1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 02:52:53 +02:00
llvm-mirror/include/llvm/Transforms/Utils/Local.h
Philip Reames 1dd6ac3c67 Extend EarlyCSE to handle basic cases from JumpThreading and CVP
This patch extends EarlyCSE to take advantage of the information that a controlling branch gives us about the value of a Value within this and dominated basic blocks. If the current block has a single predecessor with a controlling branch, we can infer what the branch condition must have been to execute this block. The actual change to support this is downright simple because EarlyCSE's existing scoped hash table logic deals with most of the complexity around merging.

The patch actually implements two optimizations.
1) The first is analogous to JumpThreading in that it enables EarlyCSE's CSE handling to fold branches which are exactly redundant due to a previous branch to branches on constants. (It doesn't actually replace the branch or change the CFG.) This is pretty clearly a win since it enables substantial CFG simplification before we start trying to inline.
2) The second is analogous to CVP in that it exploits the knowledge gained to replace dominated *uses* of the original value. EarlyCSE does not otherwise reason about specific uses, so this is the more arguable one. It does enable further simplication and constant folding within the rest of the visit by EarlyCSE.

In both cases, the added code only handles the easy dominance based case of each optimization. The general case is deferred to the existing passes.

Differential Revision: http://reviews.llvm.org/D9763

llvm-svn: 238071
2015-05-22 23:53:24 +00:00

297 lines
13 KiB
C++

//===-- Local.h - Functions to perform local transformations ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This family of functions perform various local transformations to the
// program.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TRANSFORMS_UTILS_LOCAL_H
#define LLVM_TRANSFORMS_UTILS_LOCAL_H
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Operator.h"
namespace llvm {
class User;
class BasicBlock;
class Function;
class BranchInst;
class Instruction;
class DbgDeclareInst;
class StoreInst;
class LoadInst;
class Value;
class PHINode;
class AllocaInst;
class AssumptionCache;
class ConstantExpr;
class DataLayout;
class TargetLibraryInfo;
class TargetTransformInfo;
class DIBuilder;
class AliasAnalysis;
class DominatorTree;
template<typename T> class SmallVectorImpl;
//===----------------------------------------------------------------------===//
// Local constant propagation.
//
/// ConstantFoldTerminator - If a terminator instruction is predicated on a
/// constant value, convert it into an unconditional branch to the constant
/// destination. This is a nontrivial operation because the successors of this
/// basic block must have their PHI nodes updated.
/// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
/// conditions and indirectbr addresses this might make dead if
/// DeleteDeadConditions is true.
bool ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions = false,
const TargetLibraryInfo *TLI = nullptr);
//===----------------------------------------------------------------------===//
// Local dead code elimination.
//
/// isInstructionTriviallyDead - Return true if the result produced by the
/// instruction is not used, and the instruction has no side effects.
///
bool isInstructionTriviallyDead(Instruction *I,
const TargetLibraryInfo *TLI = nullptr);
/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
/// trivially dead instruction, delete it. If that makes any of its operands
/// trivially dead, delete them too, recursively. Return true if any
/// instructions were deleted.
bool RecursivelyDeleteTriviallyDeadInstructions(Value *V,
const TargetLibraryInfo *TLI = nullptr);
/// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
/// dead PHI node, due to being a def-use chain of single-use nodes that
/// either forms a cycle or is terminated by a trivially dead instruction,
/// delete it. If that makes any of its operands trivially dead, delete them
/// too, recursively. Return true if a change was made.
bool RecursivelyDeleteDeadPHINode(PHINode *PN,
const TargetLibraryInfo *TLI = nullptr);
/// SimplifyInstructionsInBlock - Scan the specified basic block and try to
/// simplify any instructions in it and recursively delete dead instructions.
