getParent(), User);
if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
// The load is a bit extract from NewAI shifted right by Offset bits.
Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
Value *NewLoadVal
= ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
LI->replaceAllUsesWith(NewLoadVal);
LI->eraseFromParent();
continue;
}
if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
assert(SI->getOperand(0) != Ptr && "Consistency error!");
Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
Builder);
Builder.CreateStore(New, NewAI);
SI->eraseFromParent();
// If the load we just inserted is now dead, then the inserted store
// overwrote the entire thing.
if (Old->use_empty())
Old->eraseFromParent();
continue;
}
// If this is a constant sized memset of a constant value (e.g. 0) we can
// transform it into a store of the expanded constant value.
if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
assert(MSI->getRawDest() == Ptr && "Consistency error!");
unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
if (NumBytes != 0) {
unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
// Compute the value replicated the right number of times.
APInt APVal(NumBytes*8, Val);
// Splat the value if non-zero.
if (Val)
for (unsigned i = 1; i != NumBytes; ++i)
APVal |= APVal << 8;
Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
Value *New = ConvertScalar_InsertValue(
ConstantInt::get(User->getContext(), APVal),
Old, Offset, Builder);
Builder.CreateStore(New, NewAI);
// If the load we just inserted is now dead, then the memset overwrote
// the entire thing.
if (Old->use_empty())
Old->eraseFromParent();
}
MSI->eraseFromParent();
continue;
}
// If this is a memcpy or memmove into or out of the whole allocation, we
// can handle it like a load or store of the scalar type.
if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
assert(Offset == 0 && "must be store to start of alloca");
// If the source and destination are both to the same alloca, then this is
// a noop copy-to-self, just delete it. Otherwise, emit a load and store
// as appropriate.
AllocaInst *OrigAI = cast<AllocaInst>(Ptr->getUnderlyingObject());
if (MTI->getSource()->getUnderlyingObject() != OrigAI) {
// Dest must be OrigAI, change this to be a load from the original
// pointer (bitcasted), then a store to our new alloca.
assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
Value *SrcPtr = MTI->getSource();
SrcPtr = Builder.CreateBitCast(SrcPtr, NewAI->getType());
LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
SrcVal->setAlignment(MTI->getAlignment());
Builder.CreateStore(SrcVal, NewAI);
} else if (MTI->getDest()->getUnderlyingObject() != OrigAI) {
// Src must be OrigAI, change this to be a load from NewAI then a store
// through the original dest pointer (bitcasted).
assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), NewAI->getType());
StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
NewStore->setAlignment(MTI->getAlignment());
} else {
// Noop transfer. Src == Dst
}
MTI->eraseFromParent();
continue;
}
// If user is a dbg info intrinsic then it is safe to remove it.
if (isa<DbgInfoIntrinsic>(User)) {
User->eraseFromParent();
continue;
}
llvm_unreachable("Unsupported operation!");
}
}
/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
/// or vector value FromVal, extracting the bits from the offset specified by
/// Offset. This returns the value, which is of type ToType.
///
/// This happens when we are converting an "integer union" to a single
/// integer scalar, or when we are converting a "vector union" to a vector with
/// insert/extractelement instructions.
///
/// Offset is an offset from the original alloca, in bits that need to be
/// shifted to the right.
Value *SROA::ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
uint64_t Offset, IRBuilder<> &Builder) {
// If the load is of the whole new alloca, no conversion is needed.
if (FromVal->getType() == ToType && Offset == 0)
return FromVal;
// If the result alloca is a vector type, this is either an element
// access or a bitcast to another vector type of the same size.
if (const VectorType *VTy = dyn_cast<VectorType>(FromVal->getType())) {
if (isa<VectorType>(ToType))
return Builder.CreateBitCast(FromVal, ToType, "tmp");
// Otherwise it must be an element access.
unsigned Elt = 0;
if (Offset) {
unsigned EltSize = TD->getTypeAllocSizeInBits(VTy->getElementType());
Elt = Offset/EltSize;
assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
}
// Return the element extracted out of it.
