1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 11:02:59 +02:00
llvm-mirror/test/CodeGen/AMDGPU/shl_add_ptr.ll
Matt Arsenault 81a9bfe915 Enable FeatureFlatForGlobal on Volcanic Islands
This switches to the workaround that HSA defaults to
for the mesa path.

This should be applied to the 4.0 branch.

Patch by Vedran Miletić <vedran@miletic.net>

llvm-svn: 292982
2017-01-24 22:02:15 +00:00

285 lines
13 KiB
LLVM

; RUN: llc -march=amdgcn -mcpu=bonaire -verify-machineinstrs -mattr=+load-store-opt -enable-misched < %s | FileCheck -check-prefix=SI %s
; RUN: llc -march=amdgcn -mcpu=tonga -mattr=-flat-for-global -verify-machineinstrs -mattr=+load-store-opt -enable-misched < %s | FileCheck -check-prefix=SI %s
; Test that doing a shift of a pointer with a constant add will be
; folded into the constant offset addressing mode even if the add has
; multiple uses. This is relevant to accessing 2 separate, adjacent
; LDS globals.
declare i32 @llvm.amdgcn.workitem.id.x() #1
@lds0 = addrspace(3) global [512 x float] undef, align 4
@lds1 = addrspace(3) global [512 x float] undef, align 4
; Make sure the (add tid, 2) << 2 gets folded into the ds's offset as (tid << 2) + 8
; SI-LABEL: {{^}}load_shl_base_lds_0:
; SI: v_lshlrev_b32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}}
; SI: ds_read_b32 {{v[0-9]+}}, [[PTR]] offset:8
; SI: s_endpgm
define void @load_shl_base_lds_0(float addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 {
%tid.x = tail call i32 @llvm.amdgcn.workitem.id.x() #1
%idx.0 = add nsw i32 %tid.x, 2
%arrayidx0 = getelementptr inbounds [512 x float], [512 x float] addrspace(3)* @lds0, i32 0, i32 %idx.0
%val0 = load float, float addrspace(3)* %arrayidx0, align 4
store i32 %idx.0, i32 addrspace(1)* %add_use, align 4
store float %val0, float addrspace(1)* %out
ret void
}
; Make sure once the first use is folded into the addressing mode, the
; remaining add use goes through the normal shl + add constant fold.
; SI-LABEL: {{^}}load_shl_base_lds_1:
; SI: v_lshlrev_b32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}}
; SI: ds_read_b32 [[RESULT:v[0-9]+]], [[PTR]] offset:8
; SI: v_add_i32_e32 [[ADDUSE:v[0-9]+]], vcc, 8, v{{[0-9]+}}
; SI-DAG: buffer_store_dword [[RESULT]]
; SI-DAG: buffer_store_dword [[ADDUSE]]
; SI: s_endpgm
define void @load_shl_base_lds_1(float addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 {
%tid.x = tail call i32 @llvm.amdgcn.workitem.id.x() #1
%idx.0 = add nsw i32 %tid.x, 2
%arrayidx0 = getelementptr inbounds [512 x float], [512 x float] addrspace(3)* @lds0, i32 0, i32 %idx.0
%val0 = load float, float addrspace(3)* %arrayidx0, align 4
%shl_add_use = shl i32 %idx.0, 2
store i32 %shl_add_use, i32 addrspace(1)* %add_use, align 4
store float %val0, float addrspace(1)* %out
ret void
}
@maxlds = addrspace(3) global [65536 x i8] undef, align 4
; SI-LABEL: {{^}}load_shl_base_lds_max_offset
; SI: ds_read_u8 v{{[0-9]+}}, v{{[0-9]+}} offset:65535
; SI: s_endpgm
define void @load_shl_base_lds_max_offset(i8 addrspace(1)* %out, i8 addrspace(3)* %lds, i32 addrspace(1)* %add_use) #0 {
%tid.x = tail call i32 @llvm.amdgcn.workitem.id.x() #1
%idx.0 = add nsw i32 %tid.x, 65535
%arrayidx0 = getelementptr inbounds [65536 x i8], [65536 x i8] addrspace(3)* @maxlds, i32 0, i32 %idx.0
%val0 = load i8, i8 addrspace(3)* %arrayidx0
store i32 %idx.0, i32 addrspace(1)* %add_use
store i8 %val0, i8 addrspace(1)* %out
ret void
}
; The two globals are placed adjacent in memory, so the same base
; pointer can be used with an offset into the second one.
