1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 11:13:28 +01:00
llvm-mirror/lib/Bitcode/Writer/BitcodeWriter.cpp
Teresa Johnson faeac4f290 [ThinLTO] Address review comments from PGO indirect call promotion (NFC)
Address a couple of post-commit review comments from r275707.

llvm-svn: 275867
2016-07-18 18:31:50 +00:00

3852 lines
147 KiB
C++

//===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Bitcode writer implementation.
//
//===----------------------------------------------------------------------===//
#include "ValueEnumerator.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Bitcode/BitstreamWriter.h"
#include "llvm/Bitcode/LLVMBitCodes.h"
#include "llvm/Bitcode/ReaderWriter.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/UseListOrder.h"
#include "llvm/IR/ValueSymbolTable.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Program.h"
#include "llvm/Support/SHA1.h"
#include "llvm/Support/raw_ostream.h"
#include <cctype>
#include <map>
using namespace llvm;
namespace {
/// These are manifest constants used by the bitcode writer. They do not need to
/// be kept in sync with the reader, but need to be consistent within this file.
enum {
// VALUE_SYMTAB_BLOCK abbrev id's.
VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
VST_ENTRY_7_ABBREV,
VST_ENTRY_6_ABBREV,
VST_BBENTRY_6_ABBREV,
// CONSTANTS_BLOCK abbrev id's.
CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
CONSTANTS_INTEGER_ABBREV,
CONSTANTS_CE_CAST_Abbrev,
CONSTANTS_NULL_Abbrev,
// FUNCTION_BLOCK abbrev id's.
FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
FUNCTION_INST_BINOP_ABBREV,
FUNCTION_INST_BINOP_FLAGS_ABBREV,
FUNCTION_INST_CAST_ABBREV,
FUNCTION_INST_RET_VOID_ABBREV,
FUNCTION_INST_RET_VAL_ABBREV,
FUNCTION_INST_UNREACHABLE_ABBREV,
FUNCTION_INST_GEP_ABBREV,
};
/// Abstract class to manage the bitcode writing, subclassed for each bitcode
/// file type. Owns the BitstreamWriter, and includes the main entry point for
/// writing.
class BitcodeWriter {
protected:
/// Pointer to the buffer allocated by caller for bitcode writing.
const SmallVectorImpl<char> &Buffer;
/// The stream created and owned by the BitodeWriter.
BitstreamWriter Stream;
/// Saves the offset of the VSTOffset record that must eventually be
/// backpatched with the offset of the actual VST.
uint64_t VSTOffsetPlaceholder = 0;
public:
/// Constructs a BitcodeWriter object, and initializes a BitstreamRecord,
/// writing to the provided \p Buffer.
BitcodeWriter(SmallVectorImpl<char> &Buffer)
: Buffer(Buffer), Stream(Buffer) {}
virtual ~BitcodeWriter() = default;
/// Main entry point to write the bitcode file, which writes the bitcode
/// header and will then invoke the virtual writeBlocks() method.
void write();
private:
/// Derived classes must implement this to write the corresponding blocks for
/// that bitcode file type.
virtual void writeBlocks() = 0;
protected:
bool hasVSTOffsetPlaceholder() { return VSTOffsetPlaceholder != 0; }
void writeValueSymbolTableForwardDecl();
void writeBitcodeHeader();
};
/// Class to manage the bitcode writing for a module.
class ModuleBitcodeWriter : public BitcodeWriter {
/// The Module to write to bitcode.
const Module &M;
/// Enumerates ids for all values in the module.
ValueEnumerator VE;
/// Optional per-module index to write for ThinLTO.
const ModuleSummaryIndex *Index;
/// True if a module hash record should be written.
bool GenerateHash;
/// The start bit of the module block, for use in generating a module hash
uint64_t BitcodeStartBit = 0;
/// Map that holds the correspondence between GUIDs in the summary index,
/// that came from indirect call profiles, and a value id generated by this
/// class to use in the VST and summary block records.
std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
/// Tracks the last value id recorded in the GUIDToValueMap.
unsigned GlobalValueId;
public:
/// Constructs a ModuleBitcodeWriter object for the given Module,
/// writing to the provided \p Buffer.
ModuleBitcodeWriter(const Module *M, SmallVectorImpl<char> &Buffer,
bool ShouldPreserveUseListOrder,
const ModuleSummaryIndex *Index, bool GenerateHash)
: BitcodeWriter(Buffer), M(*M), VE(*M, ShouldPreserveUseListOrder),
Index(Index), GenerateHash(GenerateHash) {
// Save the start bit of the actual bitcode, in case there is space
// saved at the start for the darwin header above. The reader stream
// will start at the bitcode, and we need the offset of the VST
// to line up.
BitcodeStartBit = Stream.GetCurrentBitNo();
// Assign ValueIds to any callee values in the index that came from
// indirect call profiles and were recorded as a GUID not a Value*
// (which would have been assigned an ID by the ValueEnumerator).
// The starting ValueId is just after the number of values in the
// ValueEnumerator, so that they can be emitted in the VST.
GlobalValueId = VE.getValues().size();
if (!Index)
return;
for (const auto &GUIDSummaryLists : *Index)
// Examine all summaries for this GUID.
for (auto &Summary : GUIDSummaryLists.second)
if (auto FS = dyn_cast<FunctionSummary>(Summary.get()))
// For each call in the function summary, see if the call
// is to a GUID (which means it is for an indirect call,
// otherwise we would have a Value for it). If so, synthesize
// a value id.
for (auto &CallEdge : FS->calls())
if (CallEdge.first.isGUID())
assignValueId(CallEdge.first.getGUID());
}
private:
/// Main entry point for writing a module to bitcode, invoked by
/// BitcodeWriter::write() after it writes the header.
void writeBlocks() override;
/// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
/// current llvm version, and a record for the epoch number.
void writeIdentificationBlock();
/// Emit the current module to the bitstream.
void writeModule();
uint64_t bitcodeStartBit() { return BitcodeStartBit; }
void writeStringRecord(unsigned Code, StringRef Str, unsigned AbbrevToUse);
void writeAttributeGroupTable();
void writeAttributeTable();
void writeTypeTable();
void writeComdats();
void writeModuleInfo();
void writeValueAsMetadata(const ValueAsMetadata *MD,
SmallVectorImpl<uint64_t> &Record);
void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev);
unsigned createDILocationAbbrev();
void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
unsigned &Abbrev);
unsigned createGenericDINodeAbbrev();
void writeGenericDINode(const GenericDINode *N,
SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev);
void writeDIEnumerator(const DIEnumerator *N,
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev);
void writeDIDerivedType(const DIDerivedType *N,
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
void writeDICompositeType(const DICompositeType *N,
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
void writeDISubroutineType(const DISubroutineType *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev);
void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev);
void writeDICompileUnit(const DICompileUnit *N,
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
void writeDISubprogram(const DISubprogram *N,
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
void writeDILexicalBlock(const DILexicalBlock *N,
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
void writeDILexicalBlockFile(const DILexicalBlockFile *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev);
void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev);
void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev);
void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev);
void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev);
void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev);
void writeDITemplateValueParameter(const DITemplateValueParameter *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev);
void writeDIGlobalVariable(const DIGlobalVariable *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev);
void writeDILocalVariable(const DILocalVariable *N,
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
void writeDIExpression(const DIExpression *N,
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
void writeDIObjCProperty(const DIObjCProperty *N,
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
void writeDIImportedEntity(const DIImportedEntity *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev);
unsigned createNamedMetadataAbbrev();
void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
unsigned createMetadataStringsAbbrev();
void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
SmallVectorImpl<uint64_t> &Record);
void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
SmallVectorImpl<uint64_t> &Record);
void writeModuleMetadata();
void writeFunctionMetadata(const Function &F);
void writeFunctionMetadataAttachment(const Function &F);
void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV);
void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
const GlobalObject &GO);
void writeModuleMetadataKinds();
void writeOperandBundleTags();
void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
void writeModuleConstants();
bool pushValueAndType(const Value *V, unsigned InstID,
SmallVectorImpl<unsigned> &Vals);
void writeOperandBundles(ImmutableCallSite CS, unsigned InstID);
void pushValue(const Value *V, unsigned InstID,
SmallVectorImpl<unsigned> &Vals);
void pushValueSigned(const Value *V, unsigned InstID,
SmallVectorImpl<uint64_t> &Vals);
void writeInstruction(const Instruction &I, unsigned InstID,
SmallVectorImpl<unsigned> &Vals);
void writeValueSymbolTable(
const ValueSymbolTable &VST, bool IsModuleLevel = false,
DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex = nullptr);
void writeUseList(UseListOrder &&Order);
void writeUseListBlock(const Function *F);
void
writeFunction(const Function &F,
DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
void writeBlockInfo();
void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
GlobalValueSummary *Summary,
unsigned ValueID,
unsigned FSCallsAbbrev,
unsigned FSCallsProfileAbbrev,
const Function &F);
void writeModuleLevelReferences(const GlobalVariable &V,
SmallVector<uint64_t, 64> &NameVals,
unsigned FSModRefsAbbrev);
void writePerModuleGlobalValueSummary();
void writeModuleHash(size_t BlockStartPos);
void assignValueId(GlobalValue::GUID ValGUID) {
GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
}
unsigned getValueId(GlobalValue::GUID ValGUID) {
const auto &VMI = GUIDToValueIdMap.find(ValGUID);
// Expect that any GUID value had a value Id assigned by an
// earlier call to assignValueId.
