1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 04:02:41 +01:00
llvm-mirror/include/llvm/IR/PassManager.h
Chandler Carruth b07ec0321e Revert r293017 and fix the actual underlying issue.
The patch committed in r293017, as discussed on the list, doesn't really
make sense but was causing an actual issue to go away.

The issue turns out to be that in one place the extra template arguments
were dropped from the OuterAnalysisManagerProxy. This in turn caused the
types used in one set of places to access the key to be completely
different from the types used in another set of places for both Loop and
CGSCC cases where there are extra arguments.

I have literally no idea how anything seemed to work with this bug in
place. It blows my mind. But it did except for mingw64 in a DLL build.

I've added a really handy static assert that helps ensure we don't break
this in the future. It immediately diagnoses the issue with a compile
failure and a very clear error message. Much better that staring at
backtraces on a build bot. =]

llvm-svn: 294267
2017-02-07 01:50:48 +00:00

1280 lines
51 KiB
C++

//===- PassManager.h - Pass management infrastructure -----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This header defines various interfaces for pass management in LLVM. There
/// is no "pass" interface in LLVM per se. Instead, an instance of any class
/// which supports a method to 'run' it over a unit of IR can be used as
/// a pass. A pass manager is generally a tool to collect a sequence of passes
/// which run over a particular IR construct, and run each of them in sequence
/// over each such construct in the containing IR construct. As there is no
/// containing IR construct for a Module, a manager for passes over modules
/// forms the base case which runs its managed passes in sequence over the
/// single module provided.
///
/// The core IR library provides managers for running passes over
/// modules and functions.
///
/// * FunctionPassManager can run over a Module, runs each pass over
/// a Function.
/// * ModulePassManager must be directly run, runs each pass over the Module.
///
/// Note that the implementations of the pass managers use concept-based
/// polymorphism as outlined in the "Value Semantics and Concept-based
/// Polymorphism" talk (or its abbreviated sibling "Inheritance Is The Base
/// Class of Evil") by Sean Parent:
/// * http://github.com/sean-parent/sean-parent.github.com/wiki/Papers-and-Presentations
/// * http://www.youtube.com/watch?v=_BpMYeUFXv8
/// * http://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_PASSMANAGER_H
#define LLVM_IR_PASSMANAGER_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManagerInternal.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/TypeName.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/type_traits.h"
#include <list>
#include <memory>
#include <vector>
namespace llvm {
/// A special type used by analysis passes to provide an address that
/// identifies that particular analysis pass type.
///
/// Analysis passes should have a static data member of this type and derive
/// from the \c AnalysisInfoMixin to get a static ID method used to identify
/// the analysis in the pass management infrastructure.
struct alignas(8) AnalysisKey {};
/// A special type used to provide an address that identifies a set of related
/// analyses. These sets are primarily used below to mark sets of analyses as
/// preserved.
///
/// For example, a transformation can indicate that it preserves the CFG of a
/// function by preserving the appropriate AnalysisSetKey. An analysis that
/// depends only on the CFG can then check if that AnalysisSetKey is preserved;
/// if it is, the analysis knows that it itself is preserved.
struct alignas(8) AnalysisSetKey {};
/// This templated class represents "all analyses that operate over \<a
/// particular IR unit\>" (e.g. a Function or a Module) in instances of
/// PreservedAnalysis.
///
/// This lets a transformation say e.g. "I preserved all function analyses".
///
/// Note that you must provide an explicit instantiation declaration and
/// definition for this template in order to get the correct behavior on
/// Windows. Otherwise, the address of SetKey will not be stable.
template <typename IRUnitT> class AllAnalysesOn {
public:
static AnalysisSetKey *ID() { return &SetKey; }
private:
static AnalysisSetKey SetKey;
};
template <typename IRUnitT> AnalysisSetKey AllAnalysesOn<IRUnitT>::SetKey;
extern template class AllAnalysesOn<Module>;
extern template class AllAnalysesOn<Function>;
/// Represents analyses that only rely on functions' control flow.
///
/// This can be used with \c PreservedAnalyses to mark the CFG as preserved and
/// to query whether it has been preserved.
///
/// The CFG of a function is defined as the set of basic blocks and the edges
/// between them. Changing the set of basic blocks in a function is enough to
/// mutate the CFG. Mutating the condition of a branch or argument of an
/// invoked function does not mutate the CFG, but changing the successor labels
/// of those instructions does.
class CFGAnalyses {
public:
static AnalysisSetKey *ID() { return &SetKey; }
private:
static AnalysisSetKey SetKey;
};
/// A set of analyses that are preserved following a run of a transformation
/// pass.
///
/// Transformation passes build and return these objects to communicate which
/// analyses are still valid after the transformation. For most passes this is
/// fairly simple: if they don't change anything all analyses are preserved,
/// otherwise only a short list of analyses that have been explicitly updated
/// are preserved.
///
/// This class also lets transformation passes mark abstract *sets* of analyses
/// as preserved. A transformation that (say) does not alter the CFG can
/// indicate such by marking a particular AnalysisSetKey as preserved, and
/// then analyses can query whether that AnalysisSetKey is preserved.
///
/// Finally, this class can represent an "abandoned" analysis, which is
/// not preserved even if it would be covered by some abstract set of analyses.
///
/// Given a `PreservedAnalyses` object, an analysis will typically want to
/// figure out whether it is preserved. In the example below, MyAnalysisType is
/// preserved if it's not abandoned, and (a) it's explicitly marked as
/// preserved, (b), the set AllAnalysesOn<MyIRUnit> is preserved, or (c) both
/// AnalysisSetA and AnalysisSetB are preserved.
///
/// ```
/// auto PAC = PA.getChecker<MyAnalysisType>();
/// if (PAC.preserved() || PAC.preservedSet<AllAnalysesOn<MyIRUnit>>() ||
/// (PAC.preservedSet<AnalysisSetA>() &&
/// PAC.preservedSet<AnalysisSetB>())) {
/// // The analysis has been successfully preserved ...