; SI-LABEL: {{^}}load_shl_base_lds_2:
; SI: v_lshlrev_b32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}}
; SI: s_mov_b32 m0, -1
; SI-NEXT: ds_read2st64_b32 {{v\[[0-9]+:[0-9]+\]}}, [[PTR]] offset0:1 offset1:9
; SI: s_endpgm
define void @load_shl_base_lds_2(float addrspace(1)* %out) #0 {
%tid.x = tail call i32 @llvm.amdgcn.workitem.id.x() #1
%idx.0 = add nsw i32 %tid.x, 64
%arrayidx0 = getelementptr inbounds [512 x float], [512 x float] addrspace(3)* @lds0, i32 0, i32 %idx.0
%val0 = load float, float addrspace(3)* %arrayidx0, align 4
%arrayidx1 = getelementptr inbounds [512 x float], [512 x float] addrspace(3)* @lds1, i32 0, i32 %idx.0
%val1 = load float, float addrspace(3)* %arrayidx1, align 4
%sum = fadd float %val0, %val1
store float %sum, float addrspace(1)* %out, align 4
ret void
}
; SI-LABEL: {{^}}store_shl_base_lds_0:
; SI: v_lshlrev_b32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}}
; SI: ds_write_b32 [[PTR]], {{v[0-9]+}} offset:8
; SI: s_endpgm
define void @store_shl_base_lds_0(float addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 {
%tid.x = tail call i32 @llvm.amdgcn.workitem.id.x() #1
%idx.0 = add nsw i32 %tid.x, 2
%arrayidx0 = getelementptr inbounds [512 x float], [512 x float] addrspace(3)* @lds0, i32 0, i32 %idx.0
store float 1.0, float addrspace(3)* %arrayidx0, align 4
store i32 %idx.0, i32 addrspace(1)* %add_use, align 4
ret void
}
; --------------------------------------------------------------------------------
; Atomics.
@lds2 = addrspace(3) global [512 x i32] undef, align 4
; define void @atomic_load_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 {
; %tid.x = tail call i32 @llvm.amdgcn.workitem.id.x() #1
; %idx.0 = add nsw i32 %tid.x, 2
; %arrayidx0 = getelementptr inbounds [512 x i32], [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0
; %val = load atomic i32, i32 addrspace(3)* %arrayidx0 seq_cst, align 4
; store i32 %val, i32 addrspace(1)* %out, align 4
; store i32 %idx.0, i32 addrspace(1)* %add_use, align 4
; ret void
; }
; SI-LABEL: {{^}}atomic_cmpxchg_shl_base_lds_0:
; SI: v_lshlrev_b32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}}
; SI: ds_cmpst_rtn_b32 {{v[0-9]+}}, [[PTR]], {{v[0-9]+}}, {{v[0-9]+}} offset:8
; SI: s_endpgm
define void @atomic_cmpxchg_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use, i32 %swap) #0 {
%tid.x = tail call i32 @llvm.amdgcn.workitem.id.x() #1
%idx.0 = add nsw i32 %tid.x, 2
%arrayidx0 = getelementptr inbounds [512 x i32], [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0
%pair = cmpxchg i32 addrspace(3)* %arrayidx0, i32 7, i32 %swap seq_cst monotonic
%result = extractvalue { i32, i1 } %pair, 0
store i32 %result, i32 addrspace(1)* %out, align 4
store i32 %idx.0, i32 addrspace(1)* %add_use, align 4
ret void
}
; SI-LABEL: {{^}}atomic_swap_shl_base_lds_0:
; SI: v_lshlrev_b32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}}
; SI: ds_wrxchg_rtn_b32 {{v[0-9]+}}, [[PTR]], {{v[0-9]+}} offset:8
; SI: s_endpgm
define void @atomic_swap_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 {
%tid.x = tail call i32 @llvm.amdgcn.workitem.id.x() #1
%idx.0 = add nsw i32 %tid.x, 2
%arrayidx0 = getelementptr inbounds [512 x i32], [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0