assert(VMI != GUIDToValueIdMap.end() &&
"GUID does not have assigned value Id");
return VMI->second;
}
// Helper to get the valueId for the type of value recorded in VI.
unsigned getValueId(ValueInfo VI) {
if (VI.isGUID())
return getValueId(VI.getGUID());
return VE.getValueID(VI.getValue());
}
std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
};
/// Class to manage the bitcode writing for a combined index.
class IndexBitcodeWriter : public BitcodeWriter {
/// The combined index to write to bitcode.
const ModuleSummaryIndex &Index;
/// When writing a subset of the index for distributed backends, client
/// provides a map of modules to the corresponding GUIDs/summaries to write.
std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex;
/// Map that holds the correspondence between the GUID used in the combined
/// index and a value id generated by this class to use in references.
std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
/// Tracks the last value id recorded in the GUIDToValueMap.
unsigned GlobalValueId = 0;
public:
/// Constructs a IndexBitcodeWriter object for the given combined index,
/// writing to the provided \p Buffer. When writing a subset of the index
/// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
IndexBitcodeWriter(SmallVectorImpl<char> &Buffer,
const ModuleSummaryIndex &Index,
std::map<std::string, GVSummaryMapTy>
*ModuleToSummariesForIndex = nullptr)
: BitcodeWriter(Buffer), Index(Index),
ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
// Assign unique value ids to all summaries to be written, for use
// in writing out the call graph edges. Save the mapping from GUID
// to the new global value id to use when writing those edges, which
// are currently saved in the index in terms of GUID.
for (const auto &I : *this)
GUIDToValueIdMap[I.first] = ++GlobalValueId;
}
/// The below iterator returns the GUID and associated summary.
typedef std::pair<GlobalValue::GUID, GlobalValueSummary *> GVInfo;
/// Iterator over the value GUID and summaries to be written to bitcode,
/// hides the details of whether they are being pulled from the entire
/// index or just those in a provided ModuleToSummariesForIndex map.
class iterator
: public llvm::iterator_facade_base<iterator, std::forward_iterator_tag,
GVInfo> {
/// Enables access to parent class.
const IndexBitcodeWriter &Writer;
// Iterators used when writing only those summaries in a provided
// ModuleToSummariesForIndex map:
/// Points to the last element in outer ModuleToSummariesForIndex map.
std::map<std::string, GVSummaryMapTy>::iterator ModuleSummariesBack;
/// Iterator on outer ModuleToSummariesForIndex map.
std::map<std::string, GVSummaryMapTy>::iterator ModuleSummariesIter;
/// Iterator on an inner global variable summary map.
GVSummaryMapTy::iterator ModuleGVSummariesIter;
// Iterators used when writing all summaries in the index:
/// Points to the last element in the Index outer GlobalValueMap.
const_gvsummary_iterator IndexSummariesBack;
/// Iterator on outer GlobalValueMap.
const_gvsummary_iterator IndexSummariesIter;
/// Iterator on an inner GlobalValueSummaryList.
GlobalValueSummaryList::const_iterator IndexGVSummariesIter;
public:
/// Construct iterator from parent \p Writer and indicate if we are
/// constructing the end iterator.
iterator(const IndexBitcodeWriter &Writer, bool IsAtEnd) : Writer(Writer) {
// Set up the appropriate set of iterators given whether we are writing
// the full index or just a subset.
// Can't setup the Back or inner iterators if the corresponding map
// is empty. This will be handled specially in operator== as well.
if (Writer.ModuleToSummariesForIndex &&
!Writer.ModuleToSummariesForIndex->empty()) {
for (ModuleSummariesBack = Writer.ModuleToSummariesForIndex->begin();
std::next(ModuleSummariesBack) !=
Writer.ModuleToSummariesForIndex->end();
ModuleSummariesBack++)
;
ModuleSummariesIter = !IsAtEnd
? Writer.ModuleToSummariesForIndex->begin()
: ModuleSummariesBack;
ModuleGVSummariesIter = !IsAtEnd ? ModuleSummariesIter->second.begin()
: ModuleSummariesBack->second.end();
} else if (!Writer.ModuleToSummariesForIndex &&
Writer.Index.begin() != Writer.Index.end()) {
for (IndexSummariesBack = Writer.Index.begin();
std::next(IndexSummariesBack) != Writer.Index.end();
IndexSummariesBack++)
;
IndexSummariesIter =
!IsAtEnd ? Writer.Index.begin() : IndexSummariesBack;
IndexGVSummariesIter = !IsAtEnd ? IndexSummariesIter->second.begin()
: IndexSummariesBack->second.end();
}
}
/// Increment the appropriate set of iterators.
iterator &operator++() {
// First the inner iterator is incremented, then if it is at the end
// and there are more outer iterations to go, the inner is reset to
// the start of the next inner list.
if (Writer.ModuleToSummariesForIndex) {
++ModuleGVSummariesIter;
if (ModuleGVSummariesIter == ModuleSummariesIter->second.end() &&
ModuleSummariesIter != ModuleSummariesBack) {
++ModuleSummariesIter;
ModuleGVSummariesIter = ModuleSummariesIter->second.begin();
}
} else {
++IndexGVSummariesIter;
if (IndexGVSummariesIter == IndexSummariesIter->second.end() &&
IndexSummariesIter != IndexSummariesBack) {
++IndexSummariesIter;
IndexGVSummariesIter = IndexSummariesIter->second.begin();
}
}
return *this;
}
/// Access the <GUID,GlobalValueSummary*> pair corresponding to the current
/// outer and inner iterator positions.
GVInfo operator*() {
if (Writer.ModuleToSummariesForIndex)
return std::make_pair(ModuleGVSummariesIter->first,
ModuleGVSummariesIter->second);
return std::make_pair(IndexSummariesIter->first,
IndexGVSummariesIter->get());
}
/// Checks if the iterators are equal, with special handling for empty
/// indexes.
bool operator==(const iterator &RHS) const {
if (Writer.ModuleToSummariesForIndex) {
// First ensure that both are writing the same subset.
if (Writer.ModuleToSummariesForIndex !=
RHS.Writer.ModuleToSummariesForIndex)
return false;
// Already determined above that maps are the same, so if one is
// empty, they both are.
if (Writer.ModuleToSummariesForIndex->empty())
return true;
// Ensure the ModuleGVSummariesIter are iterating over the same
// container before checking them below.
if (ModuleSummariesIter != RHS.ModuleSummariesIter)
return false;
return ModuleGVSummariesIter == RHS.ModuleGVSummariesIter;
}
// First ensure RHS also writing the full index, and that both are
// writing the same full index.
if (RHS.Writer.ModuleToSummariesForIndex ||
&Writer.Index != &RHS.Writer.Index)
return false;
// Already determined above that maps are the same, so if one is
// empty, they both are.
if (Writer.Index.begin() == Writer.Index.end())
return true;
// Ensure the IndexGVSummariesIter are iterating over the same
// container before checking them below.
if (IndexSummariesIter != RHS.IndexSummariesIter)
return false;
return IndexGVSummariesIter == RHS.IndexGVSummariesIter;
}
};
/// Obtain the start iterator over the summaries to be written.
iterator begin() { return iterator(*this, /*IsAtEnd=*/false); }
/// Obtain the end iterator over the summaries to be written.
iterator end() { return iterator(*this, /*IsAtEnd=*/true); }
private:
/// Main entry point for writing a combined index to bitcode, invoked by
/// BitcodeWriter::write() after it writes the header.
void writeBlocks() override;
void writeIndex();
void writeModStrings();
void writeCombinedValueSymbolTable();
void writeCombinedGlobalValueSummary();
/// Indicates whether the provided \p ModulePath should be written into
/// the module string table, e.g. if full index written or if it is in
/// the provided subset.
bool doIncludeModule(StringRef ModulePath) {
return !ModuleToSummariesForIndex ||
ModuleToSummariesForIndex->count(ModulePath);
}
bool hasValueId(GlobalValue::GUID ValGUID) {
const auto &VMI = GUIDToValueIdMap.find(ValGUID);
return VMI != GUIDToValueIdMap.end();
}
unsigned getValueId(GlobalValue::GUID ValGUID) {
const auto &VMI = GUIDToValueIdMap.find(ValGUID);
// If this GUID doesn't have an entry, assign one.
