1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-26 04:32:44 +01:00
llvm-mirror/test/CodeGen/WebAssembly/userstack.ll
Wouter van Oortmerssen 538b137e0b [WebAssembly] Added initial type checker to MC Assembler
This to protect against non-sensical instruction sequences being assembled,
which would either cause asserts/crashes further down, or a Wasm module being output that doesn't validate.

Unlike a validator, this type checker is able to give type-errors as part of the parsing process, which makes the assembler much friendlier to be used by humans writing manual input.

Because the MC system is single pass (instructions aren't even stored in MC format, they are directly output) the type checker has to be single pass as well, which means that from now on .globaltype and .functype decls must come before their use. An extra pass is added to Codegen to collect information for this purpose, since AsmPrinter is normally single pass / streaming as well, and would otherwise generate this information on the fly.

A `-no-type-check` flag was added to llvm-mc (and any other tools that take asm input) that surpresses type errors, as a quick escape hatch for tests that were not intended to be type correct.

This is a first version of the type checker that ignores control flow, i.e. it checks that types are correct along the linear path, but not the branch path. This will still catch most errors. Branch checking could be added in the future.

Differential Revision: https://reviews.llvm.org/D104945
2021-07-09 14:07:25 -07:00

350 lines
13 KiB
LLVM

; RUN: llc < %s --mtriple=wasm32-unknown-unknown -asm-verbose=false -disable-wasm-fallthrough-return-opt -wasm-keep-registers | FileCheck -DPTR=32 %s
; RUN: llc < %s --mtriple=wasm64-unknown-unknown -asm-verbose=false -disable-wasm-fallthrough-return-opt -wasm-keep-registers | FileCheck -DPTR=64 %s
declare void @ext_func(i64* %ptr)
declare void @ext_func_i32(i32* %ptr)
; CHECK: .globaltype __stack_pointer, i[[PTR]]{{$}}
; CHECK-LABEL: alloca32:
; Check that there is an extra local for the stack pointer.
; CHECK: .local i[[PTR]]{{$}}
define void @alloca32() noredzone {
; CHECK-NEXT: global.get $push[[L2:.+]]=, __stack_pointer{{$}}
; CHECK-NEXT: i[[PTR]].const $push[[L3:.+]]=, 16
; CHECK-NEXT: i[[PTR]].sub $push[[L9:.+]]=, $pop[[L2]], $pop[[L3]]
; CHECK-NEXT: local.tee $push[[L8:.+]]=, [[SP:.+]], $pop[[L9]]{{$}}
; CHECK-NEXT: global.set __stack_pointer, $pop[[L8]]{{$}}
%retval = alloca i32
; CHECK: local.get $push[[L4:.+]]=, [[SP]]{{$}}
; CHECK: i32.const $push[[L0:.+]]=, 0
; CHECK: i32.store 12($pop[[L4]]), $pop[[L0]]
store i32 0, i32* %retval
; CHECK: local.get $push[[L6:.+]]=, [[SP]]{{$}}
; CHECK-NEXT: i[[PTR]].const $push[[L5:.+]]=, 16
; CHECK-NEXT: i[[PTR]].add $push[[L7:.+]]=, $pop[[L6]], $pop[[L5]]
; CHECK-NEXT: global.set __stack_pointer, $pop[[L7]]
ret void
}
; CHECK-LABEL: alloca3264:
; CHECK: .local i[[PTR]]{{$}}
define void @alloca3264() {
; CHECK: global.get $push[[L3:.+]]=, __stack_pointer{{$}}
; CHECK-NEXT: i[[PTR]].const $push[[L4:.+]]=, 16
; CHECK-NEXT: i[[PTR]].sub $push[[L6:.+]]=, $pop[[L3]], $pop[[L4]]
; CHECK-NEXT: local.tee $push[[L5:.+]]=, [[SP:.+]], $pop[[L6]]
%r1 = alloca i32
%r2 = alloca double
store i32 0, i32* %r1