/// }
/// ```
class PreservedAnalyses {
public:
/// \brief Convenience factory function for the empty preserved set.
static PreservedAnalyses none() { return PreservedAnalyses(); }
/// \brief Construct a special preserved set that preserves all passes.
static PreservedAnalyses all() {
PreservedAnalyses PA;
PA.PreservedIDs.insert(&AllAnalysesKey);
return PA;
}
/// Mark an analysis as preserved.
template <typename AnalysisT> void preserve() { preserve(AnalysisT::ID()); }
/// \brief Given an analysis's ID, mark the analysis as preserved, adding it
/// to the set.
void preserve(AnalysisKey *ID) {
// Clear this ID from the explicit not-preserved set if present.
NotPreservedAnalysisIDs.erase(ID);
// If we're not already preserving all analyses (other than those in
// NotPreservedAnalysisIDs).
if (!areAllPreserved())
PreservedIDs.insert(ID);
}
/// Mark an analysis set as preserved.
template <typename AnalysisSetT> void preserveSet() {
preserveSet(AnalysisSetT::ID());
}
/// Mark an analysis set as preserved using its ID.
void preserveSet(AnalysisSetKey *ID) {
// If we're not already in the saturated 'all' state, add this set.
if (!areAllPreserved())
PreservedIDs.insert(ID);
}
/// Mark an analysis as abandoned.
///
/// An abandoned analysis is not preserved, even if it is nominally covered
/// by some other set or was previously explicitly marked as preserved.
///
/// Note that you can only abandon a specific analysis, not a *set* of
/// analyses.
template <typename AnalysisT> void abandon() { abandon(AnalysisT::ID()); }
/// Mark an analysis as abandoned using its ID.
///
/// An abandoned analysis is not preserved, even if it is nominally covered
/// by some other set or was previously explicitly marked as preserved.
///
/// Note that you can only abandon a specific analysis, not a *set* of
/// analyses.
void abandon(AnalysisKey *ID) {
PreservedIDs.erase(ID);
NotPreservedAnalysisIDs.insert(ID);
}
/// \brief Intersect this set with another in place.
///
/// This is a mutating operation on this preserved set, removing all
/// preserved passes which are not also preserved in the argument.
void intersect(const PreservedAnalyses &Arg) {
if (Arg.areAllPreserved())
return;
if (areAllPreserved()) {
*this = Arg;
return;
}
// The intersection requires the *union* of the explicitly not-preserved
// IDs and the *intersection* of the preserved IDs.
for (auto ID : Arg.NotPreservedAnalysisIDs) {
PreservedIDs.erase(ID);
NotPreservedAnalysisIDs.insert(ID);
}
for (auto ID : PreservedIDs)
if (!Arg.PreservedIDs.count(ID))
PreservedIDs.erase(ID);
}
/// \brief Intersect this set with a temporary other set in place.
///
/// This is a mutating operation on this preserved set, removing all
/// preserved passes which are not also preserved in the argument.
void intersect(PreservedAnalyses &&Arg) {
if (Arg.areAllPreserved())
return;
if (areAllPreserved()) {
*this = std::move(Arg);
return;
}
// The intersection requires the *union* of the explicitly not-preserved
// IDs and the *intersection* of the preserved IDs.
for (auto ID : Arg.NotPreservedAnalysisIDs) {
PreservedIDs.erase(ID);
NotPreservedAnalysisIDs.insert(ID);
}
for (auto ID : PreservedIDs)
if (!Arg.PreservedIDs.count(ID))
PreservedIDs.erase(ID);
}
/// A checker object that makes it easy to query for whether an analysis or
/// some set covering it is preserved.
class PreservedAnalysisChecker {
friend class PreservedAnalyses;
const PreservedAnalyses &PA;
AnalysisKey *const ID;
const bool IsAbandoned;
/// A PreservedAnalysisChecker is tied to a particular Analysis because
/// `preserved()` and `preservedSet()` both return false if the Analysis
/// was abandoned.
PreservedAnalysisChecker(const PreservedAnalyses &PA, AnalysisKey *ID)
: PA(PA), ID(ID), IsAbandoned(PA.NotPreservedAnalysisIDs.count(ID)) {}
public:
/// Returns true if the checker's analysis was not abandoned and either
/// - the analysis is explicitly preserved or
/// - all analyses are preserved.
bool preserved() {
return !IsAbandoned && (PA.PreservedIDs.count(&AllAnalysesKey) ||
PA.PreservedIDs.count(ID));
}
/// Returns true if the checker's analysis was not abandoned and either
/// - \p AnalysisSetT is explicitly preserved or
/// - all analyses are preserved.
template <typename AnalysisSetT> bool preservedSet() {
AnalysisSetKey *SetID = AnalysisSetT::ID();
return !IsAbandoned && (PA.PreservedIDs.count(&AllAnalysesKey) ||
PA.PreservedIDs.count(SetID));
}
};
/// Build a checker for this `PreservedAnalyses` and the specified analysis
/// type.
///
/// You can use the returned object to query whether an analysis was
/// preserved. See the example in the comment on `PreservedAnalysis`.
template <typename AnalysisT> PreservedAnalysisChecker getChecker() const {
return PreservedAnalysisChecker(*this, AnalysisT::ID());
}
/// Build a checker for this `PreservedAnalyses` and the specified analysis
/// ID.
///
/// You can use the returned object to query whether an analysis was
/// preserved. See the example in the comment on `PreservedAnalysis`.
PreservedAnalysisChecker getChecker(AnalysisKey *ID) const {
return PreservedAnalysisChecker(*this, ID);
}
/// Test whether all analyses are preserved (and none are abandoned).
///
/// This is used primarily to optimize for the common case of a transformation
/// which makes no changes to the IR.
bool areAllPreserved() const {
return NotPreservedAnalysisIDs.empty() &&
PreservedIDs.count(&AllAnalysesKey);
}
/// Directly test whether a set of analyses is preserved.
///
/// This is only true when no analyses have been explicitly abandoned.
template <typename AnalysisSetT> bool allAnalysesInSetPreserved() const {
return allAnalysesInSetPreserved(AnalysisSetT::ID());
}
/// Directly test whether a set of analyses is preserved.