if (VMI == GUIDToValueIdMap.end()) {
GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
return GlobalValueId;
} else {
return VMI->second;
}
}
std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
};
} // end anonymous namespace
static unsigned getEncodedCastOpcode(unsigned Opcode) {
switch (Opcode) {
default: llvm_unreachable("Unknown cast instruction!");
case Instruction::Trunc : return bitc::CAST_TRUNC;
case Instruction::ZExt : return bitc::CAST_ZEXT;
case Instruction::SExt : return bitc::CAST_SEXT;
case Instruction::FPToUI : return bitc::CAST_FPTOUI;
case Instruction::FPToSI : return bitc::CAST_FPTOSI;
case Instruction::UIToFP : return bitc::CAST_UITOFP;
case Instruction::SIToFP : return bitc::CAST_SITOFP;
case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
case Instruction::FPExt : return bitc::CAST_FPEXT;
case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
case Instruction::BitCast : return bitc::CAST_BITCAST;
case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
}
}
static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
switch (Opcode) {
default: llvm_unreachable("Unknown binary instruction!");
case Instruction::Add:
case Instruction::FAdd: return bitc::BINOP_ADD;
case Instruction::Sub:
case Instruction::FSub: return bitc::BINOP_SUB;
case Instruction::Mul:
case Instruction::FMul: return bitc::BINOP_MUL;
case Instruction::UDiv: return bitc::BINOP_UDIV;
case Instruction::FDiv:
case Instruction::SDiv: return bitc::BINOP_SDIV;
case Instruction::URem: return bitc::BINOP_UREM;
case Instruction::FRem:
case Instruction::SRem: return bitc::BINOP_SREM;
case Instruction::Shl: return bitc::BINOP_SHL;
case Instruction::LShr: return bitc::BINOP_LSHR;
case Instruction::AShr: return bitc::BINOP_ASHR;
case Instruction::And: return bitc::BINOP_AND;
case Instruction::Or: return bitc::BINOP_OR;
case Instruction::Xor: return bitc::BINOP_XOR;
}
}
static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
switch (Op) {
default: llvm_unreachable("Unknown RMW operation!");
case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
case AtomicRMWInst::Add: return bitc::RMW_ADD;
case AtomicRMWInst::Sub: return bitc::RMW_SUB;
case AtomicRMWInst::And: return bitc::RMW_AND;
case AtomicRMWInst::Nand: return bitc::RMW_NAND;
case AtomicRMWInst::Or: return bitc::RMW_OR;
case AtomicRMWInst::Xor: return bitc::RMW_XOR;
case AtomicRMWInst::Max: return bitc::RMW_MAX;
case AtomicRMWInst::Min: return bitc::RMW_MIN;
case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
}
}
static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
switch (Ordering) {
case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
}
llvm_unreachable("Invalid ordering");
}
static unsigned getEncodedSynchScope(SynchronizationScope SynchScope) {
switch (SynchScope) {
case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
}
llvm_unreachable("Invalid synch scope");
}
void ModuleBitcodeWriter::writeStringRecord(unsigned Code, StringRef Str,
unsigned AbbrevToUse) {
SmallVector<unsigned, 64> Vals;
// Code: [strchar x N]
for (unsigned i = 0, e = Str.size(); i != e; ++i) {
if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
AbbrevToUse = 0;
Vals.push_back(Str[i]);
}
// Emit the finished record.
Stream.EmitRecord(Code, Vals, AbbrevToUse);
}
static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
switch (Kind) {
case Attribute::Alignment:
return bitc::ATTR_KIND_ALIGNMENT;
case Attribute::AllocSize:
return bitc::ATTR_KIND_ALLOC_SIZE;
case Attribute::AlwaysInline:
return bitc::ATTR_KIND_ALWAYS_INLINE;
case Attribute::ArgMemOnly:
return bitc::ATTR_KIND_ARGMEMONLY;
case Attribute::Builtin:
return bitc::ATTR_KIND_BUILTIN;
case Attribute::ByVal:
return bitc::ATTR_KIND_BY_VAL;
case Attribute::Convergent:
return bitc::ATTR_KIND_CONVERGENT;
case Attribute::InAlloca:
return bitc::ATTR_KIND_IN_ALLOCA;
case Attribute::Cold:
return bitc::ATTR_KIND_COLD;
case Attribute::InaccessibleMemOnly:
return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY;
case Attribute::InaccessibleMemOrArgMemOnly:
return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY;
case Attribute::InlineHint:
return bitc::ATTR_KIND_INLINE_HINT;
case Attribute::InReg:
return bitc::ATTR_KIND_IN_REG;
case Attribute::JumpTable:
return bitc::ATTR_KIND_JUMP_TABLE;
case Attribute::MinSize:
return bitc::ATTR_KIND_MIN_SIZE;
case Attribute::Naked:
return bitc::ATTR_KIND_NAKED;
case Attribute::Nest:
return bitc::ATTR_KIND_NEST;
case Attribute::NoAlias:
return bitc::ATTR_KIND_NO_ALIAS;
case Attribute::NoBuiltin:
return bitc::ATTR_KIND_NO_BUILTIN;
case Attribute::NoCapture:
return bitc::ATTR_KIND_NO_CAPTURE;
case Attribute::NoDuplicate:
return bitc::ATTR_KIND_NO_DUPLICATE;
case Attribute::NoImplicitFloat:
return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
case Attribute::NoInline:
return bitc::ATTR_KIND_NO_INLINE;
case Attribute::NoRecurse:
return bitc::ATTR_KIND_NO_RECURSE;
case Attribute::NonLazyBind:
return bitc::ATTR_KIND_NON_LAZY_BIND;
case Attribute::NonNull:
return bitc::ATTR_KIND_NON_NULL;
case Attribute::Dereferenceable:
return bitc::ATTR_KIND_DEREFERENCEABLE;
case Attribute::DereferenceableOrNull:
return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
case Attribute::NoRedZone:
return bitc::ATTR_KIND_NO_RED_ZONE;
case Attribute::NoReturn:
return bitc::ATTR_KIND_NO_RETURN;
case Attribute::NoUnwind:
return bitc::ATTR_KIND_NO_UNWIND;
case Attribute::OptimizeForSize:
return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
case Attribute::OptimizeNone:
return bitc::ATTR_KIND_OPTIMIZE_NONE;
case Attribute::ReadNone:
return bitc::ATTR_KIND_READ_NONE;
case Attribute::ReadOnly:
return bitc::ATTR_KIND_READ_ONLY;
case Attribute::Returned:
return bitc::ATTR_KIND_RETURNED;
case Attribute::ReturnsTwice:
return bitc::ATTR_KIND_RETURNS_TWICE;
case Attribute::SExt:
return bitc::ATTR_KIND_S_EXT;
case Attribute::StackAlignment:
return bitc::ATTR_KIND_STACK_ALIGNMENT;
case Attribute::StackProtect:
return bitc::ATTR_KIND_STACK_PROTECT;
case Attribute::StackProtectReq:
return bitc::ATTR_KIND_STACK_PROTECT_REQ;
case Attribute::StackProtectStrong:
return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
case Attribute::SafeStack:
return bitc::ATTR_KIND_SAFESTACK;
case Attribute::StructRet:
return bitc::ATTR_KIND_STRUCT_RET;
case Attribute::SanitizeAddress:
return bitc::ATTR_KIND_SANITIZE_ADDRESS;
case Attribute::SanitizeThread:
return bitc::ATTR_KIND_SANITIZE_THREAD;
case Attribute::SanitizeMemory:
return bitc::ATTR_KIND_SANITIZE_MEMORY;
case Attribute::SwiftError:
return bitc::ATTR_KIND_SWIFT_ERROR;
case Attribute::SwiftSelf:
return bitc::ATTR_KIND_SWIFT_SELF;
case Attribute::UWTable:
return bitc::ATTR_KIND_UW_TABLE;
case Attribute::WriteOnly:
return bitc::ATTR_KIND_WRITEONLY;
case Attribute::ZExt:
return bitc::ATTR_KIND_Z_EXT;
case Attribute::EndAttrKinds:
llvm_unreachable("Can not encode end-attribute kinds marker.");
case Attribute::None:
llvm_unreachable("Can not encode none-attribute.");
}
llvm_unreachable("Trying to encode unknown attribute");
}
void ModuleBitcodeWriter::writeAttributeGroupTable() {
const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups();
if (AttrGrps.empty()) return;
Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
SmallVector<uint64_t, 64> Record;
for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) {
AttributeSet AS = AttrGrps[i];
for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) {
AttributeSet A = AS.getSlotAttributes(i);
Record.push_back(VE.getAttributeGroupID(A));
Record.push_back(AS.getSlotIndex(i));
for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0);
I != E; ++I) {
Attribute Attr = *I;
if (Attr.isEnumAttribute()) {
Record.push_back(0);
Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
} else if (Attr.isIntAttribute()) {
Record.push_back(1);
Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
Record.push_back(Attr.getValueAsInt());
} else {
StringRef Kind = Attr.getKindAsString();
StringRef Val = Attr.getValueAsString();
Record.push_back(Val.empty() ? 3 : 4);
Record.append(Kind.begin(), Kind.end());
Record.push_back(0);
if (!Val.empty()) {
Record.append(Val.begin(), Val.end());
Record.push_back(0);
}
}
}
Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
Record.clear();
}
}
Stream.ExitBlock();
}
void ModuleBitcodeWriter::writeAttributeTable() {
const std::vector<AttributeSet> &Attrs = VE.getAttributes();
if (Attrs.empty()) return;
Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
SmallVector<uint64_t, 64> Record;
for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
const AttributeSet &A = Attrs[i];
for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i)
Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i)));
Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
Record.clear();
}
Stream.ExitBlock();
}
/// WriteTypeTable - Write out the type table for a module.
void ModuleBitcodeWriter::writeTypeTable() {
const ValueEnumerator::TypeList &TypeList = VE.getTypes();
Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
SmallVector<uint64_t, 64> TypeVals;
uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
// Abbrev for TYPE_CODE_POINTER.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
// Abbrev for TYPE_CODE_FUNCTION.
Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
// Abbrev for TYPE_CODE_STRUCT_ANON.
Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
// Abbrev for TYPE_CODE_STRUCT_NAME.
Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
// Abbrev for TYPE_CODE_STRUCT_NAMED.
Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
// Abbrev for TYPE_CODE_ARRAY.
Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
// Emit an entry count so the reader can reserve space.
TypeVals.push_back(TypeList.size());
Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
TypeVals.clear();
// Loop over all of the types, emitting each in turn.
for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
Type *T = TypeList[i];
int AbbrevToUse = 0;
unsigned Code = 0;
switch (T->getTypeID()) {
case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break;
case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break;
case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break;
case Type::IntegerTyID:
// INTEGER: [width]
Code = bitc::TYPE_CODE_INTEGER;
TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
break;
case Type::PointerTyID: {
PointerType *PTy = cast<PointerType>(T);
// POINTER: [pointee type, address space]
Code = bitc::TYPE_CODE_POINTER;
TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
unsigned AddressSpace = PTy->getAddressSpace();
TypeVals.push_back(AddressSpace);
if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
break;
}
case Type::FunctionTyID: {
FunctionType *FT = cast<FunctionType>(T);
// FUNCTION: [isvararg, retty, paramty x N]
Code = bitc::TYPE_CODE_FUNCTION;
TypeVals.push_back(FT->isVarArg());
TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
AbbrevToUse = FunctionAbbrev;
break;
}
case Type::StructTyID: {
StructType *ST = cast<StructType>(T);
// STRUCT: [ispacked, eltty x N]
TypeVals.push_back(ST->isPacked());
// Output all of the element types.
for (StructType::element_iterator I = ST->element_begin(),
E = ST->element_end(); I != E; ++I)
TypeVals.push_back(VE.getTypeID(*I));
if (ST->isLiteral()) {
Code = bitc::TYPE_CODE_STRUCT_ANON;
AbbrevToUse = StructAnonAbbrev;
} else {
if (ST->isOpaque()) {
Code = bitc::TYPE_CODE_OPAQUE;
} else {
Code = bitc::TYPE_CODE_STRUCT_NAMED;
AbbrevToUse = StructNamedAbbrev;
}
// Emit the name if it is present.
if (!ST->getName().empty())
writeStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
StructNameAbbrev);
}
break;
}
case Type::ArrayTyID: {
ArrayType *AT = cast<ArrayType>(T);
// ARRAY: [numelts, eltty]
Code = bitc::TYPE_CODE_ARRAY;
TypeVals.push_back(AT->getNumElements());
TypeVals.push_back(VE.getTypeID(AT->getElementType()));
AbbrevToUse = ArrayAbbrev;
break;
}
case Type::VectorTyID: {
VectorType *VT = cast<VectorType>(T);
// VECTOR [numelts, eltty]
Code = bitc::TYPE_CODE_VECTOR;
TypeVals.push_back(VT->getNumElements());
TypeVals.push_back(VE.getTypeID(VT->getElementType()));
break;
}
}
// Emit the finished record.
Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
TypeVals.clear();
}
Stream.ExitBlock();
}
static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
switch (Linkage) {
case GlobalValue::ExternalLinkage:
return 0;
case GlobalValue::WeakAnyLinkage:
return 16;
case GlobalValue::AppendingLinkage:
return 2;
case GlobalValue::InternalLinkage:
return 3;
case GlobalValue::LinkOnceAnyLinkage:
return 18;
case GlobalValue::ExternalWeakLinkage:
return 7;
case GlobalValue::CommonLinkage:
return 8;
case GlobalValue::PrivateLinkage:
return 9;
case GlobalValue::WeakODRLinkage:
return 17;
case GlobalValue::LinkOnceODRLinkage:
return 19;
case GlobalValue::AvailableExternallyLinkage:
return 12;
}
llvm_unreachable("Invalid linkage");
}
static unsigned getEncodedLinkage(const GlobalValue &GV) {
return getEncodedLinkage(GV.getLinkage());
}
// Decode the flags for GlobalValue in the summary
static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) {
uint64_t RawFlags = 0;
RawFlags |= Flags.HasSection; // bool
// Linkage don't need to be remapped at that time for the summary. Any future
// change to the getEncodedLinkage() function will need to be taken into
// account here as well.
RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
return RawFlags;
}
static unsigned getEncodedVisibility(const GlobalValue &GV) {
switch (GV.getVisibility()) {
case GlobalValue::DefaultVisibility: return 0;
case GlobalValue::HiddenVisibility: return 1;
case GlobalValue::ProtectedVisibility: return 2;
}
llvm_unreachable("Invalid visibility");
}
static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
switch (GV.getDLLStorageClass()) {
case GlobalValue::DefaultStorageClass: return 0;
case GlobalValue::DLLImportStorageClass: return 1;
case GlobalValue::DLLExportStorageClass: return 2;
}
llvm_unreachable("Invalid DLL storage class");
}
static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
switch (GV.getThreadLocalMode()) {
case GlobalVariable::NotThreadLocal: return 0;
case GlobalVariable::GeneralDynamicTLSModel: return 1;
case GlobalVariable::LocalDynamicTLSModel: return 2;
case GlobalVariable::InitialExecTLSModel: return 3;
case GlobalVariable::LocalExecTLSModel: return 4;
}
llvm_unreachable("Invalid TLS model");
}
static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
switch (C.getSelectionKind()) {
case Comdat::Any:
return bitc::COMDAT_SELECTION_KIND_ANY;
case Comdat::ExactMatch:
return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
case Comdat::Largest:
return bitc::COMDAT_SELECTION_KIND_LARGEST;
case Comdat::NoDuplicates:
return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
case Comdat::SameSize:
return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
}
llvm_unreachable("Invalid selection kind");
}
static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) {
switch (GV.getUnnamedAddr()) {
case GlobalValue::UnnamedAddr::None: return 0;
case GlobalValue::UnnamedAddr::Local: return 2;
case GlobalValue::UnnamedAddr::Global: return 1;
}
llvm_unreachable("Invalid unnamed_addr");
}
void ModuleBitcodeWriter::writeComdats() {
SmallVector<unsigned, 64> Vals;
for (const Comdat *C : VE.getComdats()) {
// COMDAT: [selection_kind, name]
Vals.push_back(getEncodedComdatSelectionKind(*C));
size_t Size = C->getName().size();
assert(isUInt<32>(Size));
Vals.push_back(Size);
for (char Chr : C->getName())
Vals.push_back((unsigned char)Chr);
Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
Vals.clear();
}
}
/// Write a record that will eventually hold the word offset of the
/// module-level VST. For now the offset is 0, which will be backpatched
/// after the real VST is written. Saves the bit offset to backpatch.
void BitcodeWriter::writeValueSymbolTableForwardDecl() {
// Write a placeholder value in for the offset of the real VST,
// which is written after the function blocks so that it can include
// the offset of each function. The placeholder offset will be
// updated when the real VST is written.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
// Blocks are 32-bit aligned, so we can use a 32-bit word offset to
// hold the real VST offset. Must use fixed instead of VBR as we don't
// know how many VBR chunks to reserve ahead of time.
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(Abbv);
// Emit the placeholder
uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
// Compute and save the bit offset to the placeholder, which will be
// patched when the real VST is written. We can simply subtract the 32-bit
// fixed size from the current bit number to get the location to backpatch.
VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
}
enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
/// Determine the encoding to use for the given string name and length.
static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) {
bool isChar6 = true;
for (const char *C = Str, *E = C + StrLen; C != E; ++C) {
if (isChar6)
isChar6 = BitCodeAbbrevOp::isChar6(*C);
if ((unsigned char)*C & 128)
// don't bother scanning the rest.
return SE_Fixed8;
}
if (isChar6)
return SE_Char6;
else
return SE_Fixed7;
}
/// Emit top-level description of module, including target triple, inline asm,
/// descriptors for global variables, and function prototype info.