store double 0.0, double* %r2
; CHECK-NEXT: i64.const $push[[L1:.+]]=, 0
; CHECK-NEXT: i64.store 0($pop[[L5]]), $pop[[L1]]
; CHECK-NEXT: local.get $push[[L2:.+]]=, [[SP]]{{$}}
; CHECK-NEXT: i32.const $push[[L0:.+]]=, 0
; CHECK-NEXT: i32.store 12($pop[[L2]]), $pop[[L0]]
; CHECK-NEXT: return
ret void
}
; CHECK-LABEL: allocarray:
; CHECK: .local i[[PTR]]{{$}}
define void @allocarray() {
; CHECK-NEXT: global.get $push[[L4:.+]]=, __stack_pointer{{$}}
; CHECK-NEXT: i[[PTR]].const $push[[L5:.+]]=, 144{{$}}
; CHECK-NEXT: i[[PTR]].sub $push[[L12:.+]]=, $pop[[L4]], $pop[[L5]]
; CHECK-NEXT: local.tee $push[[L11:.+]]=, 0, $pop[[L12]]
; CHECK-NEXT: global.set __stack_pointer, $pop[[L11]]
%r = alloca [33 x i32]
; CHECK: i[[PTR]].const $push{{.+}}=, 24
; CHECK-NEXT: i[[PTR]].add $push[[L3:.+]]=, $pop{{.+}}, $pop{{.+}}
; CHECK-NEXT: i32.const $push[[L1:.+]]=, 1{{$}}
; CHECK-NEXT: i32.store 0($pop[[L3]]), $pop[[L1]]{{$}}
; CHECK-NEXT: local.get $push[[L4:.+]]=, 0{{$}}
; CHECK-NEXT: i32.const $push[[L10:.+]]=, 1{{$}}
; CHECK-NEXT: i32.store 12($pop[[L4]]), $pop[[L10]]{{$}}
%p = getelementptr [33 x i32], [33 x i32]* %r, i32 0, i32 0
store i32 1, i32* %p
%p2 = getelementptr [33 x i32], [33 x i32]* %r, i32 0, i32 3
store i32 1, i32* %p2
; CHECK-NEXT: local.get $push[[L2:.+]]=, [[SP]]{{$}}
; CHECK-NEXT: i[[PTR]].const $push[[L7:.+]]=, 144
; CHECK-NEXT: i[[PTR]].add $push[[L8:.+]]=, $pop[[L2]], $pop[[L7]]
; CHECK-NEXT: global.set __stack_pointer, $pop[[L8]]
ret void
}
; CHECK-LABEL: non_mem_use
define void @non_mem_use(i8** %addr) {
; CHECK: i[[PTR]].const $push[[L2:.+]]=, 48
; CHECK-NEXT: i[[PTR]].sub $push[[L12:.+]]=, {{.+}}, $pop[[L2]]
; CHECK-NEXT: local.tee $push[[L11:.+]]=, [[SP:.+]], $pop[[L12]]
; CHECK-NEXT: global.set __stack_pointer, $pop[[L11]]
%buf = alloca [27 x i8], align 16
%r = alloca i64
%r2 = alloca i64
; %r is at SP+8
; CHECK: local.get $push[[L3:.+]]=, [[SP]]
; CHECK: i[[PTR]].const $push[[OFF:.+]]=, 8
; CHECK-NEXT: i[[PTR]].add $push[[ARG1:.+]]=, $pop[[L3]], $pop[[OFF]]
; CHECK-NEXT: call ext_func, $pop[[ARG1]]
call void @ext_func(i64* %r)
; %r2 is at SP+0, no add needed
; CHECK: local.get $push[[L4:.+]]=, [[SP]]
; CHECK-NEXT: call ext_func, $pop[[L4]]
call void @ext_func(i64* %r2)
; Use as a value, but in a store
; %buf is at SP+16
; CHECK: local.get $push[[L5:.+]]=, [[SP]]
; CHECK: i[[PTR]].const $push[[OFF:.+]]=, 16
; CHECK-NEXT: i[[PTR]].add $push[[VAL:.+]]=, $pop[[L5]], $pop[[OFF]]
; CHECK-NEXT: i[[PTR]].store 0($pop{{.+}}), $pop[[VAL]]
%gep = getelementptr inbounds [27 x i8], [27 x i8]* %buf, i32 0, i32 0
store i8* %gep, i8** %addr
ret void
}
; CHECK-LABEL: allocarray_inbounds:
; CHECK: .local i[[PTR]]{{$}}
define void @allocarray_inbounds() {
; CHECK: global.get $push[[L3:.+]]=, __stack_pointer{{$}}
; CHECK-NEXT: i[[PTR]].const $push[[L4:.+]]=, 32{{$}}
; CHECK-NEXT: i[[PTR]].sub $push[[L11:.+]]=, $pop[[L3]], $pop[[L4]]
; CHECK-NEXT: local.tee $push[[L10:.+]]=, [[SP:.+]], $pop[[L11]]
; CHECK-NEXT: global.set __stack_pointer, $pop[[L10]]{{$}}
%r = alloca [5 x i32]
; CHECK: i32.const $push[[L3:.+]]=, 1
; CHECK-DAG: i32.store 24(${{.+}}), $pop[[L3]]
%p = getelementptr inbounds [5 x i32], [5 x i32]* %r, i32 0, i32 0
store i32 1, i32* %p
; This store should have both the GEP and the FI folded into it.