%val = atomicrmw xchg i32 addrspace(3)* %arrayidx0, i32 3 seq_cst
store i32 %val, i32 addrspace(1)* %out, align 4
store i32 %idx.0, i32 addrspace(1)* %add_use, align 4
ret void
}
; SI-LABEL: {{^}}atomic_add_shl_base_lds_0:
; SI: v_lshlrev_b32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}}
; SI: ds_add_rtn_u32 {{v[0-9]+}}, [[PTR]], {{v[0-9]+}} offset:8
; SI: s_endpgm
define void @atomic_add_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 {
%tid.x = tail call i32 @llvm.amdgcn.workitem.id.x() #1
%idx.0 = add nsw i32 %tid.x, 2
%arrayidx0 = getelementptr inbounds [512 x i32], [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0
%val = atomicrmw add i32 addrspace(3)* %arrayidx0, i32 3 seq_cst
store i32 %val, i32 addrspace(1)* %out, align 4
store i32 %idx.0, i32 addrspace(1)* %add_use, align 4
ret void
}
; SI-LABEL: {{^}}atomic_sub_shl_base_lds_0:
; SI: v_lshlrev_b32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}}
; SI: ds_sub_rtn_u32 {{v[0-9]+}}, [[PTR]], {{v[0-9]+}} offset:8
; SI: s_endpgm
define void @atomic_sub_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 {
%tid.x = tail call i32 @llvm.amdgcn.workitem.id.x() #1
%idx.0 = add nsw i32 %tid.x, 2
%arrayidx0 = getelementptr inbounds [512 x i32], [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0
%val = atomicrmw sub i32 addrspace(3)* %arrayidx0, i32 3 seq_cst
store i32 %val, i32 addrspace(1)* %out, align 4
store i32 %idx.0, i32 addrspace(1)* %add_use, align 4
ret void
}
; SI-LABEL: {{^}}atomic_and_shl_base_lds_0:
; SI: v_lshlrev_b32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}}
; SI: ds_and_rtn_b32 {{v[0-9]+}}, [[PTR]], {{v[0-9]+}} offset:8
; SI: s_endpgm
define void @atomic_and_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 {
%tid.x = tail call i32 @llvm.amdgcn.workitem.id.x() #1
%idx.0 = add nsw i32 %tid.x, 2
%arrayidx0 = getelementptr inbounds [512 x i32], [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0
%val = atomicrmw and i32 addrspace(3)* %arrayidx0, i32 3 seq_cst
store i32 %val, i32 addrspace(1)* %out, align 4
store i32 %idx.0, i32 addrspace(1)* %add_use, align 4
ret void
}
; SI-LABEL: {{^}}atomic_or_shl_base_lds_0:
; SI: v_lshlrev_b32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}}
; SI: ds_or_rtn_b32 {{v[0-9]+}}, [[PTR]], {{v[0-9]+}} offset:8
; SI: s_endpgm
define void @atomic_or_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 {
%tid.x = tail call i32 @llvm.amdgcn.workitem.id.x() #1
%idx.0 = add nsw i32 %tid.x, 2
%arrayidx0 = getelementptr inbounds [512 x i32], [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0
%val = atomicrmw or i32 addrspace(3)* %arrayidx0, i32 3 seq_cst
store i32 %val, i32 addrspace(1)* %out, align 4
store i32 %idx.0, i32 addrspace(1)* %add_use, align 4
ret void
}
; SI-LABEL: {{^}}atomic_xor_shl_base_lds_0:
; SI: v_lshlrev_b32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}}
; SI: ds_xor_rtn_b32 {{v[0-9]+}}, [[PTR]], {{v[0-9]+}} offset:8
; SI: s_endpgm
define void @atomic_xor_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 {
%tid.x = tail call i32 @llvm.amdgcn.workitem.id.x() #1
%idx.0 = add nsw i32 %tid.x, 2
%arrayidx0 = getelementptr inbounds [512 x i32], [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0
%val = atomicrmw xor i32 addrspace(3)* %arrayidx0, i32 3 seq_cst