/// Returns the bit offset to backpatch with the location of the real VST.
void ModuleBitcodeWriter::writeModuleInfo() {
// Emit various pieces of data attached to a module.
if (!M.getTargetTriple().empty())
writeStringRecord(bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
0 /*TODO*/);
const std::string &DL = M.getDataLayoutStr();
if (!DL.empty())
writeStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
if (!M.getModuleInlineAsm().empty())
writeStringRecord(bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
0 /*TODO*/);
// Emit information about sections and GC, computing how many there are. Also
// compute the maximum alignment value.
std::map<std::string, unsigned> SectionMap;
std::map<std::string, unsigned> GCMap;
unsigned MaxAlignment = 0;
unsigned MaxGlobalType = 0;
for (const GlobalValue &GV : M.globals()) {
MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
if (GV.hasSection()) {
// Give section names unique ID's.
unsigned &Entry = SectionMap[GV.getSection()];
if (!Entry) {
writeStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
0 /*TODO*/);
Entry = SectionMap.size();
}
}
}
for (const Function &F : M) {
MaxAlignment = std::max(MaxAlignment, F.getAlignment());
if (F.hasSection()) {
// Give section names unique ID's.
unsigned &Entry = SectionMap[F.getSection()];
if (!Entry) {
writeStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
0 /*TODO*/);
Entry = SectionMap.size();
}
}
if (F.hasGC()) {
// Same for GC names.
unsigned &Entry = GCMap[F.getGC()];
if (!Entry) {
writeStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 0 /*TODO*/);
Entry = GCMap.size();
}
}
}
// Emit abbrev for globals, now that we know # sections and max alignment.
unsigned SimpleGVarAbbrev = 0;
if (!M.global_empty()) {
// Add an abbrev for common globals with no visibility or thread localness.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
Log2_32_Ceil(MaxGlobalType+1)));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2
//| explicitType << 1
//| constant
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
if (MaxAlignment == 0) // Alignment.
Abbv->Add(BitCodeAbbrevOp(0));
else {
unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
Log2_32_Ceil(MaxEncAlignment+1)));
}
if (SectionMap.empty()) // Section.
Abbv->Add(BitCodeAbbrevOp(0));
else
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
Log2_32_Ceil(SectionMap.size()+1)));
// Don't bother emitting vis + thread local.
SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
}
// Emit the global variable information.
SmallVector<unsigned, 64> Vals;
for (const GlobalVariable &GV : M.globals()) {
unsigned AbbrevToUse = 0;
// GLOBALVAR: [type, isconst, initid,
// linkage, alignment, section, visibility, threadlocal,
// unnamed_addr, externally_initialized, dllstorageclass,
// comdat]
Vals.push_back(VE.getTypeID(GV.getValueType()));
Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
Vals.push_back(GV.isDeclaration() ? 0 :
(VE.getValueID(GV.getInitializer()) + 1));
Vals.push_back(getEncodedLinkage(GV));
Vals.push_back(Log2_32(GV.getAlignment())+1);
Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
if (GV.isThreadLocal() ||
GV.getVisibility() != GlobalValue::DefaultVisibility ||
GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
GV.isExternallyInitialized() ||
GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
GV.hasComdat()) {
Vals.push_back(getEncodedVisibility(GV));
Vals.push_back(getEncodedThreadLocalMode(GV));
Vals.push_back(getEncodedUnnamedAddr(GV));
Vals.push_back(GV.isExternallyInitialized());
Vals.push_back(getEncodedDLLStorageClass(GV));
Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
} else {
AbbrevToUse = SimpleGVarAbbrev;
}
Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
Vals.clear();
}
// Emit the function proto information.
for (const Function &F : M) {
// FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment,
// section, visibility, gc, unnamed_addr, prologuedata,
// dllstorageclass, comdat, prefixdata, personalityfn]
Vals.push_back(VE.getTypeID(F.getFunctionType()));
Vals.push_back(F.getCallingConv());
Vals.push_back(F.isDeclaration());
Vals.push_back(getEncodedLinkage(F));
Vals.push_back(VE.getAttributeID(F.getAttributes()));
Vals.push_back(Log2_32(F.getAlignment())+1);
Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
Vals.push_back(getEncodedVisibility(F));
Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
Vals.push_back(getEncodedUnnamedAddr(F));
Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
: 0);
Vals.push_back(getEncodedDLLStorageClass(F));
Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
: 0);
Vals.push_back(
F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
unsigned AbbrevToUse = 0;
Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
Vals.clear();
}
// Emit the alias information.
for (const GlobalAlias &A : M.aliases()) {
// ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass,
// threadlocal, unnamed_addr]
Vals.push_back(VE.getTypeID(A.getValueType()));
Vals.push_back(A.getType()->getAddressSpace());
Vals.push_back(VE.getValueID(A.getAliasee()));
Vals.push_back(getEncodedLinkage(A));
Vals.push_back(getEncodedVisibility(A));
Vals.push_back(getEncodedDLLStorageClass(A));
Vals.push_back(getEncodedThreadLocalMode(A));
Vals.push_back(getEncodedUnnamedAddr(A));
unsigned AbbrevToUse = 0;
Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
Vals.clear();
}
// Emit the ifunc information.
for (const GlobalIFunc &I : M.ifuncs()) {
// IFUNC: [ifunc type, address space, resolver val#, linkage, visibility]
Vals.push_back(VE.getTypeID(I.getValueType()));
Vals.push_back(I.getType()->getAddressSpace());
Vals.push_back(VE.getValueID(I.getResolver()));
Vals.push_back(getEncodedLinkage(I));
Vals.push_back(getEncodedVisibility(I));
Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
Vals.clear();
}
// Emit the module's source file name.
{
StringEncoding Bits = getStringEncoding(M.getSourceFileName().data(),
M.getSourceFileName().size());
BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
if (Bits == SE_Char6)
AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
else if (Bits == SE_Fixed7)
AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(AbbrevOpToUse);
unsigned FilenameAbbrev = Stream.EmitAbbrev(Abbv);
for (const auto P : M.getSourceFileName())
Vals.push_back((unsigned char)P);
// Emit the finished record.
Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
Vals.clear();
}
// If we have a VST, write the VSTOFFSET record placeholder.
if (M.getValueSymbolTable().empty())
return;
writeValueSymbolTableForwardDecl();
}
static uint64_t getOptimizationFlags(const Value *V) {
uint64_t Flags = 0;
if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
if (OBO->hasNoSignedWrap())
Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
if (OBO->hasNoUnsignedWrap())
Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
} else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
if (PEO->isExact())
Flags |= 1 << bitc::PEO_EXACT;
} else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
if (FPMO->hasUnsafeAlgebra())
Flags |= FastMathFlags::UnsafeAlgebra;
if (FPMO->hasNoNaNs())
Flags |= FastMathFlags::NoNaNs;
if (FPMO->hasNoInfs())
Flags |= FastMathFlags::NoInfs;
if (FPMO->hasNoSignedZeros())
Flags |= FastMathFlags::NoSignedZeros;
if (FPMO->hasAllowReciprocal())
Flags |= FastMathFlags::AllowReciprocal;
}
return Flags;
}
void ModuleBitcodeWriter::writeValueAsMetadata(
const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
// Mimic an MDNode with a value as one operand.
Value *V = MD->getValue();
Record.push_back(VE.getTypeID(V->getType()));
Record.push_back(VE.getValueID(V));
Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
Record.clear();
}
void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
Metadata *MD = N->getOperand(i);
assert(!(MD && isa<LocalAsMetadata>(MD)) &&
"Unexpected function-local metadata");
Record.push_back(VE.getMetadataOrNullID(MD));
}
Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
: bitc::METADATA_NODE,
Record, Abbrev);
Record.clear();
}
unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
// Assume the column is usually under 128, and always output the inlined-at
// location (it's never more expensive than building an array size 1).
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
return Stream.EmitAbbrev(Abbv);
}
void ModuleBitcodeWriter::writeDILocation(const DILocation *N,
SmallVectorImpl<uint64_t> &Record,
unsigned &Abbrev) {
if (!Abbrev)
Abbrev = createDILocationAbbrev();
Record.push_back(N->isDistinct());
Record.push_back(N->getLine());
Record.push_back(N->getColumn());
Record.push_back(VE.getMetadataID(N->getScope()));
Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
Record.clear();
}
unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
// Assume the column is usually under 128, and always output the inlined-at
// location (it's never more expensive than building an array size 1).