; CHECK-DAG: i32.store 12(${{.+}}), $pop
%p2 = getelementptr inbounds [5 x i32], [5 x i32]* %r, i32 0, i32 3
store i32 1, i32* %p2
call void @ext_func(i64* null);
; CHECK: call ext_func
; CHECK: i[[PTR]].const $push[[L5:.+]]=, 32{{$}}
; CHECK-NEXT: i[[PTR]].add $push[[L7:.+]]=, ${{.+}}, $pop[[L5]]
; CHECK-NEXT: global.set __stack_pointer, $pop[[L7]]
ret void
}
; CHECK-LABEL: dynamic_alloca:
define void @dynamic_alloca(i32 %alloc) {
; CHECK: global.get $push[[L13:.+]]=, __stack_pointer{{$}}
; CHECK-NEXT: local.tee $push[[L12:.+]]=, [[SP:.+]], $pop[[L13]]{{$}}
; Target independent codegen bumps the stack pointer.
; CHECK: i[[PTR]].sub
; Check that SP is written back to memory after decrement
; CHECK: global.set __stack_pointer,
%r = alloca i32, i32 %alloc
; Target-independent codegen also calculates the store addr
; CHECK: call ext_func_i32
call void @ext_func_i32(i32* %r)
; CHECK: global.set __stack_pointer, $pop{{.+}}
ret void
}
; CHECK-LABEL: dynamic_alloca_redzone:
define void @dynamic_alloca_redzone(i32 %alloc) {
; CHECK: global.get $push[[L13:.+]]=, __stack_pointer{{$}}
; CHECK-NEXT: local.tee $push[[L12:.+]]=, [[SP:.+]], $pop[[L13]]{{$}}
; Target independent codegen bumps the stack pointer
; CHECK: i[[PTR]].sub
%r = alloca i32, i32 %alloc
; CHECK-NEXT: local.tee $push[[L8:.+]]=, [[SP2:.+]], $pop
; CHECK: local.get $push[[L7:.+]]=, [[SP2]]{{$}}
; CHECK-NEXT: i32.const $push[[L6:.+]]=, 0{{$}}
; CHECK-NEXT: i32.store 0($pop[[L7]]), $pop[[L6]]{{$}}
store i32 0, i32* %r
; CHECK-NEXT: return
ret void
}
; CHECK-LABEL: dynamic_static_alloca:
define void @dynamic_static_alloca(i32 %alloc) noredzone {
; Decrement SP in the prolog by the static amount and writeback to memory.
; CHECK: global.get $push[[L11:.+]]=, __stack_pointer{{$}}
; CHECK-NEXT: i[[PTR]].const $push[[L12:.+]]=, 16
; CHECK-NEXT: i[[PTR]].sub $push[[L23:.+]]=, $pop[[L11]], $pop[[L12]]
; CHECK-NEXT: local.tee $push[[L22:.+]]=, [[SP:.+]], $pop[[L23]]
; CHECK-NEXT: global.set __stack_pointer, $pop[[L22]]
; Alloc and write to a static alloca
; CHECK: local.get $push[[L21:.+]]=, [[SP:.+]]
; CHECK-NEXT: local.tee $push[[pushedFP:.+]]=, [[FP:.+]], $pop[[L21]]
; CHECK-NEXT: i32.const $push[[L0:.+]]=, 101
; CHECK-NEXT: i32.store [[static_offset:.+]]($pop[[pushedFP]]), $pop[[L0]]
%static = alloca i32
store volatile i32 101, i32* %static
; Decrement SP in the body by the dynamic amount.
