1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-21 12:02:58 +02:00
llvm-mirror/lib/Transforms/Scalar/NaryReassociate.cpp
David Blaikie 93054c1e87 Move Analysis/Utils/Local.h back to Transforms
Review feedback from r328165. Split out just the one function from the
file that's used by Analysis. (As chandlerc pointed out, the original
change only moved the header and not the implementation anyway - which
was fine for the one function that was used (since it's a
template/inlined in the header) but not in general)

llvm-svn: 333954
2018-06-04 21:23:21 +00:00

549 lines
20 KiB
C++

//===- NaryReassociate.cpp - Reassociate n-ary expressions ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass reassociates n-ary add expressions and eliminates the redundancy
// exposed by the reassociation.
//
// A motivating example:
//
// void foo(int a, int b) {
// bar(a + b);
// bar((a + 2) + b);
// }
//
// An ideal compiler should reassociate (a + 2) + b to (a + b) + 2 and simplify
// the above code to
//
// int t = a + b;
// bar(t);
// bar(t + 2);
//
// However, the Reassociate pass is unable to do that because it processes each
// instruction individually and believes (a + 2) + b is the best form according
// to its rank system.
//
// To address this limitation, NaryReassociate reassociates an expression in a
// form that reuses existing instructions. As a result, NaryReassociate can
// reassociate (a + 2) + b in the example to (a + b) + 2 because it detects that
// (a + b) is computed before.
//
// NaryReassociate works as follows. For every instruction in the form of (a +
// b) + c, it checks whether a + c or b + c is already computed by a dominating
// instruction. If so, it then reassociates (a + b) + c into (a + c) + b or (b +
// c) + a and removes the redundancy accordingly. To efficiently look up whether
// an expression is computed before, we store each instruction seen and its SCEV
// into an SCEV-to-instruction map.
//
// Although the algorithm pattern-matches only ternary additions, it
// automatically handles many >3-ary expressions by walking through the function
// in the depth-first order. For example, given
//
// (a + c) + d
// ((a + b) + c) + d
//
// NaryReassociate first rewrites (a + b) + c to (a + c) + b, and then rewrites
// ((a + c) + b) + d into ((a + c) + d) + b.
//
// Finally, the above dominator-based algorithm may need to be run multiple
// iterations before emitting optimal code. One source of this need is that we
// only split an operand when it is used only once. The above algorithm can
// eliminate an instruction and decrease the usage count of its operands. As a
// result, an instruction that previously had multiple uses may become a
// single-use instruction and thus eligible for split consideration. For
// example,
//
// ac = a + c
// ab = a + b
// abc = ab + c
// ab2 = ab + b
// ab2c = ab2 + c
//
// In the first iteration, we cannot reassociate abc to ac+b because ab is used
// twice. However, we can reassociate ab2c to abc+b in the first iteration. As a
// result, ab2 becomes dead and ab will be used only once in the second
// iteration.
//
// Limitations and TODO items:
//
// 1) We only considers n-ary adds and muls for now. This should be extended
// and generalized.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/NaryReassociate.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Transforms/Scalar.h"
#include <cassert>
#include <cstdint>
using namespace llvm;
using namespace PatternMatch;
#define DEBUG_TYPE "nary-reassociate"
namespace {
class NaryReassociateLegacyPass : public FunctionPass {
public:
static char ID;
NaryReassociateLegacyPass() : FunctionPass(ID) {
initializeNaryReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
}
bool doInitialization(Module &M) override {
return false;
}
bool runOnFunction(Function &F) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addPreserved<DominatorTreeWrapperPass>();
AU.addPreserved<ScalarEvolutionWrapperPass>();
AU.addPreserved<TargetLibraryInfoWrapperPass>();
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<ScalarEvolutionWrapperPass>();
AU.addRequired<TargetLibraryInfoWrapperPass>();
AU.addRequired<TargetTransformInfoWrapperPass>();
AU.setPreservesCFG();
}
private:
NaryReassociatePass Impl;
};
} // end anonymous namespace
char NaryReassociateLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(NaryReassociateLegacyPass, "nary-reassociate",
"Nary reassociation", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_END(NaryReassociateLegacyPass, "nary-reassociate",
"Nary reassociation", false, false)
FunctionPass *llvm::createNaryReassociatePass() {
return new NaryReassociateLegacyPass();
}
bool NaryReassociateLegacyPass::runOnFunction(Function &F) {
if (skipFunction(F))
return false;
auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
return Impl.runImpl(F, AC, DT, SE, TLI, TTI);
}
PreservedAnalyses NaryReassociatePass::run(Function &F,
FunctionAnalysisManager &AM) {
auto *AC = &AM.getResult<AssumptionAnalysis>(F);
auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
auto *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
if (!runImpl(F, AC, DT, SE, TLI, TTI))
return PreservedAnalyses::all();
PreservedAnalyses PA;
PA.preserveSet<CFGAnalyses>();
PA.preserve<ScalarEvolutionAnalysis>();
return PA;
}
bool NaryReassociatePass::runImpl(Function &F, AssumptionCache *AC_,
DominatorTree *DT_, ScalarEvolution *SE_,
TargetLibraryInfo *TLI_,
TargetTransformInfo *TTI_) {
AC = AC_;
DT = DT_;
SE = SE_;
TLI = TLI_;
TTI = TTI_;
DL = &F.getParent()->getDataLayout();
bool Changed = false, ChangedInThisIteration;
do {
ChangedInThisIteration = doOneIteration(F);
Changed |= ChangedInThisIteration;
} while (ChangedInThisIteration);
return Changed;
}
// Whitelist the instruction types NaryReassociate handles for now.
