mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 04:02:41 +01:00
ae65e281f3
to reflect the new license. We understand that people may be surprised that we're moving the header entirely to discuss the new license. We checked this carefully with the Foundation's lawyer and we believe this is the correct approach. Essentially, all code in the project is now made available by the LLVM project under our new license, so you will see that the license headers include that license only. Some of our contributors have contributed code under our old license, and accordingly, we have retained a copy of our old license notice in the top-level files in each project and repository. llvm-svn: 351636
450 lines
12 KiB
C++
450 lines
12 KiB
C++
//===- STLExtrasTest.cpp - Unit tests for STL extras ----------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "gtest/gtest.h"
|
|
|
|
#include <list>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
int f(rank<0>) { return 0; }
|
|
int f(rank<1>) { return 1; }
|
|
int f(rank<2>) { return 2; }
|
|
int f(rank<4>) { return 4; }
|
|
|
|
TEST(STLExtrasTest, Rank) {
|
|
// We shouldn't get ambiguities and should select the overload of the same
|
|
// rank as the argument.
|
|
EXPECT_EQ(0, f(rank<0>()));
|
|
EXPECT_EQ(1, f(rank<1>()));
|
|
EXPECT_EQ(2, f(rank<2>()));
|
|
|
|
// This overload is missing so we end up back at 2.
|
|
EXPECT_EQ(2, f(rank<3>()));
|
|
|
|
// But going past 3 should work fine.
|
|
EXPECT_EQ(4, f(rank<4>()));
|
|
|
|
// And we can even go higher and just fall back to the last overload.
|
|
EXPECT_EQ(4, f(rank<5>()));
|
|
EXPECT_EQ(4, f(rank<6>()));
|
|
}
|
|
|
|
TEST(STLExtrasTest, EnumerateLValue) {
|
|
// Test that a simple LValue can be enumerated and gives correct results with
|
|
// multiple types, including the empty container.
|
|
std::vector<char> foo = {'a', 'b', 'c'};
|
|
typedef std::pair<std::size_t, char> CharPairType;
|
|
std::vector<CharPairType> CharResults;
|
|
|
|
for (auto X : llvm::enumerate(foo)) {
|
|
CharResults.emplace_back(X.index(), X.value());
|
|
}
|
|
ASSERT_EQ(3u, CharResults.size());
|
|
EXPECT_EQ(CharPairType(0u, 'a'), CharResults[0]);
|
|
EXPECT_EQ(CharPairType(1u, 'b'), CharResults[1]);
|
|
EXPECT_EQ(CharPairType(2u, 'c'), CharResults[2]);
|
|
|
|
// Test a const range of a different type.
|
|
typedef std::pair<std::size_t, int> IntPairType;
|
|
std::vector<IntPairType> IntResults;
|
|
const std::vector<int> bar = {1, 2, 3};
|
|
for (auto X : llvm::enumerate(bar)) {
|
|
IntResults.emplace_back(X.index(), X.value());
|
|
}
|
|
ASSERT_EQ(3u, IntResults.size());
|
|
EXPECT_EQ(IntPairType(0u, 1), IntResults[0]);
|
|
EXPECT_EQ(IntPairType(1u, 2), IntResults[1]);
|
|
EXPECT_EQ(IntPairType(2u, 3), IntResults[2]);
|
|
|
|
// Test an empty range.
|
|
IntResults.clear();
|
|
const std::vector<int> baz{};
|
|
for (auto X : llvm::enumerate(baz)) {
|
|
IntResults.emplace_back(X.index(), X.value());
|
|
}
|
|
EXPECT_TRUE(IntResults.empty());
|
|
}
|
|
|
|
TEST(STLExtrasTest, EnumerateModifyLValue) {
|
|
// Test that you can modify the underlying entries of an lvalue range through
|
|
// the enumeration iterator.