Value *V = Builder.CreateExtractElement(FromVal, ConstantInt::get(
Type::getInt32Ty(FromVal->getContext()), Elt), "tmp");
if (V->getType() != ToType)
V = Builder.CreateBitCast(V, ToType, "tmp");
return V;
}
// If ToType is a first class aggregate, extract out each of the pieces and
// use insertvalue's to form the FCA.
if (const StructType *ST = dyn_cast<StructType>(ToType)) {
const StructLayout &Layout = *TD->getStructLayout(ST);
Value *Res = UndefValue::get(ST);
for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
Offset+Layout.getElementOffsetInBits(i),
Builder);
Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
}
return Res;
}
if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
uint64_t EltSize = TD->getTypeAllocSizeInBits(AT->getElementType());
Value *Res = UndefValue::get(AT);
for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
Offset+i*EltSize, Builder);
Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
}
return Res;
}
// Otherwise, this must be a union that was converted to an integer value.
const IntegerType *NTy = cast<IntegerType>(FromVal->getType());
// If this is a big-endian system and the load is narrower than the
// full alloca type, we need to do a shift to get the right bits.
int ShAmt = 0;
if (TD->isBigEndian()) {
// On big-endian machines, the lowest bit is stored at the bit offset
// from the pointer given by getTypeStoreSizeInBits. This matters for
// integers with a bitwidth that is not a multiple of 8.
ShAmt = TD->getTypeStoreSizeInBits(NTy) -
TD->getTypeStoreSizeInBits(ToType) - Offset;
} else {
ShAmt = Offset;
}
// Note: we support negative bitwidths (with shl) which are not defined.
// We do this to support (f.e.) loads off the end of a structure where
// only some bits are used.
if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
FromVal = Builder.CreateLShr(FromVal,
ConstantInt::get(FromVal->getType(),
ShAmt), "tmp");
else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
FromVal = Builder.CreateShl(FromVal,
ConstantInt::get(FromVal->getType(),
-ShAmt), "tmp");
// Finally, unconditionally truncate the integer to the right width.
unsigned LIBitWidth = TD->getTypeSizeInBits(ToType);
if (LIBitWidth < NTy->getBitWidth())
FromVal =
Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
LIBitWidth), "tmp");
else if (LIBitWidth > NTy->getBitWidth())
FromVal =
Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
LIBitWidth), "tmp");
// If the result is an integer, this is a trunc or bitcast.
if (isa<IntegerType>(ToType)) {
// Should be done.
} else if (ToType->isFloatingPoint() || isa<VectorType>(ToType)) {
// Just do a bitcast, we know the sizes match up.
FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
} else {
// Otherwise must be a pointer.
FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
}
assert(FromVal->getType() == ToType && "Didn't convert right?");
return FromVal;
}
/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
/// or vector value "Old" at the offset specified by Offset.
///
/// This happens when we are converting an "integer union" to a
/// single integer scalar, or when we are converting a "vector union" to a
/// vector with insert/extractelement instructions.
///
/// Offset is an offset from the original alloca, in bits that need to be
/// shifted to the right.
Value *SROA::ConvertScalar_InsertValue(Value *SV, Value *Old,
uint64_t Offset, IRBuilder<> &Builder) {
// Convert the stored type to the actual type, shift it left to insert
// then 'or' into place.
const Type *AllocaType = Old->getType();
LLVMContext &Context = Old->getContext();
if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
uint64_t VecSize = TD->getTypeAllocSizeInBits(VTy);
uint64_t ValSize = TD->getTypeAllocSizeInBits(SV->getType());
// Changing the whole vector with memset or with an access of a different
// vector type?
if (ValSize == VecSize)
return Builder.CreateBitCast(SV, AllocaType, "tmp");
uint64_t EltSize = TD->getTypeAllocSizeInBits(VTy->getElementType());
// Must be an element insertion.
unsigned Elt = Offset/EltSize;
if (SV->getType() != VTy->getElementType())
SV = Builder.CreateBitCast(SV, VTy->getElementType(), "tmp");
SV = Builder.CreateInsertElement(Old, SV,
ConstantInt::get(Type::getInt32Ty(SV->getContext()), Elt),
"tmp");
return SV;
}
// If SV is a first-class aggregate value, insert each value recursively.
if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
const StructLayout &Layout = *TD->getStructLayout(ST);
for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
Old = ConvertScalar_InsertValue(Elt, Old,
Offset+Layout.getElementOffsetInBits(i),
Builder);
}
return Old;
}
if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
uint64_t EltSize = TD->getTypeAllocSizeInBits(AT->getElementType());
for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
}
return Old;
}
// If SV is a float, convert it to the appropriate integer type.