static bool isPotentiallyNaryReassociable(Instruction *I) {
switch (I->getOpcode()) {
case Instruction::Add:
case Instruction::GetElementPtr:
case Instruction::Mul:
return true;
default:
return false;
}
}
bool NaryReassociatePass::doOneIteration(Function &F) {
bool Changed = false;
SeenExprs.clear();
// Process the basic blocks in a depth first traversal of the dominator
// tree. This order ensures that all bases of a candidate are in Candidates
// when we process it.
for (const auto Node : depth_first(DT)) {
BasicBlock *BB = Node->getBlock();
for (auto I = BB->begin(); I != BB->end(); ++I) {
if (SE->isSCEVable(I->getType()) && isPotentiallyNaryReassociable(&*I)) {
const SCEV *OldSCEV = SE->getSCEV(&*I);
if (Instruction *NewI = tryReassociate(&*I)) {
Changed = true;
SE->forgetValue(&*I);
I->replaceAllUsesWith(NewI);
WeakVH NewIExist = NewI;
// If SeenExprs/NewIExist contains I's WeakTrackingVH/WeakVH, that
// entry will be replaced with nullptr if deleted.
RecursivelyDeleteTriviallyDeadInstructions(&*I, TLI);
if (!NewIExist) {
// Rare occation where the new instruction (NewI) have been removed,
// probably due to parts of the input code was dead from the
// beginning, reset the iterator and start over from the beginning
I = BB->begin();
continue;
}
I = NewI->getIterator();
}
// Add the rewritten instruction to SeenExprs; the original instruction
// is deleted.
const SCEV *NewSCEV = SE->getSCEV(&*I);
SeenExprs[NewSCEV].push_back(WeakTrackingVH(&*I));
// Ideally, NewSCEV should equal OldSCEV because tryReassociate(I)
// is equivalent to I. However, ScalarEvolution::getSCEV may
// weaken nsw causing NewSCEV not to equal OldSCEV. For example, suppose
// we reassociate
// I = &a[sext(i +nsw j)] // assuming sizeof(a[0]) = 4
// to
// NewI = &a[sext(i)] + sext(j).
//
// ScalarEvolution computes
// getSCEV(I) = a + 4 * sext(i + j)
// getSCEV(newI) = a + 4 * sext(i) + 4 * sext(j)
// which are different SCEVs.
//
// To alleviate this issue of ScalarEvolution not always capturing
// equivalence, we add I to SeenExprs[OldSCEV] as well so that we can
// map both SCEV before and after tryReassociate(I) to I.
//
// This improvement is exercised in @reassociate_gep_nsw in nary-gep.ll.
if (NewSCEV != OldSCEV)
SeenExprs[OldSCEV].push_back(WeakTrackingVH(&*I));
}
}
}
return Changed;
}
Instruction *NaryReassociatePass::tryReassociate(Instruction *I) {
switch (I->getOpcode()) {
case Instruction::Add:
case Instruction::Mul:
return tryReassociateBinaryOp(cast<BinaryOperator>(I));
case Instruction::GetElementPtr:
return tryReassociateGEP(cast<GetElementPtrInst>(I));
default:
llvm_unreachable("should be filtered out by isPotentiallyNaryReassociable");
}
}
static bool isGEPFoldable(GetElementPtrInst *GEP,
const TargetTransformInfo *TTI) {
SmallVector<const Value*, 4> Indices;
for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I)
Indices.push_back(*I);
return TTI->getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(),
Indices) == TargetTransformInfo::TCC_Free;
}
Instruction *NaryReassociatePass::tryReassociateGEP(GetElementPtrInst *GEP) {
// Not worth reassociating GEP if it is foldable.