///
/// This is only true when no analyses have been explicitly abandoned.
bool allAnalysesInSetPreserved(AnalysisSetKey *SetID) const {
return NotPreservedAnalysisIDs.empty() &&
(PreservedIDs.count(&AllAnalysesKey) || PreservedIDs.count(SetID));
}
private:
/// A special key used to indicate all analyses.
static AnalysisSetKey AllAnalysesKey;
/// The IDs of analyses and analysis sets that are preserved.
SmallPtrSet<void *, 2> PreservedIDs;
/// The IDs of explicitly not-preserved analyses.
///
/// If an analysis in this set is covered by a set in `PreservedIDs`, we
/// consider it not-preserved. That is, `NotPreservedAnalysisIDs` always
/// "wins" over analysis sets in `PreservedIDs`.
///
/// Also, a given ID should never occur both here and in `PreservedIDs`.
SmallPtrSet<AnalysisKey *, 2> NotPreservedAnalysisIDs;
};
// Forward declare the analysis manager template.
template <typename IRUnitT, typename... ExtraArgTs> class AnalysisManager;
/// A CRTP mix-in to automatically provide informational APIs needed for
/// passes.
///
/// This provides some boilerplate for types that are passes.
template <typename DerivedT> struct PassInfoMixin {
/// Gets the name of the pass we are mixed into.
static StringRef name() {
static_assert(std::is_base_of<PassInfoMixin, DerivedT>::value,
"Must pass the derived type as the template argument!");
StringRef Name = getTypeName<DerivedT>();
if (Name.startswith("llvm::"))
Name = Name.drop_front(strlen("llvm::"));
return Name;
}
};
/// A CRTP mix-in that provides informational APIs needed for analysis passes.
///
/// This provides some boilerplate for types that are analysis passes. It
/// automatically mixes in \c PassInfoMixin.
template <typename DerivedT>
struct AnalysisInfoMixin : PassInfoMixin<DerivedT> {
/// Returns an opaque, unique ID for this analysis type.
///
/// This ID is a pointer type that is guaranteed to be 8-byte aligned and thus
/// suitable for use in sets, maps, and other data structures that use the low
/// bits of pointers.
///
/// Note that this requires the derived type provide a static \c AnalysisKey
/// member called \c Key.
///
/// FIXME: The only reason the mixin type itself can't declare the Key value
/// is that some compilers cannot correctly unique a templated static variable
/// so it has the same addresses in each instantiation. The only currently
/// known platform with this limitation is Windows DLL builds, specifically
/// building each part of LLVM as a DLL. If we ever remove that build
/// configuration, this mixin can provide the static key as well.
static AnalysisKey *ID() {
static_assert(std::is_base_of<AnalysisInfoMixin, DerivedT>::value,
"Must pass the derived type as the template argument!");
return &DerivedT::Key;
}
};
/// \brief Manages a sequence of passes over a particular unit of IR.
///
/// A pass manager contains a sequence of passes to run over a particular unit
/// of IR (e.g. Functions, Modules). It is itself a valid pass over that unit of
/// IR, and when run over some given IR will run each of its contained passes in
/// sequence. Pass managers are the primary and most basic building block of a
/// pass pipeline.
///
/// When you run a pass manager, you provide an \c AnalysisManager<IRUnitT>
/// argument. The pass manager will propagate that analysis manager to each
/// pass it runs, and will call the analysis manager's invalidation routine with
/// the PreservedAnalyses of each pass it runs.
template <typename IRUnitT,
typename AnalysisManagerT = AnalysisManager<IRUnitT>,
typename... ExtraArgTs>
class PassManager : public PassInfoMixin<
PassManager<IRUnitT, AnalysisManagerT, ExtraArgTs...>> {
public:
/// \brief Construct a pass manager.
///
/// If \p DebugLogging is true, we'll log our progress to llvm::dbgs().
explicit PassManager(bool DebugLogging = false) : DebugLogging(DebugLogging) {}
// FIXME: These are equivalent to the default move constructor/move
// assignment. However, using = default triggers linker errors due to the
// explicit instantiations below. Find away to use the default and remove the
// duplicated code here.
PassManager(PassManager &&Arg)
: Passes(std::move(Arg.Passes)),
DebugLogging(std::move(Arg.DebugLogging)) {}
PassManager &operator=(PassManager &&RHS) {
Passes = std::move(RHS.Passes);
DebugLogging = std::move(RHS.DebugLogging);
return *this;
}
/// \brief Run all of the passes in this manager over the given unit of IR.
/// ExtraArgs are passed to each pass.
PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM,
ExtraArgTs... ExtraArgs) {
PreservedAnalyses PA = PreservedAnalyses::all();
if (DebugLogging)
dbgs() << "Starting " << getTypeName<IRUnitT>() << " pass manager run.\n";
for (unsigned Idx = 0, Size = Passes.size(); Idx != Size; ++Idx) {
if (DebugLogging)
dbgs() << "Running pass: " << Passes[Idx]->name() << " on "
<< IR.getName() << "\n";
PreservedAnalyses PassPA = Passes[Idx]->run(IR, AM, ExtraArgs...);
// Update the analysis manager as each pass runs and potentially
// invalidates analyses.
AM.invalidate(IR, PassPA);
// Finally, intersect the preserved analyses to compute the aggregate
// preserved set for this pass manager.
PA.intersect(std::move(PassPA));
// FIXME: Historically, the pass managers all called the LLVM context's
// yield function here. We don't have a generic way to acquire the
// context and it isn't yet clear what the right pattern is for yielding
// in the new pass manager so it is currently omitted.
//IR.getContext().yield();
}
// Invaliadtion was handled after each pass in the above loop for the
// current unit of IR. Therefore, the remaining analysis results in the
// AnalysisManager are preserved. We mark this with a set so that we don't
// need to inspect each one individually.