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
return Stream.EmitAbbrev(Abbv);
}
void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N,
SmallVectorImpl<uint64_t> &Record,
unsigned &Abbrev) {
if (!Abbrev)
Abbrev = createGenericDINodeAbbrev();
Record.push_back(N->isDistinct());
Record.push_back(N->getTag());
Record.push_back(0); // Per-tag version field; unused for now.
for (auto &I : N->operands())
Record.push_back(VE.getMetadataOrNullID(I));
Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
Record.clear();
}
static uint64_t rotateSign(int64_t I) {
uint64_t U = I;
return I < 0 ? ~(U << 1) : U << 1;
}
void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(N->getCount());
Record.push_back(rotateSign(N->getLowerBound()));
Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
Record.clear();
}
void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(rotateSign(N->getValue()));
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
Record.clear();
}
void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(N->getTag());
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
Record.push_back(N->getSizeInBits());
Record.push_back(N->getAlignInBits());
Record.push_back(N->getEncoding());
Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
Record.clear();
}
void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(N->getTag());
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
Record.push_back(N->getLine());
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
Record.push_back(N->getSizeInBits());
Record.push_back(N->getAlignInBits());
Record.push_back(N->getOffsetInBits());
Record.push_back(N->getFlags());
Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
Record.clear();
}
void ModuleBitcodeWriter::writeDICompositeType(
const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
const unsigned IsNotUsedInOldTypeRef = 0x2;
Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
Record.push_back(N->getTag());
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
Record.push_back(N->getLine());
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
Record.push_back(N->getSizeInBits());
Record.push_back(N->getAlignInBits());
Record.push_back(N->getOffsetInBits());
Record.push_back(N->getFlags());
Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
Record.push_back(N->getRuntimeLang());
Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
Record.clear();
}
void ModuleBitcodeWriter::writeDISubroutineType(
const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
const unsigned HasNoOldTypeRefs = 0x2;
Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
Record.push_back(N->getFlags());
Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
Record.push_back(N->getCC());
Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
Record.clear();
}
void ModuleBitcodeWriter::writeDIFile(const DIFile *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
Record.clear();
}
void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
assert(N->isDistinct() && "Expected distinct compile units");
Record.push_back(/* IsDistinct */ true);
Record.push_back(N->getSourceLanguage());
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
Record.push_back(N->isOptimized());
Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
Record.push_back(N->getRuntimeVersion());
Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
Record.push_back(N->getEmissionKind());
Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
Record.push_back(/* subprograms */ 0);
Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
Record.push_back(N->getDWOId());
Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
Record.clear();
}
void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
uint64_t HasUnitFlag = 1 << 1;
Record.push_back(N->isDistinct() | HasUnitFlag);
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
Record.push_back(N->getLine());
Record.push_back(VE.getMetadataOrNullID(N->getType()));
Record.push_back(N->isLocalToUnit());
Record.push_back(N->isDefinition());
Record.push_back(N->getScopeLine());
Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
Record.push_back(N->getVirtuality());
Record.push_back(N->getVirtualIndex());
Record.push_back(N->getFlags());
Record.push_back(N->isOptimized());
Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
Record.push_back(VE.getMetadataOrNullID(N->getVariables().get()));
Record.push_back(N->getThisAdjustment());
Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
Record.clear();
}
void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
Record.push_back(N->getLine());
Record.push_back(N->getColumn());
Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
Record.clear();
}
void ModuleBitcodeWriter::writeDILexicalBlockFile(
const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
Record.push_back(N->getDiscriminator());
Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
Record.clear();
}
void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
Record.push_back(N->getLine());
Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
Record.clear();
}
void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(N->getMacinfoType());
Record.push_back(N->getLine());
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
Record.clear();
}
void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(N->getMacinfoType());
Record.push_back(N->getLine());
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
Record.clear();
}
void ModuleBitcodeWriter::writeDIModule(const DIModule *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
for (auto &I : N->operands())
Record.push_back(VE.getMetadataOrNullID(I));
Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
Record.clear();
}
void ModuleBitcodeWriter::writeDITemplateTypeParameter(
const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
Record.push_back(VE.getMetadataOrNullID(N->getType()));
Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
Record.clear();
}
void ModuleBitcodeWriter::writeDITemplateValueParameter(
const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(N->getTag());
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
Record.push_back(VE.getMetadataOrNullID(N->getType()));
Record.push_back(VE.getMetadataOrNullID(N->getValue()));
Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
Record.clear();
}
void ModuleBitcodeWriter::writeDIGlobalVariable(
const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
Record.push_back(N->getLine());
Record.push_back(VE.getMetadataOrNullID(N->getType()));
Record.push_back(N->isLocalToUnit());
Record.push_back(N->isDefinition());
Record.push_back(VE.getMetadataOrNullID(N->getRawVariable()));
Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
Record.clear();
}
void ModuleBitcodeWriter::writeDILocalVariable(
const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
Record.push_back(N->getLine());
Record.push_back(VE.getMetadataOrNullID(N->getType()));
Record.push_back(N->getArg());
Record.push_back(N->getFlags());
Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
Record.clear();
}
void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.reserve(N->getElements().size() + 1);
Record.push_back(N->isDistinct());
Record.append(N->elements_begin(), N->elements_end());
Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
Record.clear();
}
void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
Record.push_back(N->getLine());
Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
Record.push_back(N->getAttributes());
Record.push_back(VE.getMetadataOrNullID(N->getType()));
Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
Record.clear();
}
void ModuleBitcodeWriter::writeDIImportedEntity(
const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(N->getTag());
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
Record.push_back(N->getLine());
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
Record.clear();
}
unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
return Stream.EmitAbbrev(Abbv);
}
void ModuleBitcodeWriter::writeNamedMetadata(
SmallVectorImpl<uint64_t> &Record) {
if (M.named_metadata_empty())
return;
unsigned Abbrev = createNamedMetadataAbbrev();
for (const NamedMDNode &NMD : M.named_metadata()) {
// Write name.
StringRef Str = NMD.getName();
Record.append(Str.bytes_begin(), Str.bytes_end());
Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
Record.clear();
// Write named metadata operands.
for (const MDNode *N : NMD.operands())
Record.push_back(VE.getMetadataID(N));
Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
Record.clear();
}
}
unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
return Stream.EmitAbbrev(Abbv);
}
/// Write out a record for MDString.
///
/// All the metadata strings in a metadata block are emitted in a single
/// record. The sizes and strings themselves are shoved into a blob.
void ModuleBitcodeWriter::writeMetadataStrings(
ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
if (Strings.empty())
return;
// Start the record with the number of strings.
Record.push_back(bitc::METADATA_STRINGS);
Record.push_back(Strings.size());
// Emit the sizes of the strings in the blob.
SmallString<256> Blob;
{
BitstreamWriter W(Blob);
for (const Metadata *MD : Strings)
W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
W.FlushToWord();
}
// Add the offset to the strings to the record.
Record.push_back(Blob.size());
// Add the strings to the blob.
for (const Metadata *MD : Strings)
Blob.append(cast<MDString>(MD)->getString());
// Emit the final record.
Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
Record.clear();
}
void ModuleBitcodeWriter::writeMetadataRecords(
ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record) {
if (MDs.empty())
return;
// Initialize MDNode abbreviations.
#define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
#include "llvm/IR/Metadata.def"
for (const Metadata *MD : MDs) {
if (const MDNode *N = dyn_cast<MDNode>(MD)) {
assert(N->isResolved() && "Expected forward references to be resolved");
switch (N->getMetadataID()) {
default:
llvm_unreachable("Invalid MDNode subclass");
#define HANDLE_MDNODE_LEAF(CLASS) \
case Metadata::CLASS##Kind: \
write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \
continue;
#include "llvm/IR/Metadata.def"
}
}
writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
}
}
void ModuleBitcodeWriter::writeModuleMetadata() {
if (!VE.hasMDs() && M.named_metadata_empty())
return;
Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
SmallVector<uint64_t, 64> Record;
writeMetadataStrings(VE.getMDStrings(), Record);
writeMetadataRecords(VE.getNonMDStrings(), Record);
writeNamedMetadata(Record);
auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) {
SmallVector<uint64_t, 4> Record;
Record.push_back(VE.getValueID(&GO));
pushGlobalMetadataAttachment(Record, GO);
Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record);
};
for (const Function &F : M)
if (F.isDeclaration() && F.hasMetadata())
AddDeclAttachedMetadata(F);
// FIXME: Only store metadata for declarations here, and move data for global
// variable definitions to a separate block (PR28134).
for (const GlobalVariable &GV : M.globals())
if (GV.hasMetadata())
AddDeclAttachedMetadata(GV);
Stream.ExitBlock();
}
void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
if (!VE.hasMDs())
return;
Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
SmallVector<uint64_t, 64> Record;
writeMetadataStrings(VE.getMDStrings(), Record);
writeMetadataRecords(VE.getNonMDStrings(), Record);
Stream.ExitBlock();
}
void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) {
// [n x [id, mdnode]]
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
GO.getAllMetadata(MDs);
for (const auto &I : MDs) {
Record.push_back(I.first);
Record.push_back(VE.getMetadataID(I.second));
}
}
void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
SmallVector<uint64_t, 64> Record;
if (F.hasMetadata()) {
pushGlobalMetadataAttachment(Record, F);
Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
Record.clear();
}
// Write metadata attachments
// METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
for (const BasicBlock &BB : F)
for (const Instruction &I : BB) {
MDs.clear();
I.getAllMetadataOtherThanDebugLoc(MDs);
// If no metadata, ignore instruction.