if (isGEPFoldable(GEP, TTI))
return nullptr;
gep_type_iterator GTI = gep_type_begin(*GEP);
for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
if (GTI.isSequential()) {
if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I - 1,
GTI.getIndexedType())) {
return NewGEP;
}
}
}
return nullptr;
}
bool NaryReassociatePass::requiresSignExtension(Value *Index,
GetElementPtrInst *GEP) {
unsigned PointerSizeInBits =
DL->getPointerSizeInBits(GEP->getType()->getPointerAddressSpace());
return cast<IntegerType>(Index->getType())->getBitWidth() < PointerSizeInBits;
}
GetElementPtrInst *
NaryReassociatePass::tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
unsigned I, Type *IndexedType) {
Value *IndexToSplit = GEP->getOperand(I + 1);
if (SExtInst *SExt = dyn_cast<SExtInst>(IndexToSplit)) {
IndexToSplit = SExt->getOperand(0);
} else if (ZExtInst *ZExt = dyn_cast<ZExtInst>(IndexToSplit)) {
// zext can be treated as sext if the source is non-negative.
if (isKnownNonNegative(ZExt->getOperand(0), *DL, 0, AC, GEP, DT))
IndexToSplit = ZExt->getOperand(0);
}
if (AddOperator *AO = dyn_cast<AddOperator>(IndexToSplit)) {
// If the I-th index needs sext and the underlying add is not equipped with
// nsw, we cannot split the add because
// sext(LHS + RHS) != sext(LHS) + sext(RHS).
if (requiresSignExtension(IndexToSplit, GEP) &&
computeOverflowForSignedAdd(AO, *DL, AC, GEP, DT) !=
OverflowResult::NeverOverflows)
return nullptr;
Value *LHS = AO->getOperand(0), *RHS = AO->getOperand(1);
// IndexToSplit = LHS + RHS.
if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I, LHS, RHS, IndexedType))
return NewGEP;
// Symmetrically, try IndexToSplit = RHS + LHS.
if (LHS != RHS) {
if (auto *NewGEP =
tryReassociateGEPAtIndex(GEP, I, RHS, LHS, IndexedType))
return NewGEP;
}
}
return nullptr;
}
GetElementPtrInst *
NaryReassociatePass::tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
unsigned I, Value *LHS,
Value *RHS, Type *IndexedType) {
// Look for GEP's closest dominator that has the same SCEV as GEP except that
// the I-th index is replaced with LHS.
SmallVector<const SCEV *, 4> IndexExprs;
for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
IndexExprs.push_back(SE->getSCEV(*Index));
// Replace the I-th index with LHS.
IndexExprs[I] = SE->getSCEV(LHS);
if (isKnownNonNegative(LHS, *DL, 0, AC, GEP, DT) &&
DL->getTypeSizeInBits(LHS->getType()) <
DL->getTypeSizeInBits(GEP->getOperand(I)->getType())) {
// Zero-extend LHS if it is non-negative. InstCombine canonicalizes sext to
// zext if the source operand is proved non-negative. We should do that
// consistently so that CandidateExpr more likely appears before. See
// @reassociate_gep_assume for an example of this canonicalization.
IndexExprs[I] =
SE->getZeroExtendExpr(IndexExprs[I], GEP->getOperand(I)->getType());
}
const SCEV *CandidateExpr = SE->getGEPExpr(cast<GEPOperator>(GEP),
IndexExprs);
Value *Candidate = findClosestMatchingDominator(CandidateExpr, GEP);
if (Candidate == nullptr)
return nullptr;
IRBuilder<> Builder(GEP);
// Candidate does not necessarily have the same pointer type as GEP. Use
// bitcast or pointer cast to make sure they have the same type, so that the
// later RAUW doesn't complain.
Candidate = Builder.CreateBitOrPointerCast(Candidate, GEP->getType());
assert(Candidate->getType() == GEP->getType());
// NewGEP = (char *)Candidate + RHS * sizeof(IndexedType)
uint64_t IndexedSize = DL->getTypeAllocSize(IndexedType);
Type *ElementType = GEP->getResultElementType();
uint64_t ElementSize = DL->getTypeAllocSize(ElementType);
// Another less rare case: because I is not necessarily the last index of the
// GEP, the size of the type at the I-th index (IndexedSize) is not
// necessarily divisible by ElementSize. For example,
//
// #pragma pack(1)
// struct S {
// int a[3];
// int64 b[8];
// };
// #pragma pack()
//
// sizeof(S) = 100 is indivisible by sizeof(int64) = 8.