PA.preserveSet<AllAnalysesOn<IRUnitT>>();
if (DebugLogging)
dbgs() << "Finished " << getTypeName<IRUnitT>() << " pass manager run.\n";
return PA;
}
template <typename PassT> void addPass(PassT Pass) {
typedef detail::PassModel<IRUnitT, PassT, PreservedAnalyses,
AnalysisManagerT, ExtraArgTs...>
PassModelT;
Passes.emplace_back(new PassModelT(std::move(Pass)));
}
private:
typedef detail::PassConcept<IRUnitT, AnalysisManagerT, ExtraArgTs...>
PassConceptT;
std::vector<std::unique_ptr<PassConceptT>> Passes;
/// \brief Flag indicating whether we should do debug logging.
bool DebugLogging;
};
extern template class PassManager<Module>;
/// \brief Convenience typedef for a pass manager over modules.
typedef PassManager<Module> ModulePassManager;
extern template class PassManager<Function>;
/// \brief Convenience typedef for a pass manager over functions.
typedef PassManager<Function> FunctionPassManager;
/// \brief A container for analyses that lazily runs them and caches their
/// results.
///
/// This class can manage analyses for any IR unit where the address of the IR
/// unit sufficies as its identity.
template <typename IRUnitT, typename... ExtraArgTs> class AnalysisManager {
public:
class Invalidator;
private:
// Now that we've defined our invalidator, we can define the concept types.
typedef detail::AnalysisResultConcept<IRUnitT, PreservedAnalyses, Invalidator>
ResultConceptT;
typedef detail::AnalysisPassConcept<IRUnitT, PreservedAnalyses, Invalidator,
ExtraArgTs...>
PassConceptT;
/// \brief List of analysis pass IDs and associated concept pointers.
///
/// Requires iterators to be valid across appending new entries and arbitrary
/// erases. Provides the analysis ID to enable finding iterators to a given
/// entry in maps below, and provides the storage for the actual result
/// concept.
typedef std::list<std::pair<AnalysisKey *, std::unique_ptr<ResultConceptT>>>
AnalysisResultListT;
/// \brief Map type from IRUnitT pointer to our custom list type.
typedef DenseMap<IRUnitT *, AnalysisResultListT> AnalysisResultListMapT;
/// \brief Map type from a pair of analysis ID and IRUnitT pointer to an
/// iterator into a particular result list (which is where the actual analysis
/// result is stored).
typedef DenseMap<std::pair<AnalysisKey *, IRUnitT *>,
typename AnalysisResultListT::iterator>
AnalysisResultMapT;
public:
/// API to communicate dependencies between analyses during invalidation.
///
/// When an analysis result embeds handles to other analysis results, it
/// needs to be invalidated both when its own information isn't preserved and
/// when any of its embedded analysis results end up invalidated. We pass an
/// \c Invalidator object as an argument to \c invalidate() in order to let
/// the analysis results themselves define the dependency graph on the fly.
/// This lets us avoid building building an explicit representation of the
/// dependencies between analysis results.
class Invalidator {
public:
/// Trigger the invalidation of some other analysis pass if not already
/// handled and return whether it was in fact invalidated.
///
/// This is expected to be called from within a given analysis result's \c
/// invalidate method to trigger a depth-first walk of all inter-analysis
/// dependencies. The same \p IR unit and \p PA passed to that result's \c
/// invalidate method should in turn be provided to this routine.
///
/// The first time this is called for a given analysis pass, it will call
/// the corresponding result's \c invalidate method. Subsequent calls will
/// use a cache of the results of that initial call. It is an error to form
/// cyclic dependencies between analysis results.
///
/// This returns true if the given analysis's result is invalid. Any
/// dependecies on it will become invalid as a result.
template <typename PassT>
bool invalidate(IRUnitT &IR, const PreservedAnalyses &PA) {
typedef detail::AnalysisResultModel<IRUnitT, PassT,
typename PassT::Result,
PreservedAnalyses, Invalidator>
ResultModelT;
return invalidateImpl<ResultModelT>(PassT::ID(), IR, PA);
}
/// A type-erased variant of the above invalidate method with the same core
/// API other than passing an analysis ID rather than an analysis type
/// parameter.
///
/// This is sadly less efficient than the above routine, which leverages
/// the type parameter to avoid the type erasure overhead.
bool invalidate(AnalysisKey *ID, IRUnitT &IR, const PreservedAnalyses &PA) {
return invalidateImpl<>(ID, IR, PA);
}
private:
friend class AnalysisManager;
template <typename ResultT = ResultConceptT>
bool invalidateImpl(AnalysisKey *ID, IRUnitT &IR,
const PreservedAnalyses &PA) {
// If we've already visited this pass, return true if it was invalidated
// and false otherwise.
auto IMapI = IsResultInvalidated.find(ID);
if (IMapI != IsResultInvalidated.end())
return IMapI->second;
// Otherwise look up the result object.
auto RI = Results.find({ID, &IR});
assert(RI != Results.end() &&
"Trying to invalidate a dependent result that isn't in the "
"manager's cache is always an error, likely due to a stale result "
"handle!");
auto &Result = static_cast<ResultT &>(*RI->second->second);
// Insert into the map whether the result should be invalidated and return
// that. Note that we cannot reuse IMapI and must do a fresh insert here,
// as calling invalidate could (recursively) insert things into the map,
// making any iterator or reference invalid.
bool Inserted;
std::tie(IMapI, Inserted) =
IsResultInvalidated.insert({ID, Result.invalidate(IR, PA, *this)});
(void)Inserted;
assert(Inserted && "Should not have already inserted this ID, likely "
"indicates a dependency cycle!");
return IMapI->second;
}
Invalidator(SmallDenseMap<AnalysisKey *, bool, 8> &IsResultInvalidated,
const AnalysisResultMapT &Results)
: IsResultInvalidated(IsResultInvalidated), Results(Results) {}
SmallDenseMap<AnalysisKey *, bool, 8> &IsResultInvalidated;
const AnalysisResultMapT &Results;
};
/// \brief Construct an empty analysis manager.
///
/// If \p DebugLogging is true, we'll log our progress to llvm::dbgs().