// If it is a pointer, do the same.
unsigned SrcWidth = TD->getTypeSizeInBits(SV->getType());
unsigned DestWidth = TD->getTypeSizeInBits(AllocaType);
unsigned SrcStoreWidth = TD->getTypeStoreSizeInBits(SV->getType());
unsigned DestStoreWidth = TD->getTypeStoreSizeInBits(AllocaType);
if (SV->getType()->isFloatingPoint() || isa<VectorType>(SV->getType()))
SV = Builder.CreateBitCast(SV,
IntegerType::get(SV->getContext(),SrcWidth), "tmp");
else if (isa<PointerType>(SV->getType()))
SV = Builder.CreatePtrToInt(SV, TD->getIntPtrType(SV->getContext()), "tmp");
// Zero extend or truncate the value if needed.
if (SV->getType() != AllocaType) {
if (SV->getType()->getPrimitiveSizeInBits() <
AllocaType->getPrimitiveSizeInBits())
SV = Builder.CreateZExt(SV, AllocaType, "tmp");
else {
// Truncation may be needed if storing more than the alloca can hold
// (undefined behavior).
SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
SrcWidth = DestWidth;
SrcStoreWidth = DestStoreWidth;
}
}
// If this is a big-endian system and the store is narrower than the
// full alloca type, we need to do a shift to get the right bits.
int ShAmt = 0;
if (TD->isBigEndian()) {
// On big-endian machines, the lowest bit is stored at the bit offset
// from the pointer given by getTypeStoreSizeInBits. This matters for
// integers with a bitwidth that is not a multiple of 8.
ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
} else {
ShAmt = Offset;
}
// Note: we support negative bitwidths (with shr) which are not defined.
// We do this to support (f.e.) stores off the end of a structure where
// only some bits in the structure are set.
APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(),
ShAmt), "tmp");
Mask <<= ShAmt;
} else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(),
-ShAmt), "tmp");
Mask = Mask.lshr(-ShAmt);
}
// Mask out the bits we are about to insert from the old value, and or
// in the new bits.
if (SrcWidth != DestWidth) {
assert(DestWidth > SrcWidth);
Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
SV = Builder.CreateOr(Old, SV, "ins");
}
return SV;
}
/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
/// some part of a constant global variable. This intentionally only accepts
/// constant expressions because we don't can't rewrite arbitrary instructions.
static bool PointsToConstantGlobal(Value *V) {
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
return GV->isConstant();
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
if (CE->getOpcode() == Instruction::BitCast ||
CE->getOpcode() == Instruction::GetElementPtr)
return PointsToConstantGlobal(CE->getOperand(0));
return false;
}
/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
/// pointer to an alloca. Ignore any reads of the pointer, return false if we
/// see any stores or other unknown uses. If we see pointer arithmetic, keep
/// track of whether it moves the pointer (with isOffset) but otherwise traverse
/// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to
/// the alloca, and if the source pointer is a pointer to a constant global, we
/// can optimize this.
static bool isOnlyCopiedFromConstantGlobal(Value *V, Instruction *&TheCopy,
bool isOffset) {
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
if (LoadInst *LI = dyn_cast<LoadInst>(*UI))
// Ignore non-volatile loads, they are always ok.
if (!LI->isVolatile())
continue;
if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI)) {
// If uses of the bitcast are ok, we are ok.
if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
return false;
continue;
}
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
// If the GEP has all zero indices, it doesn't offset the pointer. If it
// doesn't, it does.
if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
isOffset || !GEP->hasAllZeroIndices()))
return false;
continue;
}
// If this is isn't our memcpy/memmove, reject it as something we can't
// handle.
if (!isa<MemTransferInst>(*UI))
return false;
// If we already have seen a copy, reject the second one.
if (TheCopy) return false;
// If the pointer has been offset from the start of the alloca, we can't
// safely handle this.
if (isOffset) return false;
// If the memintrinsic isn't using the alloca as the dest, reject it.
if (UI.getOperandNo() != 1) return false;
MemIntrinsic *MI = cast<MemIntrinsic>(*UI);
// If the source of the memcpy/move is not a constant global, reject it.
if (!PointsToConstantGlobal(MI->getOperand(2)))
return false;
// Otherwise, the transform is safe. Remember the copy instruction.
TheCopy = MI;
}
return true;
}
/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
/// modified by a copy from a constant global. If we can prove this, we can
/// replace any uses of the alloca with uses of the global directly.
Instruction *SROA::isOnlyCopiedFromConstantGlobal(AllocaInst *AI) {
Instruction *TheCopy = 0;
if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
return TheCopy;
return 0;
}