|
|
std::vector<char> foo = {'a', 'b', 'c'};
|
|
|
|
for (auto X : llvm::enumerate(foo)) {
|
|
++X.value();
|
|
}
|
|
EXPECT_EQ('b', foo[0]);
|
|
EXPECT_EQ('c', foo[1]);
|
|
EXPECT_EQ('d', foo[2]);
|
|
}
|
|
|
|
TEST(STLExtrasTest, EnumerateRValueRef) {
|
|
// Test that an rvalue can be enumerated.
|
|
typedef std::pair<std::size_t, int> PairType;
|
|
std::vector<PairType> Results;
|
|
|
|
auto Enumerator = llvm::enumerate(std::vector<int>{1, 2, 3});
|
|
|
|
for (auto X : llvm::enumerate(std::vector<int>{1, 2, 3})) {
|
|
Results.emplace_back(X.index(), X.value());
|
|
}
|
|
|
|
ASSERT_EQ(3u, Results.size());
|
|
EXPECT_EQ(PairType(0u, 1), Results[0]);
|
|
EXPECT_EQ(PairType(1u, 2), Results[1]);
|
|
EXPECT_EQ(PairType(2u, 3), Results[2]);
|
|
}
|
|
|
|
TEST(STLExtrasTest, EnumerateModifyRValue) {
|
|
// Test that when enumerating an rvalue, modification still works (even if
|
|
// this isn't terribly useful, it at least shows that we haven't snuck an
|
|
// extra const in there somewhere.
|
|
typedef std::pair<std::size_t, char> PairType;
|
|
std::vector<PairType> Results;
|
|
|
|
for (auto X : llvm::enumerate(std::vector<char>{'1', '2', '3'})) {
|
|
++X.value();
|
|
Results.emplace_back(X.index(), X.value());
|
|
}
|
|
|
|
ASSERT_EQ(3u, Results.size());
|
|
EXPECT_EQ(PairType(0u, '2'), Results[0]);
|
|
EXPECT_EQ(PairType(1u, '3'), Results[1]);
|
|
EXPECT_EQ(PairType(2u, '4'), Results[2]);
|
|
}
|
|
|
|
template <bool B> struct CanMove {};
|
|
template <> struct CanMove<false> {
|
|
CanMove(CanMove &&) = delete;
|
|
|
|
CanMove() = default;
|
|
CanMove(const CanMove &) = default;
|
|
};
|
|
|
|
template <bool B> struct CanCopy {};
|
|
template <> struct CanCopy<false> {
|
|
CanCopy(const CanCopy &) = delete;
|
|
|
|
CanCopy() = default;
|
|
CanCopy(CanCopy &&) = default;
|
|
};
|
|
|
|
template <bool Moveable, bool Copyable>
|
|
struct Range : CanMove<Moveable>, CanCopy<Copyable> {
|
|
explicit Range(int &C, int &M, int &D) : C(C), M(M), D(D) {}
|
|
Range(const Range &R) : CanCopy<Copyable>(R), C(R.C), M(R.M), D(R.D) { ++C; }
|
|
Range(Range &&R) : CanMove<Moveable>(std::move(R)), C(R.C), M(R.M), D(R.D) {
|
|
++M;
|
|
}
|
|
~Range() { ++D; }
|
|
|
|
int &C;
|
|
int &M;
|
|
int &D;
|
|
|
|
int *begin() { return nullptr; }
|
|
int *end() { return nullptr; }
|
|
};
|
|
|
|
TEST(STLExtrasTest, EnumerateLifetimeSemantics) {
|
|
// Test that when enumerating lvalues and rvalues, there are no surprise
|
|
// copies or moves.
|
|
|
|
// With an rvalue, it should not be destroyed until the end of the scope.
|
|
int Copies = 0;
|
|
int Moves = 0;
|
|
int Destructors = 0;
|
|
{
|
|
auto E1 = enumerate(Range<true, false>(Copies, Moves, Destructors));
|
|
// Doesn't compile. rvalue ranges must be moveable.