AnalysisManager(bool DebugLogging = false) : DebugLogging(DebugLogging) {}
AnalysisManager(AnalysisManager &&) = default;
AnalysisManager &operator=(AnalysisManager &&) = default;
/// \brief Returns true if the analysis manager has an empty results cache.
bool empty() const {
assert(AnalysisResults.empty() == AnalysisResultLists.empty() &&
"The storage and index of analysis results disagree on how many "
"there are!");
return AnalysisResults.empty();
}
/// \brief Clear any cached analysis results for a single unit of IR.
///
/// This doesn't invalidate, but instead simply deletes, the relevant results.
/// It is useful when the IR is being removed and we want to clear out all the
/// memory pinned for it.
void clear(IRUnitT &IR) {
if (DebugLogging)
dbgs() << "Clearing all analysis results for: " << IR.getName() << "\n";
auto ResultsListI = AnalysisResultLists.find(&IR);
if (ResultsListI == AnalysisResultLists.end())
return;
// Delete the map entries that point into the results list.
for (auto &IDAndResult : ResultsListI->second)
AnalysisResults.erase({IDAndResult.first, &IR});
// And actually destroy and erase the results associated with this IR.
AnalysisResultLists.erase(ResultsListI);
}
/// \brief Clear all analysis results cached by this AnalysisManager.
///
/// Like \c clear(IRUnitT&), this doesn't invalidate the results; it simply
/// deletes them. This lets you clean up the AnalysisManager when the set of
/// IR units itself has potentially changed, and thus we can't even look up a
/// a result and invalidate/clear it directly.
void clear() {
AnalysisResults.clear();
AnalysisResultLists.clear();
}
/// \brief Get the result of an analysis pass for a given IR unit.
///
/// Runs the analysis if a cached result is not available.
template <typename PassT>
typename PassT::Result &getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs) {
assert(AnalysisPasses.count(PassT::ID()) &&
"This analysis pass was not registered prior to being queried");
ResultConceptT &ResultConcept =
getResultImpl(PassT::ID(), IR, ExtraArgs...);
typedef detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
PreservedAnalyses, Invalidator>
ResultModelT;
return static_cast<ResultModelT &>(ResultConcept).Result;
}
/// \brief Get the cached result of an analysis pass for a given IR unit.
///
/// This method never runs the analysis.
///
/// \returns null if there is no cached result.
template <typename PassT>
typename PassT::Result *getCachedResult(IRUnitT &IR) const {
assert(AnalysisPasses.count(PassT::ID()) &&
"This analysis pass was not registered prior to being queried");
ResultConceptT *ResultConcept = getCachedResultImpl(PassT::ID(), IR);
if (!ResultConcept)
return nullptr;
typedef detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
PreservedAnalyses, Invalidator>
ResultModelT;
return &static_cast<ResultModelT *>(ResultConcept)->Result;
}
/// \brief Register an analysis pass with the manager.
///
/// The parameter is a callable whose result is an analysis pass. This allows
/// passing in a lambda to construct the analysis.
///
/// The analysis type to register is the type returned by calling the \c
/// PassBuilder argument. If that type has already been registered, then the
/// argument will not be called and this function will return false.
/// Otherwise, we register the analysis returned by calling \c PassBuilder(),
/// and this function returns true.
///
/// (Note: Although the return value of this function indicates whether or not
/// an analysis was previously registered, there intentionally isn't a way to
/// query this directly. Instead, you should just register all the analyses
/// you might want and let this class run them lazily. This idiom lets us
/// minimize the number of times we have to look up analyses in our
/// hashtable.)
template <typename PassBuilderT>
bool registerPass(PassBuilderT &&PassBuilder) {
typedef decltype(PassBuilder()) PassT;
typedef detail::AnalysisPassModel<IRUnitT, PassT, PreservedAnalyses,
Invalidator, ExtraArgTs...>
PassModelT;
auto &PassPtr = AnalysisPasses[PassT::ID()];
if (PassPtr)
// Already registered this pass type!
return false;
// Construct a new model around the instance returned by the builder.
PassPtr.reset(new PassModelT(PassBuilder()));
return true;
}
/// \brief Invalidate a specific analysis pass for an IR module.
///
/// Note that the analysis result can disregard invalidation, if it determines
/// it is in fact still valid.
template <typename PassT> void invalidate(IRUnitT &IR) {
assert(AnalysisPasses.count(PassT::ID()) &&
"This analysis pass was not registered prior to being invalidated");
invalidateImpl(PassT::ID(), IR);
}
/// \brief Invalidate cached analyses for an IR unit.
///
/// Walk through all of the analyses pertaining to this unit of IR and
/// invalidate them, unless they are preserved by the PreservedAnalyses set.
void invalidate(IRUnitT &IR, const PreservedAnalyses &PA) {
// We're done if all analyses on this IR unit are preserved.
if (PA.allAnalysesInSetPreserved<AllAnalysesOn<IRUnitT>>())
return;
if (DebugLogging)
dbgs() << "Invalidating all non-preserved analyses for: " << IR.getName()
<< "\n";
// Track whether each analysis's result is invalidated in
// IsResultInvalidated.
SmallDenseMap<AnalysisKey *, bool, 8> IsResultInvalidated;
Invalidator Inv(IsResultInvalidated, AnalysisResults);
AnalysisResultListT &ResultsList = AnalysisResultLists[&IR];
for (auto &AnalysisResultPair : ResultsList) {
// This is basically the same thing as Invalidator::invalidate, but we
// can't call it here because we're operating on the type-erased result.
// Moreover if we instead called invalidate() directly, it would do an
// unnecessary look up in ResultsList.
AnalysisKey *ID = AnalysisResultPair.first;
auto &Result = *AnalysisResultPair.second;
auto IMapI = IsResultInvalidated.find(ID);
if (IMapI != IsResultInvalidated.end())
// This result was already handled via the Invalidator.
continue;
// Try to invalidate the result, giving it the Invalidator so it can
// recursively query for any dependencies it has and record the result.
