1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-26 04:32:44 +01:00
llvm-mirror/lib/Analysis/ReleaseModeModelRunner.cpp
Fangrui Song 3b69235500 static const char *const foo => const char foo[]
By default, a non-template variable of non-volatile const-qualified type
having namespace-scope has internal linkage, so no need for `static`.
2020-12-01 10:33:18 -08:00

91 lines
2.9 KiB
C++

//===- ReleaseModeModelRunner.cpp - Fast, precompiled model runner -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a model runner wrapping an AOT compiled ML model.
// Only inference is supported.
//
//===----------------------------------------------------------------------===//
#include "llvm/Config/config.h"
#if defined(LLVM_HAVE_TF_AOT)
#include "llvm/Analysis/InlineModelFeatureMaps.h"
#include "llvm/Analysis/MLInlineAdvisor.h"
// codegen-ed file
#include "InlinerSizeModel.h" // NOLINT
#include <memory>
#include <vector>
using namespace llvm;
namespace {
const char FeedPrefix[] = "feed_";
const char FetchPrefix[] = "fetch_";
/// MLModelRunner - production mode implementation. It uses a AOT-compiled
/// SavedModel for efficient execution.
class ReleaseModeModelRunner final : public MLModelRunner {
public:
ReleaseModeModelRunner(LLVMContext &Ctx);
virtual ~ReleaseModeModelRunner() = default;
bool run() override;
void setFeature(FeatureIndex Index, int64_t Value) override;
int64_t getFeature(int Index) const override;
private:
std::vector<int32_t> FeatureIndices;
int32_t ResultIndex = -1;
std::unique_ptr<llvm::InlinerSizeModel> CompiledModel;
};
} // namespace
ReleaseModeModelRunner::ReleaseModeModelRunner(LLVMContext &Ctx)
: MLModelRunner(Ctx),
CompiledModel(std::make_unique<llvm::InlinerSizeModel>()) {
assert(CompiledModel && "The CompiledModel should be valid");
FeatureIndices.reserve(NumberOfFeatures);
for (size_t I = 0; I < NumberOfFeatures; ++I) {
const int Index =
CompiledModel->LookupArgIndex(FeedPrefix + FeatureNameMap[I]);
assert(Index >= 0 && "Cannot find Feature in inlining model");
FeatureIndices[I] = Index;
}
ResultIndex =
CompiledModel->LookupResultIndex(std::string(FetchPrefix) + DecisionName);
assert(ResultIndex >= 0 && "Cannot find DecisionName in inlining model");
}
int64_t ReleaseModeModelRunner::getFeature(int Index) const {
return *static_cast<int64_t *>(
CompiledModel->arg_data(FeatureIndices[Index]));
}
void ReleaseModeModelRunner::setFeature(FeatureIndex Index, int64_t Value) {
*static_cast<int64_t *>(CompiledModel->arg_data(
FeatureIndices[static_cast<size_t>(Index)])) = Value;
}
bool ReleaseModeModelRunner::run() {
CompiledModel->Run();
return static_cast<bool>(
*static_cast<int64_t *>(CompiledModel->result_data(ResultIndex)));
}
std::unique_ptr<InlineAdvisor>
llvm::getReleaseModeAdvisor(Module &M, ModuleAnalysisManager &MAM) {
auto AOTRunner = std::make_unique<ReleaseModeModelRunner>(M.getContext());
return std::make_unique<MLInlineAdvisor>(M, MAM, std::move(AOTRunner));
}
#endif // defined(LLVM_HAVE_TF_AOT)