|
|
// auto E2 = enumerate(Range<false, true>(Copies, Moves, Destructors));
|
|
EXPECT_EQ(0, Copies);
|
|
EXPECT_EQ(1, Moves);
|
|
EXPECT_EQ(1, Destructors);
|
|
}
|
|
EXPECT_EQ(0, Copies);
|
|
EXPECT_EQ(1, Moves);
|
|
EXPECT_EQ(2, Destructors);
|
|
|
|
Copies = Moves = Destructors = 0;
|
|
// With an lvalue, it should not be destroyed even after the end of the scope.
|
|
// lvalue ranges need be neither copyable nor moveable.
|
|
Range<false, false> R(Copies, Moves, Destructors);
|
|
{
|
|
auto Enumerator = enumerate(R);
|
|
(void)Enumerator;
|
|
EXPECT_EQ(0, Copies);
|
|
EXPECT_EQ(0, Moves);
|
|
EXPECT_EQ(0, Destructors);
|
|
}
|
|
EXPECT_EQ(0, Copies);
|
|
EXPECT_EQ(0, Moves);
|
|
EXPECT_EQ(0, Destructors);
|
|
}
|
|
|
|
TEST(STLExtrasTest, ApplyTuple) {
|
|
auto T = std::make_tuple(1, 3, 7);
|
|
auto U = llvm::apply_tuple(
|
|
[](int A, int B, int C) { return std::make_tuple(A - B, B - C, C - A); },
|
|
T);
|
|
|
|
EXPECT_EQ(-2, std::get<0>(U));
|
|
EXPECT_EQ(-4, std::get<1>(U));
|
|
EXPECT_EQ(6, std::get<2>(U));
|
|
|
|
auto V = llvm::apply_tuple(
|
|
[](int A, int B, int C) {
|
|
return std::make_tuple(std::make_pair(A, char('A' + A)),
|
|
std::make_pair(B, char('A' + B)),
|
|
std::make_pair(C, char('A' + C)));
|
|
},
|
|
T);
|
|
|
|
EXPECT_EQ(std::make_pair(1, 'B'), std::get<0>(V));
|
|
EXPECT_EQ(std::make_pair(3, 'D'), std::get<1>(V));
|
|
EXPECT_EQ(std::make_pair(7, 'H'), std::get<2>(V));
|
|
}
|
|
|
|
class apply_variadic {
|
|
static int apply_one(int X) { return X + 1; }
|
|
static char apply_one(char C) { return C + 1; }
|
|
static StringRef apply_one(StringRef S) { return S.drop_back(); }
|
|
|
|
public:
|
|
template <typename... Ts>
|
|
auto operator()(Ts &&... Items)
|
|
-> decltype(std::make_tuple(apply_one(Items)...)) {
|
|
return std::make_tuple(apply_one(Items)...);
|
|
}
|
|
};
|
|
|
|
TEST(STLExtrasTest, ApplyTupleVariadic) {
|
|
auto Items = std::make_tuple(1, llvm::StringRef("Test"), 'X');
|
|
auto Values = apply_tuple(apply_variadic(), Items);
|
|
|
|
EXPECT_EQ(2, std::get<0>(Values));
|
|
EXPECT_EQ("Tes", std::get<1>(Values));
|
|
EXPECT_EQ('Y', std::get<2>(Values));
|
|
}
|
|
|
|
TEST(STLExtrasTest, CountAdaptor) {
|
|
std::vector<int> v;
|
|
|
|
v.push_back(1);
|
|
v.push_back(2);
|
|
v.push_back(1);
|
|
v.push_back(4);
|
|
v.push_back(3);
|
|
v.push_back(2);
|
|
v.push_back(1);
|
|
|
|
EXPECT_EQ(3, count(v, 1));
|
|
EXPECT_EQ(2, count(v, 2));
|
|
EXPECT_EQ(1, count(v, 3));
|
|
EXPECT_EQ(1, count(v, 4));
|
|
}
|
|
|
|
TEST(STLExtrasTest, for_each) {
|
|
std::vector<int> v{0, 1, 2, 3, 4};
|
|
int count = 0;
|
|
|
|
llvm::for_each(v, [&count](int) { ++count; });
|
|
EXPECT_EQ(5, count);
|
|
}
|
|
|
|
TEST(STLExtrasTest, ToVector) {
|
|
std::vector<char> v = {'a', 'b', 'c'};
|
|
auto Enumerated = to_vector<4>(enumerate(v));
|
|
ASSERT_EQ(3u, Enumerated.size());
|
|
for (size_t I = 0; I < v.size(); ++I) {
|
|
EXPECT_EQ(I, Enumerated[I].index());
|
|
EXPECT_EQ(v[I], Enumerated[I].value());
|
|
}
|
|
}
|
|
|
|
TEST(STLExtrasTest, ConcatRange) {
|
|
std::vector<int> Expected = {1, 2, 3, 4, 5, 6, 7, 8};
|
|
std::vector<int> Test;
|
|
|
|
std::vector<int> V1234 = {1, 2, 3, 4};
|
|
std::list<int> L56 = {5, 6};
|
|
SmallVector<int, 2> SV78 = {7, 8};
|
|
|
|
// Use concat across different sized ranges of different types with different
|
|
// iterators.