///
/// This returns true if it changed the code, note that it can delete
/// instructions in other blocks as well in this block.
bool SimplifyInstructionsInBlock(BasicBlock *BB,
const TargetLibraryInfo *TLI = nullptr);
//===----------------------------------------------------------------------===//
// Control Flow Graph Restructuring.
//
/// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
/// method is called when we're about to delete Pred as a predecessor of BB. If
/// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
///
/// Unlike the removePredecessor method, this attempts to simplify uses of PHI
/// nodes that collapse into identity values. For example, if we have:
/// x = phi(1, 0, 0, 0)
/// y = and x, z
///
/// .. and delete the predecessor corresponding to the '1', this will attempt to
/// recursively fold the 'and' to 0.
void RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred);
/// MergeBasicBlockIntoOnlyPred - BB is a block with one predecessor and its
/// predecessor is known to have one successor (BB!). Eliminate the edge
/// between them, moving the instructions in the predecessor into BB. This
/// deletes the predecessor block.
///
void MergeBasicBlockIntoOnlyPred(BasicBlock *BB, DominatorTree *DT = nullptr);
/// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
/// unconditional branch, and contains no instructions other than PHI nodes,
/// potential debug intrinsics and the branch. If possible, eliminate BB by
/// rewriting all the predecessors to branch to the successor block and return
/// true. If we can't transform, return false.
bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB);
/// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
/// nodes in this block. This doesn't try to be clever about PHI nodes
/// which differ only in the order of the incoming values, but instcombine
/// orders them so it usually won't matter.
///
bool EliminateDuplicatePHINodes(BasicBlock *BB);
/// SimplifyCFG - This function is used to do simplification of a CFG. For
/// example, it adjusts branches to branches to eliminate the extra hop, it
/// eliminates unreachable basic blocks, and does other "peephole" optimization
/// of the CFG. It returns true if a modification was made, possibly deleting
/// the basic block that was pointed to.
///
bool SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
unsigned BonusInstThreshold, AssumptionCache *AC = nullptr);
/// FlatternCFG - This function is used to flatten a CFG. For
/// example, it uses parallel-and and parallel-or mode to collapse
// if-conditions and merge if-regions with identical statements.
///
bool FlattenCFG(BasicBlock *BB, AliasAnalysis *AA = nullptr);
/// FoldBranchToCommonDest - If this basic block is ONLY a setcc and a branch,
/// and if a predecessor branches to us and one of our successors, fold the
/// setcc into the predecessor and use logical operations to pick the right
/// destination.
bool FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold = 1);
/// DemoteRegToStack - This function takes a virtual register computed by an
/// Instruction and replaces it with a slot in the stack frame, allocated via
/// alloca. This allows the CFG to be changed around without fear of
/// invalidating the SSA information for the value. It returns the pointer to
/// the alloca inserted to create a stack slot for X.
///
AllocaInst *DemoteRegToStack(Instruction &X,
bool VolatileLoads = false,
Instruction *AllocaPoint = nullptr);
/// DemotePHIToStack - This function takes a virtual register computed by a phi
/// node and replaces it with a slot in the stack frame, allocated via alloca.
/// The phi node is deleted and it returns the pointer to the alloca inserted.
AllocaInst *DemotePHIToStack(PHINode *P, Instruction *AllocaPoint = nullptr);
/// getOrEnforceKnownAlignment - If the specified pointer has an alignment that
/// we can determine, return it, otherwise return 0. If PrefAlign is specified,
/// and it is more than the alignment of the ultimate object, see if we can
/// increase the alignment of the ultimate object, making this check succeed.
unsigned getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
const DataLayout &DL,
const Instruction *CxtI = nullptr,
AssumptionCache *AC = nullptr,
const DominatorTree *DT = nullptr);
/// getKnownAlignment - Try to infer an alignment for the specified pointer.