//
// TODO: bail out on this case for now. We could emit uglygep.
if (IndexedSize % ElementSize != 0)
return nullptr;
// NewGEP = &Candidate[RHS * (sizeof(IndexedType) / sizeof(Candidate[0])));
Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
if (RHS->getType() != IntPtrTy)
RHS = Builder.CreateSExtOrTrunc(RHS, IntPtrTy);
if (IndexedSize != ElementSize) {
RHS = Builder.CreateMul(
RHS, ConstantInt::get(IntPtrTy, IndexedSize / ElementSize));
}
GetElementPtrInst *NewGEP =
cast<GetElementPtrInst>(Builder.CreateGEP(Candidate, RHS));
NewGEP->setIsInBounds(GEP->isInBounds());
NewGEP->takeName(GEP);
return NewGEP;
}
Instruction *NaryReassociatePass::tryReassociateBinaryOp(BinaryOperator *I) {
Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
// There is no need to reassociate 0.
if (SE->getSCEV(I)->isZero())
return nullptr;
if (auto *NewI = tryReassociateBinaryOp(LHS, RHS, I))
return NewI;
if (auto *NewI = tryReassociateBinaryOp(RHS, LHS, I))
return NewI;
return nullptr;
}
Instruction *NaryReassociatePass::tryReassociateBinaryOp(Value *LHS, Value *RHS,
BinaryOperator *I) {
Value *A = nullptr, *B = nullptr;
// To be conservative, we reassociate I only when it is the only user of (A op
// B).
if (LHS->hasOneUse() && matchTernaryOp(I, LHS, A, B)) {
// I = (A op B) op RHS
// = (A op RHS) op B or (B op RHS) op A
const SCEV *AExpr = SE->getSCEV(A), *BExpr = SE->getSCEV(B);
const SCEV *RHSExpr = SE->getSCEV(RHS);
if (BExpr != RHSExpr) {
if (auto *NewI =
tryReassociatedBinaryOp(getBinarySCEV(I, AExpr, RHSExpr), B, I))
return NewI;
}
if (AExpr != RHSExpr) {
if (auto *NewI =
tryReassociatedBinaryOp(getBinarySCEV(I, BExpr, RHSExpr), A, I))
return NewI;
}
}
return nullptr;
}
Instruction *NaryReassociatePass::tryReassociatedBinaryOp(const SCEV *LHSExpr,
Value *RHS,
BinaryOperator *I) {
// Look for the closest dominator LHS of I that computes LHSExpr, and replace
// I with LHS op RHS.
auto *LHS = findClosestMatchingDominator(LHSExpr, I);
if (LHS == nullptr)
return nullptr;
Instruction *NewI = nullptr;
switch (I->getOpcode()) {
case Instruction::Add:
NewI = BinaryOperator::CreateAdd(LHS, RHS, "", I);
break;
case Instruction::Mul:
NewI = BinaryOperator::CreateMul(LHS, RHS, "", I);
break;
default:
llvm_unreachable("Unexpected instruction.");
}
NewI->takeName(I);
return NewI;
}
bool NaryReassociatePass::matchTernaryOp(BinaryOperator *I, Value *V,
Value *&Op1, Value *&Op2) {
switch (I->getOpcode()) {
case Instruction::Add:
return match(V, m_Add(m_Value(Op1), m_Value(Op2)));
case Instruction::Mul:
return match(V, m_Mul(m_Value(Op1), m_Value(Op2)));
default:
llvm_unreachable("Unexpected instruction.");
}
return false;
}
const SCEV *NaryReassociatePass::getBinarySCEV(BinaryOperator *I,
const SCEV *LHS,
const SCEV *RHS) {
switch (I->getOpcode()) {
case Instruction::Add:
return SE->getAddExpr(LHS, RHS);
case Instruction::Mul:
return SE->getMulExpr(LHS, RHS);
default:
llvm_unreachable("Unexpected instruction.");
}
return nullptr;
}
Instruction *
NaryReassociatePass::findClosestMatchingDominator(const SCEV *CandidateExpr,
Instruction *Dominatee) {
auto Pos = SeenExprs.find(CandidateExpr);
if (Pos == SeenExprs.end())
return nullptr;
auto &Candidates = Pos->second;
// Because we process the basic blocks in pre-order of the dominator tree, a
// candidate that doesn't dominate the current instruction won't dominate any
// future instruction either. Therefore, we pop it out of the stack. This
// optimization makes the algorithm O(n).
while (!Candidates.empty()) {
// Candidates stores WeakTrackingVHs, so a candidate can be nullptr if it's
// removed
// during rewriting.
if (Value *Candidate = Candidates.back()) {
Instruction *CandidateInstruction = cast<Instruction>(Candidate);
if (DT->dominates(CandidateInstruction, Dominatee))
return CandidateInstruction;
}
Candidates.pop_back();
}
return nullptr;
}