// Note that we cannot reuse 'IMapI' here or pre-insert the ID, as
// Result.invalidate may insert things into the map, invalidating our
// iterator.
bool Inserted =
IsResultInvalidated.insert({ID, Result.invalidate(IR, PA, Inv)})
.second;
(void)Inserted;
assert(Inserted && "Should never have already inserted this ID, likely "
"indicates a cycle!");
}
// Now erase the results that were marked above as invalidated.
if (!IsResultInvalidated.empty()) {
for (auto I = ResultsList.begin(), E = ResultsList.end(); I != E;) {
AnalysisKey *ID = I->first;
if (!IsResultInvalidated.lookup(ID)) {
++I;
continue;
}
if (DebugLogging)
dbgs() << "Invalidating analysis: " << this->lookUpPass(ID).name()
<< " on " << IR.getName() << "\n";
I = ResultsList.erase(I);
AnalysisResults.erase({ID, &IR});
}
}
if (ResultsList.empty())
AnalysisResultLists.erase(&IR);
}
private:
/// \brief Look up a registered analysis pass.
PassConceptT &lookUpPass(AnalysisKey *ID) {
typename AnalysisPassMapT::iterator PI = AnalysisPasses.find(ID);
assert(PI != AnalysisPasses.end() &&
"Analysis passes must be registered prior to being queried!");
return *PI->second;
}
/// \brief Look up a registered analysis pass.
const PassConceptT &lookUpPass(AnalysisKey *ID) const {
typename AnalysisPassMapT::const_iterator PI = AnalysisPasses.find(ID);
assert(PI != AnalysisPasses.end() &&
"Analysis passes must be registered prior to being queried!");
return *PI->second;
}
/// \brief Get an analysis result, running the pass if necessary.
ResultConceptT &getResultImpl(AnalysisKey *ID, IRUnitT &IR,
ExtraArgTs... ExtraArgs) {
typename AnalysisResultMapT::iterator RI;
bool Inserted;
std::tie(RI, Inserted) = AnalysisResults.insert(std::make_pair(
std::make_pair(ID, &IR), typename AnalysisResultListT::iterator()));
// If we don't have a cached result for this function, look up the pass and
// run it to produce a result, which we then add to the cache.
if (Inserted) {
auto &P = this->lookUpPass(ID);
if (DebugLogging)
dbgs() << "Running analysis: " << P.name() << " on " << IR.getName()
<< "\n";
AnalysisResultListT &ResultList = AnalysisResultLists[&IR];
ResultList.emplace_back(ID, P.run(IR, *this, ExtraArgs...));
// P.run may have inserted elements into AnalysisResults and invalidated
// RI.
RI = AnalysisResults.find({ID, &IR});
assert(RI != AnalysisResults.end() && "we just inserted it!");
RI->second = std::prev(ResultList.end());
}
return *RI->second->second;
}
/// \brief Get a cached analysis result or return null.
ResultConceptT *getCachedResultImpl(AnalysisKey *ID, IRUnitT &IR) const {
typename AnalysisResultMapT::const_iterator RI =
AnalysisResults.find({ID, &IR});
return RI == AnalysisResults.end() ? nullptr : &*RI->second->second;
}
/// \brief Invalidate a function pass result.
void invalidateImpl(AnalysisKey *ID, IRUnitT &IR) {
typename AnalysisResultMapT::iterator RI =
AnalysisResults.find({ID, &IR});
if (RI == AnalysisResults.end())
return;
if (DebugLogging)
dbgs() << "Invalidating analysis: " << this->lookUpPass(ID).name()
<< " on " << IR.getName() << "\n";
AnalysisResultLists[&IR].erase(RI->second);
AnalysisResults.erase(RI);
}
/// \brief Map type from module analysis pass ID to pass concept pointer.
typedef DenseMap<AnalysisKey *, std::unique_ptr<PassConceptT>> AnalysisPassMapT;
/// \brief Collection of module analysis passes, indexed by ID.
AnalysisPassMapT AnalysisPasses;
/// \brief Map from function to a list of function analysis results.
///
/// Provides linear time removal of all analysis results for a function and
/// the ultimate storage for a particular cached analysis result.
AnalysisResultListMapT AnalysisResultLists;
/// \brief Map from an analysis ID and function to a particular cached
/// analysis result.
AnalysisResultMapT AnalysisResults;
/// \brief Indicates whether we log to \c llvm::dbgs().
bool DebugLogging;
};
extern template class AnalysisManager<Module>;
/// \brief Convenience typedef for the Module analysis manager.
typedef AnalysisManager<Module> ModuleAnalysisManager;
extern template class AnalysisManager<Function>;
/// \brief Convenience typedef for the Function analysis manager.
typedef AnalysisManager<Function> FunctionAnalysisManager;
/// \brief An analysis over an "outer" IR unit that provides access to an
/// analysis manager over an "inner" IR unit. The inner unit must be contained
/// in the outer unit.
///
/// Fore example, InnerAnalysisManagerProxy<FunctionAnalysisManager, Module> is
/// an analysis over Modules (the "outer" unit) that provides access to a
/// Function analysis manager. The FunctionAnalysisManager is the "inner"
/// manager being proxied, and Functions are the "inner" unit. The inner/outer
/// relationship is valid because each Function is contained in one Module.
///
/// If you're (transitively) within a pass manager for an IR unit U that
/// contains IR unit V, you should never use an analysis manager over V, except
/// via one of these proxies.
///
/// Note that the proxy's result is a move-only RAII object. The validity of
/// the analyses in the inner analysis manager is tied to its lifetime.
template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
class InnerAnalysisManagerProxy
: public AnalysisInfoMixin<
InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT>> {
public:
class Result {
public:
explicit Result(AnalysisManagerT &InnerAM) : InnerAM(&InnerAM) {}
Result(Result &&Arg) : InnerAM(std::move(Arg.InnerAM)) {
// We have to null out the analysis manager in the moved-from state
// because we are taking ownership of the responsibilty to clear the
// analysis state.
Arg.InnerAM = nullptr;
}
Result &operator=(Result &&RHS) {
InnerAM = RHS.InnerAM;
// We have to null out the analysis manager in the moved-from state
// because we are taking ownership of the responsibilty to clear the
// analysis state.
RHS.InnerAM = nullptr;
return *this;
}
~Result() {
// InnerAM is cleared in a moved from state where there is nothing to do.
if (!InnerAM)
return;
// Clear out the analysis manager if we're being destroyed -- it means we
// didn't even see an invalidate call when we got invalidated.