|
|
for (int &i : concat<int>(V1234, L56, SV78))
|
|
Test.push_back(i);
|
|
EXPECT_EQ(Expected, Test);
|
|
|
|
// Use concat between a temporary, an L-value, and an R-value to make sure
|
|
// complex lifetimes work well.
|
|
Test.clear();
|
|
for (int &i : concat<int>(std::vector<int>(V1234), L56, std::move(SV78)))
|
|
Test.push_back(i);
|
|
EXPECT_EQ(Expected, Test);
|
|
}
|
|
|
|
TEST(STLExtrasTest, PartitionAdaptor) {
|
|
std::vector<int> V = {1, 2, 3, 4, 5, 6, 7, 8};
|
|
|
|
auto I = partition(V, [](int i) { return i % 2 == 0; });
|
|
ASSERT_EQ(V.begin() + 4, I);
|
|
|
|
// Sort the two halves as partition may have messed with the order.
|
|
llvm::sort(V.begin(), I);
|
|
llvm::sort(I, V.end());
|
|
|
|
EXPECT_EQ(2, V[0]);
|
|
EXPECT_EQ(4, V[1]);
|
|
EXPECT_EQ(6, V[2]);
|
|
EXPECT_EQ(8, V[3]);
|
|
EXPECT_EQ(1, V[4]);
|
|
EXPECT_EQ(3, V[5]);
|
|
EXPECT_EQ(5, V[6]);
|
|
EXPECT_EQ(7, V[7]);
|
|
}
|
|
|
|
TEST(STLExtrasTest, EraseIf) {
|
|
std::vector<int> V = {1, 2, 3, 4, 5, 6, 7, 8};
|
|
|
|
erase_if(V, [](int i) { return i % 2 == 0; });
|
|
EXPECT_EQ(4u, V.size());
|
|
EXPECT_EQ(1, V[0]);
|
|
EXPECT_EQ(3, V[1]);
|
|
EXPECT_EQ(5, V[2]);
|
|
EXPECT_EQ(7, V[3]);
|
|
}
|
|
|
|
namespace some_namespace {
|
|
struct some_struct {
|
|
std::vector<int> data;
|
|
std::string swap_val;
|
|
};
|
|
|
|
std::vector<int>::const_iterator begin(const some_struct &s) {
|
|
return s.data.begin();
|
|
}
|
|
|
|
std::vector<int>::const_iterator end(const some_struct &s) {
|
|
return s.data.end();
|
|
}
|
|
|
|
void swap(some_struct &lhs, some_struct &rhs) {
|
|
// make swap visible as non-adl swap would even seem to
|
|
// work with std::swap which defaults to moving
|
|
lhs.swap_val = "lhs";
|
|
rhs.swap_val = "rhs";
|
|
}
|
|
} // namespace some_namespace
|
|
|
|
TEST(STLExtrasTest, ADLTest) {
|
|
some_namespace::some_struct s{{1, 2, 3, 4, 5}, ""};
|
|
some_namespace::some_struct s2{{2, 4, 6, 8, 10}, ""};
|
|
|
|
EXPECT_EQ(*adl_begin(s), 1);
|
|
EXPECT_EQ(*(adl_end(s) - 1), 5);
|
|
|
|
adl_swap(s, s2);
|
|
EXPECT_EQ(s.swap_val, "lhs");
|
|
EXPECT_EQ(s2.swap_val, "rhs");
|
|
|
|
int count = 0;
|
|
llvm::for_each(s, [&count](int) { ++count; });
|
|
EXPECT_EQ(5, count);
|
|
}
|
|
|
|
TEST(STLExtrasTest, EmptyTest) {
|
|