static inline unsigned getKnownAlignment(Value *V, const DataLayout &DL,
const Instruction *CxtI = nullptr,
AssumptionCache *AC = nullptr,
const DominatorTree *DT = nullptr) {
return getOrEnforceKnownAlignment(V, 0, DL, CxtI, AC, DT);
}
/// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
/// code necessary to compute the offset from the base pointer (without adding
/// in the base pointer). Return the result as a signed integer of intptr size.
/// When NoAssumptions is true, no assumptions about index computation not
/// overflowing is made.
template <typename IRBuilderTy>
Value *EmitGEPOffset(IRBuilderTy *Builder, const DataLayout &DL, User *GEP,
bool NoAssumptions = false) {
GEPOperator *GEPOp = cast<GEPOperator>(GEP);
Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
Value *Result = Constant::getNullValue(IntPtrTy);
// If the GEP is inbounds, we know that none of the addressing operations will
// overflow in an unsigned sense.
bool isInBounds = GEPOp->isInBounds() && !NoAssumptions;
// Build a mask for high order bits.
unsigned IntPtrWidth = IntPtrTy->getScalarType()->getIntegerBitWidth();
uint64_t PtrSizeMask = ~0ULL >> (64 - IntPtrWidth);
gep_type_iterator GTI = gep_type_begin(GEP);
for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); i != e;
++i, ++GTI) {
Value *Op = *i;
uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()) & PtrSizeMask;
if (Constant *OpC = dyn_cast<Constant>(Op)) {
if (OpC->isZeroValue())
continue;
// Handle a struct index, which adds its field offset to the pointer.
if (StructType *STy = dyn_cast<StructType>(*GTI)) {
if (OpC->getType()->isVectorTy())
OpC = OpC->getSplatValue();
uint64_t OpValue = cast<ConstantInt>(OpC)->getZExtValue();
Size = DL.getStructLayout(STy)->getElementOffset(OpValue);
if (Size)
Result = Builder->CreateAdd(Result, ConstantInt::get(IntPtrTy, Size),
GEP->getName()+".offs");
continue;
}
Constant *Scale = ConstantInt::get(IntPtrTy, Size);
Constant *OC = ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/);
Scale = ConstantExpr::getMul(OC, Scale, isInBounds/*NUW*/);
// Emit an add instruction.
Result = Builder->CreateAdd(Result, Scale, GEP->getName()+".offs");
continue;
}
// Convert to correct type.
if (Op->getType() != IntPtrTy)
Op = Builder->CreateIntCast(Op, IntPtrTy, true, Op->getName()+".c");
if (Size != 1) {
// We'll let instcombine(mul) convert this to a shl if possible.
Op = Builder->CreateMul(Op, ConstantInt::get(IntPtrTy, Size),
GEP->getName()+".idx", isInBounds /*NUW*/);
}
// Emit an add instruction.
Result = Builder->CreateAdd(Op, Result, GEP->getName()+".offs");
}
return Result;
}
///===---------------------------------------------------------------------===//
/// Dbg Intrinsic utilities
///
/// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
/// that has an associated llvm.dbg.decl intrinsic.
bool ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
StoreInst *SI, DIBuilder &Builder);
/// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
/// that has an associated llvm.dbg.decl intrinsic.
bool ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
LoadInst *LI, DIBuilder &Builder);
/// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
/// of llvm.dbg.value intrinsics.
bool LowerDbgDeclare(Function &F);
/// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic corresponding to
/// an alloca, if any.
DbgDeclareInst *FindAllocaDbgDeclare(Value *V);
/// \brief Replaces llvm.dbg.declare instruction when an alloca is replaced with
/// a new value. If Deref is true, tan additional DW_OP_deref is prepended to
/// the expression.
bool replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
DIBuilder &Builder, bool Deref);
/// \brief Remove all blocks that can not be reached from the function's entry.
///
/// Returns true if any basic block was removed.
bool removeUnreachableBlocks(Function &F);
/// \brief Combine the metadata of two instructions so that K can replace J
///
/// Metadata not listed as known via KnownIDs is removed
void combineMetadata(Instruction *K, const Instruction *J, ArrayRef<unsigned> KnownIDs);
/// \brief Replace each use of 'From' with 'To' if that use is dominated by
/// the given edge. Returns the number of replacements made.
unsigned replaceDominatedUsesWith(Value *From, Value *To, DominatorTree &DT,
const BasicBlockEdge &Edge);
} // End llvm namespace
#endif