InnerAM->clear();
}
/// \brief Accessor for the analysis manager.
AnalysisManagerT &getManager() { return *InnerAM; }
/// \brief Handler for invalidation of the outer IR unit, \c IRUnitT.
///
/// If the proxy analysis itself is not preserved, we assume that the set of
/// inner IR objects contained in IRUnit may have changed. In this case,
/// we have to call \c clear() on the inner analysis manager, as it may now
/// have stale pointers to its inner IR objects.
///
/// Regardless of whether the proxy analysis is marked as preserved, all of
/// the analyses in the inner analysis manager are potentially invalidated
/// based on the set of preserved analyses.
bool invalidate(
IRUnitT &IR, const PreservedAnalyses &PA,
typename AnalysisManager<IRUnitT, ExtraArgTs...>::Invalidator &Inv);
private:
AnalysisManagerT *InnerAM;
};
explicit InnerAnalysisManagerProxy(AnalysisManagerT &InnerAM)
: InnerAM(&InnerAM) {}
/// \brief Run the analysis pass and create our proxy result object.
///
/// This doesn't do any interesting work; it is primarily used to insert our
/// proxy result object into the outer analysis cache so that we can proxy
/// invalidation to the inner analysis manager.
Result run(IRUnitT &IR, AnalysisManager<IRUnitT, ExtraArgTs...> &AM,
ExtraArgTs...) {
return Result(*InnerAM);
}
private:
friend AnalysisInfoMixin<
InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT>>;
static AnalysisKey Key;
AnalysisManagerT *InnerAM;
};
template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
AnalysisKey
InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>::Key;
/// Provide the \c FunctionAnalysisManager to \c Module proxy.
typedef InnerAnalysisManagerProxy<FunctionAnalysisManager, Module>
FunctionAnalysisManagerModuleProxy;
/// Specialization of the invalidate method for the \c
/// FunctionAnalysisManagerModuleProxy's result.
template <>
bool FunctionAnalysisManagerModuleProxy::Result::invalidate(
Module &M, const PreservedAnalyses &PA,
ModuleAnalysisManager::Invalidator &Inv);
// Ensure the \c FunctionAnalysisManagerModuleProxy is provided as an extern
// template.
extern template class InnerAnalysisManagerProxy<FunctionAnalysisManager,
Module>;
/// \brief An analysis over an "inner" IR unit that provides access to an
/// analysis manager over a "outer" IR unit. The inner unit must be contained
/// in the outer unit.
///
/// For example OuterAnalysisManagerProxy<ModuleAnalysisManager, Function> is an
/// analysis over Functions (the "inner" unit) which provides access to a Module
/// analysis manager. The ModuleAnalysisManager is the "outer" manager being
/// proxied, and Modules are the "outer" IR unit. The inner/outer relationship
/// is valid because each Function is contained in one Module.
///
/// This proxy only exposes the const interface of the outer analysis manager,
/// to indicate that you cannot cause an outer analysis to run from within an
/// inner pass. Instead, you must rely on the \c getCachedResult API.
///
/// This proxy doesn't manage invalidation in any way -- that is handled by the
/// recursive return path of each layer of the pass manager. A consequence of
/// this is the outer analyses may be stale. We invalidate the outer analyses
/// only when we're done running passes over the inner IR units.
template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
class OuterAnalysisManagerProxy
: public AnalysisInfoMixin<
OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>> {
public:
/// \brief Result proxy object for \c OuterAnalysisManagerProxy.
class Result {
public:
explicit Result(const AnalysisManagerT &AM) : AM(&AM) {}
const AnalysisManagerT &getManager() const { return *AM; }
/// \brief Handle invalidation by ignoring it; this pass is immutable.
bool invalidate(
IRUnitT &, const PreservedAnalyses &,
typename AnalysisManager<IRUnitT, ExtraArgTs...>::Invalidator &) {
return false;
}
/// Register a deferred invalidation event for when the outer analysis
/// manager processes its invalidations.
template <typename OuterAnalysisT, typename InvalidatedAnalysisT>
void registerOuterAnalysisInvalidation() {
AnalysisKey *OuterID = OuterAnalysisT::ID();
AnalysisKey *InvalidatedID = InvalidatedAnalysisT::ID();
auto &InvalidatedIDList = OuterAnalysisInvalidationMap[OuterID];
// Note, this is a linear scan. If we end up with large numbers of
// analyses that all trigger invalidation on the same outer analysis,
// this entire system should be changed to some other deterministic
// data structure such as a `SetVector` of a pair of pointers.
auto InvalidatedIt = std::find(InvalidatedIDList.begin(),
InvalidatedIDList.end(), InvalidatedID);
if (InvalidatedIt == InvalidatedIDList.end())
InvalidatedIDList.push_back(InvalidatedID);
}
/// Access the map from outer analyses to deferred invalidation requiring
/// analyses.
const SmallDenseMap<AnalysisKey *, TinyPtrVector<AnalysisKey *>, 2> &
getOuterInvalidations() const {
return OuterAnalysisInvalidationMap;
}
private:
const AnalysisManagerT *AM;
/// A map from an outer analysis ID to the set of this IR-unit's analyses
/// which need to be invalidated.
SmallDenseMap<AnalysisKey *, TinyPtrVector<AnalysisKey *>, 2>
OuterAnalysisInvalidationMap;
};
OuterAnalysisManagerProxy(const AnalysisManagerT &AM) : AM(&AM) {}
/// \brief Run the analysis pass and create our proxy result object.
/// Nothing to see here, it just forwards the \c AM reference into the
/// result.
Result run(IRUnitT &, AnalysisManager<IRUnitT, ExtraArgTs...> &,
ExtraArgTs...) {
return Result(*AM);
}
private:
friend AnalysisInfoMixin<
OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>>;
static AnalysisKey Key;
const AnalysisManagerT *AM;
};
template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
AnalysisKey
OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>::Key;
extern template class OuterAnalysisManagerProxy<ModuleAnalysisManager,
Function>;
/// Provide the \c ModuleAnalysisManager to \c Function proxy.
typedef OuterAnalysisManagerProxy<ModuleAnalysisManager, Function>
ModuleAnalysisManagerFunctionProxy;
/// \brief Trivial adaptor that maps from a module to its functions.
