mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-02-01 05:01:59 +01:00
9548d706db
Adds support to AArch64FrameLowering to allocate fixed-stack SVE objects. The focus of this patch is purely to allow the stack frame to allocate/deallocate space for scalable SVE objects. More dynamic allocation (at compile-time, i.e. determining placement of SVE objects on the stack), or resolving frame-index references that include scalable-sized offsets, are left for subsequent patches. SVE objects are allocated in the stack frame as a separate region below the callee-save area, and above the alignment gap. This is done so that the SVE objects can be accessed directly from the FP at (runtime) VL-based offsets to benefit from using the VL-scaled addressing modes. The layout looks as follows: +-------------+ | stack arg | +-------------+ | Callee Saves| | X29, X30 | (if available) |-------------| <- FP (if available) | : | | SVE area | | : | +-------------+ |/////////////| alignment gap. | : | | Stack objs | | : | +-------------+ <- SP after call and frame-setup SVE and non-SVE stack objects are distinguished using different StackIDs. The offsets for objects with TargetStackID::SVEVector should be interpreted as purely scalable offsets within their respective SVE region. Reviewers: thegameg, rovka, t.p.northover, efriedma, rengolin, greened Reviewed By: efriedma Differential Revision: https://reviews.llvm.org/D61437 llvm-svn: 373585
132 lines
3.6 KiB
C++
132 lines
3.6 KiB
C++
//===- TestStackOffset.cpp - StackOffset unit tests------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AArch64StackOffset.h"
|
|
#include "gtest/gtest.h"
|
|
|
|
using namespace llvm;
|
|
|
|
TEST(StackOffset, MixedSize) {
|
|
StackOffset A(1, MVT::i8);
|
|
EXPECT_EQ(1, A.getBytes());
|
|
|
|
StackOffset B(2, MVT::i32);
|
|
EXPECT_EQ(8, B.getBytes());
|
|
|
|
StackOffset C(2, MVT::v4i64);
|
|
EXPECT_EQ(64, C.getBytes());
|
|
|
|
StackOffset D(2, MVT::nxv4i64);
|
|
EXPECT_EQ(64, D.getScalableBytes());
|
|
|
|
StackOffset E(2, MVT::v4i64);
|
|
EXPECT_EQ(0, E.getScalableBytes());
|
|
|
|
StackOffset F(2, MVT::nxv4i64);
|
|
EXPECT_EQ(0, F.getBytes());
|
|
}
|
|
|
|
TEST(StackOffset, Add) {
|
|
StackOffset A(1, MVT::i64);
|
|
StackOffset B(1, MVT::i32);
|
|
StackOffset C = A + B;
|
|
EXPECT_EQ(12, C.getBytes());
|
|
|
|
StackOffset D(1, MVT::i32);
|
|
D += A;
|
|
EXPECT_EQ(12, D.getBytes());
|
|
|
|
StackOffset E(1, MVT::nxv1i32);
|
|
StackOffset F = C + E;
|
|
EXPECT_EQ(12, F.getBytes());
|
|
EXPECT_EQ(4, F.getScalableBytes());
|
|
}
|
|
|
|
TEST(StackOffset, Sub) {
|
|
StackOffset A(1, MVT::i64);
|
|
StackOffset B(1, MVT::i32);
|
|
StackOffset C = A - B;
|
|
EXPECT_EQ(4, C.getBytes());
|
|
|
|
StackOffset D(1, MVT::i64);
|
|
D -= A;
|
|
EXPECT_EQ(0, D.getBytes());
|
|
|
|
C += StackOffset(2, MVT::nxv1i32);
|
|
StackOffset E = StackOffset(1, MVT::nxv1i32);
|
|
StackOffset F = C - E;
|
|
EXPECT_EQ(4, F.getBytes());
|
|
EXPECT_EQ(4, F.getScalableBytes());
|
|
}
|
|
|
|
TEST(StackOffset, isZero) {
|
|
StackOffset A(0, MVT::i64);
|
|
StackOffset B(0, MVT::i32);
|
|
EXPECT_TRUE(!A);
|
|
EXPECT_TRUE(!(A + B));
|
|
|
|
StackOffset C(0, MVT::nxv1i32);
|
|
EXPECT_TRUE(!(A + C));
|
|
|
|
StackOffset D(1, MVT::nxv1i32);
|
|
EXPECT_FALSE(!(A + D));
|
|
}
|
|
|
|
TEST(StackOffset, isValid) {
|
|
EXPECT_FALSE(StackOffset(1, MVT::nxv8i1).isValid());
|
|
EXPECT_TRUE(StackOffset(2, MVT::nxv8i1).isValid());
|
|
|
|
#ifndef NDEBUG
|
|
#ifdef GTEST_HAS_DEATH_TEST
|
|
EXPECT_DEATH(StackOffset(1, MVT::i1),
|
|
"Offset type is not a multiple of bytes");
|
|
EXPECT_DEATH(StackOffset(1, MVT::nxv1i1),
|
|
"Offset type is not a multiple of bytes");
|
|
#endif // defined GTEST_HAS_DEATH_TEST
|
|
#endif // not defined NDEBUG
|
|
}
|
|
|
|
TEST(StackOffset, getForFrameOffset) {
|
|
StackOffset A(1, MVT::i64);
|
|
StackOffset B(1, MVT::i32);
|
|
StackOffset C(1, MVT::nxv4i32);
|
|
|
|
// If all offsets can be materialized with only ADDVL,
|
|
// make sure PLSized is 0.
|
|
int64_t ByteSized, VLSized, PLSized;
|
|
(A + B + C).getForFrameOffset(ByteSized, PLSized, VLSized);
|
|
EXPECT_EQ(12, ByteSized);
|
|
EXPECT_EQ(1, VLSized);
|
|
EXPECT_EQ(0, PLSized);
|
|
|
|
// If we need an ADDPL to materialize the offset, and the number of scalable
|
|
// bytes fits the ADDPL immediate, fold the scalable bytes to fit in PLSized.
|
|
StackOffset D(1, MVT::nxv16i1);
|
|
(C + D).getForFrameOffset(ByteSized, PLSized, VLSized);
|
|
EXPECT_EQ(0, ByteSized);
|
|
EXPECT_EQ(0, VLSized);
|
|
EXPECT_EQ(9, PLSized);
|
|
|
|
StackOffset E(4, MVT::nxv4i32);
|
|
StackOffset F(1, MVT::nxv16i1);
|
|
(E + F).getForFrameOffset(ByteSized, PLSized, VLSized);
|
|
EXPECT_EQ(0, ByteSized);
|
|
EXPECT_EQ(0, VLSized);
|
|
EXPECT_EQ(33, PLSized);
|
|
|
|
// If the offset requires an ADDPL instruction to materialize, and would
|
|
// require more than two instructions, decompose it into both
|
|
// ADDVL (n x 16 bytes) and ADDPL (n x 2 bytes) instructions.
|
|
StackOffset G(8, MVT::nxv4i32);
|
|
StackOffset H(1, MVT::nxv16i1);
|
|
(G + H).getForFrameOffset(ByteSized, PLSized, VLSized);
|
|
EXPECT_EQ(0, ByteSized);
|
|
EXPECT_EQ(8, VLSized);
|
|
EXPECT_EQ(1, PLSized);
|
|
}
|