; CHECK: i[[PTR]].sub
; CHECK: local.tee $push[[L16:.+]]=, [[dynamic_local:.+]], $pop{{.+}}
; CHECK: local.tee $push[[L15:.+]]=, [[other:.+]], $pop[[L16]]{{$}}
; CHECK: global.set __stack_pointer, $pop[[L15]]{{$}}
%dynamic = alloca i32, i32 %alloc
; Ensure we don't modify the frame pointer after assigning it.
; CHECK-NOT: $[[FP]]=
; Ensure the static address doesn't change after modifying the stack pointer.
; CHECK: local.get $push[[L17:.+]]=, [[FP]]
; CHECK: i32.const $push[[L7:.+]]=, 102
; CHECK-NEXT: i32.store [[static_offset]]($pop[[L17]]), $pop[[L7]]
; CHECK-NEXT: local.get $push[[L9:.+]]=, [[dynamic_local]]{{$}}
; CHECK-NEXT: i32.const $push[[L8:.+]]=, 103
; CHECK-NEXT: i32.store 0($pop[[L9]]), $pop[[L8]]
store volatile i32 102, i32* %static
store volatile i32 103, i32* %dynamic
; Decrement SP in the body by the dynamic amount.
; CHECK: i[[PTR]].sub
; CHECK: local.tee $push{{.+}}=, [[dynamic2_local:.+]], $pop{{.+}}
%dynamic.2 = alloca i32, i32 %alloc
; CHECK-NOT: $[[FP]]=
; Ensure neither the static nor dynamic address changes after the second
; modification of the stack pointer.
; CHECK: local.get $push[[L22:.+]]=, [[FP]]
; CHECK: i32.const $push[[L9:.+]]=, 104
; CHECK-NEXT: i32.store [[static_offset]]($pop[[L22]]), $pop[[L9]]
; CHECK-NEXT: local.get $push[[L23:.+]]=, [[dynamic_local]]
; CHECK-NEXT: i32.const $push[[L10:.+]]=, 105
; CHECK-NEXT: i32.store 0($pop[[L23]]), $pop[[L10]]
; CHECK-NEXT: local.get $push[[L23:.+]]=, [[dynamic2_local]]
; CHECK-NEXT: i32.const $push[[L11:.+]]=, 106
; CHECK-NEXT: i32.store 0($pop[[L23]]), $pop[[L11]]
store volatile i32 104, i32* %static
store volatile i32 105, i32* %dynamic
store volatile i32 106, i32* %dynamic.2
; Writeback to memory.
; CHECK: local.get $push[[L24:.+]]=, [[FP]]{{$}}
; CHECK: i[[PTR]].const $push[[L18:.+]]=, 16
; CHECK-NEXT: i[[PTR]].add $push[[L19:.+]]=, $pop[[L24]], $pop[[L18]]
; CHECK-NEXT: global.set __stack_pointer, $pop[[L19]]
ret void
}
declare i8* @llvm.stacksave()
declare void @llvm.stackrestore(i8*)
; CHECK-LABEL: llvm_stack_builtins:
define void @llvm_stack_builtins(i32 %alloc) noredzone {
; CHECK: global.get $push[[L11:.+]]=, __stack_pointer{{$}}
; CHECK-NEXT: local.tee $push[[L10:.+]]=, {{.+}}, $pop[[L11]]
; CHECK-NEXT: local.set [[STACK:.+]], $pop[[L10]]
%stack = call i8* @llvm.stacksave()
; Ensure we don't reassign the stacksave local
; CHECK-NOT: local.set [[STACK]],
%dynamic = alloca i32, i32 %alloc
; CHECK: local.get $push[[L12:.+]]=, [[STACK]]
; CHECK-NEXT: global.set __stack_pointer, $pop[[L12]]
call void @llvm.stackrestore(i8* %stack)
ret void
}
; Not actually using the alloca'd variables exposed an issue with register
; stackification, where copying the stack pointer into the frame pointer was
; moved after the stack pointer was updated for the dynamic alloca.