if (MDs.empty()) continue;
Record.push_back(VE.getInstructionID(&I));
for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
Record.push_back(MDs[i].first);
Record.push_back(VE.getMetadataID(MDs[i].second));
}
Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
Record.clear();
}
Stream.ExitBlock();
}
void ModuleBitcodeWriter::writeModuleMetadataKinds() {
SmallVector<uint64_t, 64> Record;
// Write metadata kinds
// METADATA_KIND - [n x [id, name]]
SmallVector<StringRef, 8> Names;
M.getMDKindNames(Names);
if (Names.empty()) return;
Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
Record.push_back(MDKindID);
StringRef KName = Names[MDKindID];
Record.append(KName.begin(), KName.end());
Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
Record.clear();
}
Stream.ExitBlock();
}
void ModuleBitcodeWriter::writeOperandBundleTags() {
// Write metadata kinds
//
// OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
//
// OPERAND_BUNDLE_TAG - [strchr x N]
SmallVector<StringRef, 8> Tags;
M.getOperandBundleTags(Tags);
if (Tags.empty())
return;
Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
SmallVector<uint64_t, 64> Record;
for (auto Tag : Tags) {
Record.append(Tag.begin(), Tag.end());
Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
Record.clear();
}
Stream.ExitBlock();
}
static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
if ((int64_t)V >= 0)
Vals.push_back(V << 1);
else
Vals.push_back((-V << 1) | 1);
}
void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
bool isGlobal) {
if (FirstVal == LastVal) return;
Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
unsigned AggregateAbbrev = 0;
unsigned String8Abbrev = 0;
unsigned CString7Abbrev = 0;
unsigned CString6Abbrev = 0;
// If this is a constant pool for the module, emit module-specific abbrevs.
if (isGlobal) {
// Abbrev for CST_CODE_AGGREGATE.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
AggregateAbbrev = Stream.EmitAbbrev(Abbv);
// Abbrev for CST_CODE_STRING.
Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
String8Abbrev = Stream.EmitAbbrev(Abbv);
// Abbrev for CST_CODE_CSTRING.
Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
CString7Abbrev = Stream.EmitAbbrev(Abbv);
// Abbrev for CST_CODE_CSTRING.
Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
CString6Abbrev = Stream.EmitAbbrev(Abbv);
}
SmallVector<uint64_t, 64> Record;
const ValueEnumerator::ValueList &Vals = VE.getValues();
Type *LastTy = nullptr;
for (unsigned i = FirstVal; i != LastVal; ++i) {
const Value *V = Vals[i].first;
// If we need to switch types, do so now.
if (V->getType() != LastTy) {
LastTy = V->getType();
Record.push_back(VE.getTypeID(LastTy));
Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
CONSTANTS_SETTYPE_ABBREV);
Record.clear();
}
if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
Record.push_back(unsigned(IA->hasSideEffects()) |
unsigned(IA->isAlignStack()) << 1 |
unsigned(IA->getDialect()&1) << 2);
// Add the asm string.
const std::string &AsmStr = IA->getAsmString();
Record.push_back(AsmStr.size());
Record.append(AsmStr.begin(), AsmStr.end());
// Add the constraint string.
const std::string &ConstraintStr = IA->getConstraintString();
Record.push_back(ConstraintStr.size());
Record.append(ConstraintStr.begin(), ConstraintStr.end());
Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
Record.clear();
continue;
}
const Constant *C = cast<Constant>(V);
unsigned Code = -1U;
unsigned AbbrevToUse = 0;
if (C->isNullValue()) {
Code = bitc::CST_CODE_NULL;
} else if (isa<UndefValue>(C)) {
Code = bitc::CST_CODE_UNDEF;
} else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
if (IV->getBitWidth() <= 64) {
uint64_t V = IV->getSExtValue();
emitSignedInt64(Record, V);
Code = bitc::CST_CODE_INTEGER;
AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
} else { // Wide integers, > 64 bits in size.
// We have an arbitrary precision integer value to write whose
// bit width is > 64. However, in canonical unsigned integer
// format it is likely that the high bits are going to be zero.
// So, we only write the number of active words.
unsigned NWords = IV->getValue().getActiveWords();
const uint64_t *RawWords = IV->getValue().getRawData();
for (unsigned i = 0; i != NWords; ++i) {
emitSignedInt64(Record, RawWords[i]);
}
Code = bitc::CST_CODE_WIDE_INTEGER;
}
} else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
Code = bitc::CST_CODE_FLOAT;
Type *Ty = CFP->getType();
if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
} else if (Ty->isX86_FP80Ty()) {
// api needed to prevent premature destruction
// bits are not in the same order as a normal i80 APInt, compensate.
APInt api = CFP->getValueAPF().bitcastToAPInt();
const uint64_t *p = api.getRawData();
Record.push_back((p[1] << 48) | (p[0] >> 16));
Record.push_back(p[0] & 0xffffLL);
} else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
APInt api = CFP->getValueAPF().bitcastToAPInt();
const uint64_t *p = api.getRawData();
Record.push_back(p[0]);
Record.push_back(p[1]);
} else {
assert (0 && "Unknown FP type!");
}
} else if (isa<ConstantDataSequential>(C) &&
cast<ConstantDataSequential>(C)->isString()) {
const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
// Emit constant strings specially.
unsigned NumElts = Str->getNumElements();
// If this is a null-terminated string, use the denser CSTRING encoding.
if (Str->isCString()) {
Code = bitc::CST_CODE_CSTRING;
--NumElts; // Don't encode the null, which isn't allowed by char6.
} else {
Code = bitc::CST_CODE_STRING;
AbbrevToUse = String8Abbrev;
}
bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
for (unsigned i = 0; i != NumElts; ++i) {
unsigned char V = Str->getElementAsInteger(i);
Record.push_back(V);
isCStr7 &= (V & 128) == 0;
if (isCStrChar6)
isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
}
if (isCStrChar6)
AbbrevToUse = CString6Abbrev;
else if (isCStr7)
AbbrevToUse = CString7Abbrev;
} else if (const ConstantDataSequential *CDS =
dyn_cast<ConstantDataSequential>(C)) {
Code = bitc::CST_CODE_DATA;
Type *EltTy = CDS->getType()->getElementType();
if (isa<IntegerType>(EltTy)) {
for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
Record.push_back(CDS->getElementAsInteger(i));
} else {
for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
Record.push_back(
CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
}
} else if (isa<ConstantAggregate>(C)) {
Code = bitc::CST_CODE_AGGREGATE;
for (const Value *Op : C->operands())
Record.push_back(VE.getValueID(Op));
AbbrevToUse = AggregateAbbrev;
} else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
switch (CE->getOpcode()) {
default:
if (Instruction::isCast(CE->getOpcode())) {
Code = bitc::CST_CODE_CE_CAST;
Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
Record.push_back(VE.getValueID(C->getOperand(0)));
AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
} else {
assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
Code = bitc::CST_CODE_CE_BINOP;
Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
Record.push_back(VE.getValueID(C->getOperand(0)));
Record.push_back(VE.getValueID(C->getOperand(1)));
uint64_t Flags = getOptimizationFlags(CE);
if (Flags != 0)
Record.push_back(Flags);
}
break;
case Instruction::GetElementPtr: {
Code = bitc::CST_CODE_CE_GEP;
const auto *GO = cast<GEPOperator>(C);
if (GO->isInBounds())
Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
Record.push_back(VE.getTypeID(GO->getSourceElementType()));
for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
Record.push_back(VE.getValueID(C->getOperand(i)));
}
break;
}
case Instruction::Select:
Code = bitc::CST_CODE_CE_SELECT;
Record.push_back(VE.getValueID(C->getOperand(0)));
Record.push_back(VE.getValueID(C->getOperand(1)));
Record.push_back(VE.getValueID(C->getOperand(2)));
break;
case Instruction::ExtractElement:
Code = bitc::CST_CODE_CE_EXTRACTELT;
Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
Record.push_back(VE.getValueID(C->getOperand(0)));
Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
Record.push_back(VE.getValueID(C->getOperand(1)));
break;
case Instruction::InsertElement:
Code = bitc::CST_CODE_CE_INSERTELT;
Record.push_back(VE.getValueID(C->getOperand(0)));
Record.push_back(VE.getValueID(C->getOperand(1)));
Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
Record.push_back(VE.getValueID(C->getOperand(2)));
break;
case Instruction::ShuffleVector:
// If the return type and argument types are the same, this is a
// standard shufflevector instruction. If the types are different,
// then the shuffle is widening or truncating the input vectors, and
// the argument type must also be encoded.
if (C->getType() == C->getOperand(0)->getType()) {
Code = bitc::CST_CODE_CE_SHUFFLEVEC;
} else {
Code = bitc::CST_CODE_CE_SHUFVEC_EX;
Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
}
Record.push_back(VE.getValueID(C->getOperand(0)));
Record.push_back(VE.getValueID(C->getOperand(1)));
Record.push_back(VE.getValueID(C->getOperand(2)));
break;
case Instruction::ICmp:
case Instruction::FCmp:
Code = bitc::CST_CODE_CE_CMP;
Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
Record.push_back(VE.getValueID(C->getOperand(0)));
Record.push_back(VE.getValueID(C->getOperand(1)));
Record.push_back(CE->getPredicate());
break;
}
} else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
Code = bitc::CST_CODE_BLOCKADDRESS;
Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
Record.push_back(VE.getValueID(BA->getFunction()));
Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
} else {
#ifndef NDEBUG
C->dump();
#endif
llvm_unreachable("Unknown constant!");
}
Stream.EmitRecord(Code, Record, AbbrevToUse);
Record.clear();
}
Stream.ExitBlock();
}
void ModuleBitcodeWriter::writeModuleConstants() {
const ValueEnumerator::ValueList &Vals = VE.getValues();
// Find the first constant to emit, which is the first non-globalvalue value.