std::vector<void*> V;
|
|
EXPECT_TRUE(llvm::empty(V));
|
|
V.push_back(nullptr);
|
|
EXPECT_FALSE(llvm::empty(V));
|
|
|
|
std::initializer_list<int> E = {};
|
|
std::initializer_list<int> NotE = {7, 13, 42};
|
|
EXPECT_TRUE(llvm::empty(E));
|
|
EXPECT_FALSE(llvm::empty(NotE));
|
|
|
|
auto R0 = make_range(V.begin(), V.begin());
|
|
EXPECT_TRUE(llvm::empty(R0));
|
|
auto R1 = make_range(V.begin(), V.end());
|
|
EXPECT_FALSE(llvm::empty(R1));
|
|
}
|
|
|
|
TEST(STLExtrasTest, EarlyIncrementTest) {
|
|
std::list<int> L = {1, 2, 3, 4};
|
|
|
|
auto EIR = make_early_inc_range(L);
|
|
|
|
auto I = EIR.begin();
|
|
auto EI = EIR.end();
|
|
EXPECT_NE(I, EI);
|
|
|
|
EXPECT_EQ(1, *I);
|
|
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
|
|
#ifndef NDEBUG
|
|
// Repeated dereferences are not allowed.
|
|
EXPECT_DEATH(*I, "Cannot dereference");
|
|
// Comparison after dereference is not allowed.
|
|
EXPECT_DEATH((void)(I == EI), "Cannot compare");
|
|
EXPECT_DEATH((void)(I != EI), "Cannot compare");
|
|
#endif
|
|
#endif
|
|
|
|
++I;
|
|
EXPECT_NE(I, EI);
|
|
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
|
|
#ifndef NDEBUG
|
|
// You cannot increment prior to dereference.
|
|
EXPECT_DEATH(++I, "Cannot increment");
|
|
#endif
|
|
#endif
|
|
EXPECT_EQ(2, *I);
|
|
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
|
|
#ifndef NDEBUG
|
|
// Repeated dereferences are not allowed.
|
|
EXPECT_DEATH(*I, "Cannot dereference");
|
|
#endif
|
|
#endif
|
|
|
|
// Inserting shouldn't break anything. We should be able to keep dereferencing
|
|
// the currrent iterator and increment. The increment to go to the "next"
|
|
// iterator from before we inserted.
|
|
L.insert(std::next(L.begin(), 2), -1);
|
|
++I;
|
|
EXPECT_EQ(3, *I);
|
|
|
|
// Erasing the front including the current doesn't break incrementing.
|
|
L.erase(L.begin(), std::prev(L.end()));
|
|
++I;
|
|
EXPECT_EQ(4, *I);
|
|
++I;
|
|
EXPECT_EQ(EIR.end(), I);
|
|
}
|
|
|
|
TEST(STLExtrasTest, splat) {
|
|
std::vector<int> V;
|
|
EXPECT_FALSE(is_splat(V));
|
|
|
|
V.push_back(1);
|
|
EXPECT_TRUE(is_splat(V));
|
|
|
|
V.push_back(1);
|
|
V.push_back(1);
|
|
EXPECT_TRUE(is_splat(V));
|
|
|
|
V.push_back(2);
|
|
EXPECT_FALSE(is_splat(V));
|
|
}
|
|
|
|
} // namespace
|