store i32 %val, i32 addrspace(1)* %out, align 4
store i32 %idx.0, i32 addrspace(1)* %add_use, align 4
ret void
}
; define void @atomic_nand_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 {
; %tid.x = tail call i32 @llvm.amdgcn.workitem.id.x() #1
; %idx.0 = add nsw i32 %tid.x, 2
; %arrayidx0 = getelementptr inbounds [512 x i32], [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0
; %val = atomicrmw nand i32 addrspace(3)* %arrayidx0, i32 3 seq_cst
; store i32 %val, i32 addrspace(1)* %out, align 4
; store i32 %idx.0, i32 addrspace(1)* %add_use, align 4
; ret void
; }
; SI-LABEL: {{^}}atomic_min_shl_base_lds_0:
; SI: v_lshlrev_b32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}}
; SI: ds_min_rtn_i32 {{v[0-9]+}}, [[PTR]], {{v[0-9]+}} offset:8
; SI: s_endpgm
define void @atomic_min_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 {
%tid.x = tail call i32 @llvm.amdgcn.workitem.id.x() #1
%idx.0 = add nsw i32 %tid.x, 2
%arrayidx0 = getelementptr inbounds [512 x i32], [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0
%val = atomicrmw min i32 addrspace(3)* %arrayidx0, i32 3 seq_cst
store i32 %val, i32 addrspace(1)* %out, align 4
store i32 %idx.0, i32 addrspace(1)* %add_use, align 4
ret void
}
; SI-LABEL: {{^}}atomic_max_shl_base_lds_0:
; SI: v_lshlrev_b32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}}
; SI: ds_max_rtn_i32 {{v[0-9]+}}, [[PTR]], {{v[0-9]+}} offset:8
; SI: s_endpgm
define void @atomic_max_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 {
%tid.x = tail call i32 @llvm.amdgcn.workitem.id.x() #1
%idx.0 = add nsw i32 %tid.x, 2
%arrayidx0 = getelementptr inbounds [512 x i32], [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0
%val = atomicrmw max i32 addrspace(3)* %arrayidx0, i32 3 seq_cst
store i32 %val, i32 addrspace(1)* %out, align 4
store i32 %idx.0, i32 addrspace(1)* %add_use, align 4
ret void
}
; SI-LABEL: {{^}}atomic_umin_shl_base_lds_0:
; SI: v_lshlrev_b32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}}
; SI: ds_min_rtn_u32 {{v[0-9]+}}, [[PTR]], {{v[0-9]+}} offset:8
; SI: s_endpgm
define void @atomic_umin_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 {
%tid.x = tail call i32 @llvm.amdgcn.workitem.id.x() #1
%idx.0 = add nsw i32 %tid.x, 2
%arrayidx0 = getelementptr inbounds [512 x i32], [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0
%val = atomicrmw umin i32 addrspace(3)* %arrayidx0, i32 3 seq_cst
store i32 %val, i32 addrspace(1)* %out, align 4
store i32 %idx.0, i32 addrspace(1)* %add_use, align 4
ret void
}
; SI-LABEL: {{^}}atomic_umax_shl_base_lds_0:
; SI: v_lshlrev_b32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}}
; SI: ds_max_rtn_u32 {{v[0-9]+}}, [[PTR]], {{v[0-9]+}} offset:8
; SI: s_endpgm
define void @atomic_umax_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 {
%tid.x = tail call i32 @llvm.amdgcn.workitem.id.x() #1
%idx.0 = add nsw i32 %tid.x, 2
%arrayidx0 = getelementptr inbounds [512 x i32], [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0
%val = atomicrmw umax i32 addrspace(3)* %arrayidx0, i32 3 seq_cst
store i32 %val, i32 addrspace(1)* %out, align 4
store i32 %idx.0, i32 addrspace(1)* %add_use, align 4
ret void
}
attributes #0 = { nounwind }
attributes #1 = { nounwind readnone }