; CHECK-LABEL: dynamic_alloca_nouse:
define void @dynamic_alloca_nouse(i32 %alloc) noredzone {
; CHECK: global.get $push[[L11:.+]]=, __stack_pointer{{$}}
; CHECK-NEXT: local.tee $push[[L10:.+]]=, {{.+}}, $pop[[L11]]
; CHECK-NEXT: local.set [[FP:.+]], $pop[[L10]]
%dynamic = alloca i32, i32 %alloc
; CHECK-NOT: local.set [[FP]],
; CHECK: local.get $push[[L12:.+]]=, [[FP]]
; CHECK-NEXT: global.set __stack_pointer, $pop[[L12]]
ret void
}
; The use of the alloca in a phi causes a CopyToReg DAG node to be generated,
; which has to have special handling because CopyToReg can't have a FI operand
; CHECK-LABEL: copytoreg_fi:
define void @copytoreg_fi(i1 %cond, i32* %b) {
entry:
; CHECK: i[[PTR]].const $push[[L1:.+]]=, 16
; CHECK-NEXT: i[[PTR]].sub $push[[L3:.+]]=, {{.+}}, $pop[[L1]]
%addr = alloca i32
; CHECK: i[[PTR]].const $push[[OFF:.+]]=, 12
; CHECK-NEXT: i[[PTR]].add $push[[ADDR:.+]]=, $pop[[L3]], $pop[[OFF]]
; CHECK-NEXT: local.set [[COPY:.+]], $pop[[ADDR]]
br label %body
body:
%a = phi i32* [%addr, %entry], [%b, %body]
store i32 1, i32* %a
; CHECK: local.get $push[[L12:.+]]=, [[COPY]]
; CHECK: i32.store 0($pop[[L12]]),
br i1 %cond, label %body, label %exit
exit:
ret void
}
declare void @use_i8_star(i8*)
declare i8* @llvm.frameaddress(i32)
; Test __builtin_frame_address(0).
; CHECK-LABEL: frameaddress_0:
; CHECK: global.get $push[[L3:.+]]=, __stack_pointer{{$}}
; CHECK-NEXT: local.tee $push[[L2:.+]]=, [[FP:.+]], $pop[[L3]]{{$}}
; CHECK-NEXT: call use_i8_star, $pop[[L2]]
; CHECK-NEXT: local.get $push[[L5:.+]]=, [[FP]]
; CHECK-NEXT: global.set __stack_pointer, $pop[[L5]]
define void @frameaddress_0() {
%t = call i8* @llvm.frameaddress(i32 0)
call void @use_i8_star(i8* %t)
ret void
}
; Test __builtin_frame_address(1).
; CHECK-LABEL: frameaddress_1:
; CHECK: i[[PTR]].const $push0=, 0{{$}}
; CHECK-NEXT: call use_i8_star, $pop0{{$}}
; CHECK-NEXT: return{{$}}
define void @frameaddress_1() {
%t = call i8* @llvm.frameaddress(i32 1)
call void @use_i8_star(i8* %t)
ret void
}
; Test a stack address passed to an inline asm.
; CHECK-LABEL: inline_asm:
; CHECK: global.get {{.+}}, __stack_pointer{{$}}
; CHECK: #APP
; CHECK-NEXT: # %{{[0-9]+}}{{$}}
; CHECK-NEXT: #NO_APP
define void @inline_asm() {
%tmp = alloca i8
call void asm sideeffect "# %0", "r"(i8* %tmp)
ret void
}
; We optimize the format of "frame offset + operand" by folding it, but this is
; only possible when that operand is an immediate. In this example it is a
; global address, so we should not fold it.
; CHECK-LABEL: frame_offset_with_global_address
; CHECK: i[[PTR]].const ${{.*}}=, str
@str = local_unnamed_addr global [3 x i8] c"abc", align 16
define i8 @frame_offset_with_global_address() {
%1 = alloca i8, align 4
%2 = ptrtoint i8* %1 to i32
;; Here @str is a global address and not an immediate, so cannot be folded
%3 = getelementptr [3 x i8], [3 x i8]* @str, i32 0, i32 %2
%4 = load i8, i8* %3, align 8
%5 = and i8 %4, 67
ret i8 %5
}
; TODO: test over-aligned alloca