///
/// Designed to allow composition of a FunctionPass(Manager) and
/// a ModulePassManager, by running the FunctionPass(Manager) over every
/// function in the module.
///
/// Function passes run within this adaptor can rely on having exclusive access
/// to the function they are run over. They should not read or modify any other
/// functions! Other threads or systems may be manipulating other functions in
/// the module, and so their state should never be relied on.
/// FIXME: Make the above true for all of LLVM's actual passes, some still
/// violate this principle.
///
/// Function passes can also read the module containing the function, but they
/// should not modify that module outside of the use lists of various globals.
/// For example, a function pass is not permitted to add functions to the
/// module.
/// FIXME: Make the above true for all of LLVM's actual passes, some still
/// violate this principle.
///
/// Note that although function passes can access module analyses, module
/// analyses are not invalidated while the function passes are running, so they
/// may be stale. Function analyses will not be stale.
template <typename FunctionPassT>
class ModuleToFunctionPassAdaptor
: public PassInfoMixin<ModuleToFunctionPassAdaptor<FunctionPassT>> {
public:
explicit ModuleToFunctionPassAdaptor(FunctionPassT Pass)
: Pass(std::move(Pass)) {}
/// \brief Runs the function pass across every function in the module.
PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM) {
FunctionAnalysisManager &FAM =
AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
PreservedAnalyses PA = PreservedAnalyses::all();
for (Function &F : M) {
if (F.isDeclaration())
continue;
PreservedAnalyses PassPA = Pass.run(F, FAM);
// We know that the function pass couldn't have invalidated any other
// function's analyses (that's the contract of a function pass), so
// directly handle the function analysis manager's invalidation here.
FAM.invalidate(F, PassPA);
// Then intersect the preserved set so that invalidation of module
// analyses will eventually occur when the module pass completes.
PA.intersect(std::move(PassPA));
}
// The FunctionAnalysisManagerModuleProxy is preserved because (we assume)
// the function passes we ran didn't add or remove any functions.
//
// We also preserve all analyses on Functions, because we did all the
// invalidation we needed to do above.
PA.preserveSet<AllAnalysesOn<Function>>();
PA.preserve<FunctionAnalysisManagerModuleProxy>();
return PA;
}
private:
FunctionPassT Pass;
};
/// \brief A function to deduce a function pass type and wrap it in the
/// templated adaptor.
template <typename FunctionPassT>
ModuleToFunctionPassAdaptor<FunctionPassT>
createModuleToFunctionPassAdaptor(FunctionPassT Pass) {
return ModuleToFunctionPassAdaptor<FunctionPassT>(std::move(Pass));
}
/// \brief A utility pass template to force an analysis result to be available.
///
/// If there are extra arguments at the pass's run level there may also be
/// extra arguments to the analysis manager's \c getResult routine. We can't
/// guess how to effectively map the arguments from one to the other, and so
/// this specialization just ignores them.
///
/// Specific patterns of run-method extra arguments and analysis manager extra
/// arguments will have to be defined as appropriate specializations.
template <typename AnalysisT, typename IRUnitT,
typename AnalysisManagerT = AnalysisManager<IRUnitT>,
typename... ExtraArgTs>
struct RequireAnalysisPass
: PassInfoMixin<RequireAnalysisPass<AnalysisT, IRUnitT, AnalysisManagerT,
ExtraArgTs...>> {
/// \brief Run this pass over some unit of IR.
///
/// This pass can be run over any unit of IR and use any analysis manager
/// provided they satisfy the basic API requirements. When this pass is
/// created, these methods can be instantiated to satisfy whatever the
/// context requires.
PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM,
ExtraArgTs &&... Args) {
(void)AM.template getResult<AnalysisT>(Arg,
std::forward<ExtraArgTs>(Args)...);
return PreservedAnalyses::all();
}
};
/// \brief A no-op pass template which simply forces a specific analysis result
/// to be invalidated.
template <typename AnalysisT>
struct InvalidateAnalysisPass
: PassInfoMixin<InvalidateAnalysisPass<AnalysisT>> {
/// \brief Run this pass over some unit of IR.
///
/// This pass can be run over any unit of IR and use any analysis manager,
/// provided they satisfy the basic API requirements. When this pass is
/// created, these methods can be instantiated to satisfy whatever the
/// context requires.
template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs>
PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM, ExtraArgTs &&...) {
auto PA = PreservedAnalyses::all();
PA.abandon<AnalysisT>();
return PA;
}
};
/// \brief A utility pass that does nothing, but preserves no analyses.
///
/// Because this preserves no analyses, any analysis passes queried after this
/// pass runs will recompute fresh results.
struct InvalidateAllAnalysesPass : PassInfoMixin<InvalidateAllAnalysesPass> {
/// \brief Run this pass over some unit of IR.
template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs>
PreservedAnalyses run(IRUnitT &, AnalysisManagerT &, ExtraArgTs &&...) {
return PreservedAnalyses::none();
}
};
/// A utility pass template that simply runs another pass multiple times.
///
/// This can be useful when debugging or testing passes. It also serves as an
/// example of how to extend the pass manager in ways beyond composition.
template <typename PassT>
class RepeatedPass : public PassInfoMixin<RepeatedPass<PassT>> {
public:
RepeatedPass(int Count, PassT P) : Count(Count), P(std::move(P)) {}
template <typename IRUnitT, typename AnalysisManagerT, typename... Ts>
PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM, Ts &&... Args) {
auto PA = PreservedAnalyses::all();
for (int i = 0; i < Count; ++i)
PA.intersect(P.run(Arg, AM, std::forward<Ts>(Args)...));
return PA;
}
private:
int Count;
PassT P;
};
template <typename PassT>
RepeatedPass<PassT> createRepeatedPass(int Count, PassT P) {
return RepeatedPass<PassT>(Count, std::move(P));
}
}
#endif