// We know globalvalues have been emitted by WriteModuleInfo.
for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
if (!isa<GlobalValue>(Vals[i].first)) {
writeConstants(i, Vals.size(), true);
return;
}
}
}
/// pushValueAndType - The file has to encode both the value and type id for
/// many values, because we need to know what type to create for forward
/// references. However, most operands are not forward references, so this type
/// field is not needed.
///
/// This function adds V's value ID to Vals. If the value ID is higher than the
/// instruction ID, then it is a forward reference, and it also includes the
/// type ID. The value ID that is written is encoded relative to the InstID.
bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
SmallVectorImpl<unsigned> &Vals) {
unsigned ValID = VE.getValueID(V);
// Make encoding relative to the InstID.
Vals.push_back(InstID - ValID);
if (ValID >= InstID) {
Vals.push_back(VE.getTypeID(V->getType()));
return true;
}
return false;
}
void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS,
unsigned InstID) {
SmallVector<unsigned, 64> Record;
LLVMContext &C = CS.getInstruction()->getContext();
for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
const auto &Bundle = CS.getOperandBundleAt(i);
Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
for (auto &Input : Bundle.Inputs)
pushValueAndType(Input, InstID, Record);
Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
Record.clear();
}
}
/// pushValue - Like pushValueAndType, but where the type of the value is
/// omitted (perhaps it was already encoded in an earlier operand).
void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
SmallVectorImpl<unsigned> &Vals) {
unsigned ValID = VE.getValueID(V);
Vals.push_back(InstID - ValID);
}
void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
SmallVectorImpl<uint64_t> &Vals) {
unsigned ValID = VE.getValueID(V);
int64_t diff = ((int32_t)InstID - (int32_t)ValID);
emitSignedInt64(Vals, diff);
}
/// WriteInstruction - Emit an instruction to the specified stream.
void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
unsigned InstID,
SmallVectorImpl<unsigned> &Vals) {
unsigned Code = 0;
unsigned AbbrevToUse = 0;
VE.setInstructionID(&I);
switch (I.getOpcode()) {
default:
if (Instruction::isCast(I.getOpcode())) {
Code = bitc::FUNC_CODE_INST_CAST;
if (!pushValueAndType(I.getOperand(0), InstID, Vals))
AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
Vals.push_back(VE.getTypeID(I.getType()));
Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
} else {
assert(isa<BinaryOperator>(I) && "Unknown instruction!");
Code = bitc::FUNC_CODE_INST_BINOP;
if (!pushValueAndType(I.getOperand(0), InstID, Vals))
AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
pushValue(I.getOperand(1), InstID, Vals);
Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
uint64_t Flags = getOptimizationFlags(&I);
if (Flags != 0) {
if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
Vals.push_back(Flags);
}
}
break;
case Instruction::GetElementPtr: {
Code = bitc::FUNC_CODE_INST_GEP;
AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
auto &GEPInst = cast<GetElementPtrInst>(I);
Vals.push_back(GEPInst.isInBounds());
Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
pushValueAndType(I.getOperand(i), InstID, Vals);
break;
}
case Instruction::ExtractValue: {
Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
pushValueAndType(I.getOperand(0), InstID, Vals);
const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
Vals.append(EVI->idx_begin(), EVI->idx_end());
break;
}
case Instruction::InsertValue: {
Code = bitc::FUNC_CODE_INST_INSERTVAL;
pushValueAndType(I.getOperand(0), InstID, Vals);
pushValueAndType(I.getOperand(1), InstID, Vals);
const InsertValueInst *IVI = cast<InsertValueInst>(&I);
Vals.append(IVI->idx_begin(), IVI->idx_end());
break;
}
case Instruction::Select:
Code = bitc::FUNC_CODE_INST_VSELECT;
pushValueAndType(I.getOperand(1), InstID, Vals);
pushValue(I.getOperand(2), InstID, Vals);
pushValueAndType(I.getOperand(0), InstID, Vals);
break;
case Instruction::ExtractElement:
Code = bitc::FUNC_CODE_INST_EXTRACTELT;
pushValueAndType(I.getOperand(0), InstID, Vals);
pushValueAndType(I.getOperand(1), InstID, Vals);
break;
case Instruction::InsertElement:
Code = bitc::FUNC_CODE_INST_INSERTELT;
pushValueAndType(I.getOperand(0), InstID, Vals);
pushValue(I.getOperand(1), InstID, Vals);
pushValueAndType(I.getOperand(2), InstID, Vals);
break;
case Instruction::ShuffleVector:
Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
pushValueAndType(I.getOperand(0), InstID, Vals);
pushValue(I.getOperand(1), InstID, Vals);
pushValue(I.getOperand(2), InstID, Vals);
break;
case Instruction::ICmp:
case Instruction::FCmp: {
// compare returning Int1Ty or vector of Int1Ty
Code = bitc::FUNC_CODE_INST_CMP2;
pushValueAndType(I.getOperand(0), InstID, Vals);
pushValue(I.getOperand(1), InstID, Vals);
Vals.push_back(cast<CmpInst>(I).getPredicate());
uint64_t Flags = getOptimizationFlags(&I);
if (Flags != 0)
Vals.push_back(Flags);
break;
}
case Instruction::Ret:
{
Code = bitc::FUNC_CODE_INST_RET;
unsigned NumOperands = I.getNumOperands();
if (NumOperands == 0)
AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
else if (NumOperands == 1) {
if (!pushValueAndType(I.getOperand(0), InstID, Vals))
AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
} else {
for (unsigned i = 0, e = NumOperands; i != e; ++i)
pushValueAndType(I.getOperand(i), InstID, Vals);
}
}
break;
case Instruction::Br:
{
Code = bitc::FUNC_CODE_INST_BR;
const BranchInst &II = cast<BranchInst>(I);
Vals.push_back(VE.getValueID(II.getSuccessor(0)));
if (II.isConditional()) {
Vals.push_back(VE.getValueID(II.getSuccessor(1)));
pushValue(II.getCondition(), InstID, Vals);
}
}
break;
case Instruction::Switch:
{
Code = bitc::FUNC_CODE_INST_SWITCH;
const SwitchInst &SI = cast<SwitchInst>(I);
Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
pushValue(SI.getCondition(), InstID, Vals);
Vals.push_back(VE.getValueID(SI.getDefaultDest()));
for (SwitchInst::ConstCaseIt Case : SI.cases()) {
Vals.push_back(VE.getValueID(Case.getCaseValue()));
Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
}
}
break;
case Instruction::IndirectBr:
Code = bitc::FUNC_CODE_INST_INDIRECTBR;
Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
// Encode the address operand as relative, but not the basic blocks.
pushValue(I.getOperand(0), InstID, Vals);
for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
Vals.push_back(VE.getValueID(I.getOperand(i)));
break;
case Instruction::Invoke: {
const InvokeInst *II = cast<InvokeInst>(&I);
const Value *Callee = II->getCalledValue();
FunctionType *FTy = II->getFunctionType();
if (II->hasOperandBundles())
writeOperandBundles(II, InstID);
Code = bitc::FUNC_CODE_INST_INVOKE;
Vals.push_back(VE.getAttributeID(II->getAttributes()));
Vals.push_back(II->getCallingConv() | 1 << 13);
Vals.push_back(VE.getValueID(II->getNormalDest()));
Vals.push_back(VE.getValueID(II->getUnwindDest()));
Vals.push_back(VE.getTypeID(FTy));
pushValueAndType(Callee, InstID, Vals);
// Emit value #'s for the fixed parameters.
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
pushValue(I.getOperand(i), InstID, Vals); // fixed param.
// Emit type/value pairs for varargs params.
if (FTy->isVarArg()) {
for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
i != e; ++i)
pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
}
break;
}
case Instruction::Resume:
Code = bitc::FUNC_CODE_INST_RESUME;
pushValueAndType(I.getOperand(0), InstID, Vals);
break;
case Instruction::CleanupRet: {
Code = bitc::FUNC_CODE_INST_CLEANUPRET;
const auto &CRI = cast<CleanupReturnInst>(I);
pushValue(CRI.getCleanupPad(), InstID, Vals);
if (CRI.hasUnwindDest())
Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
break;
}
case Instruction::CatchRet: {
Code = bitc::FUNC_CODE_INST_CATCHRET;
const auto &CRI = cast<CatchReturnInst>(I);
pushValue(CRI.getCatchPad(), InstID, Vals);
Vals.push_back(VE.getValueID(CRI.getSuccessor()));
break;
}
case Instruction::CleanupPad:
case Instruction::CatchPad: {
const auto &FuncletPad = cast<FuncletPadInst>(I);
Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
: bitc::FUNC_CODE_INST_CLEANUPPAD;
pushValue(FuncletPad.getParentPad(), InstID, Vals);
unsigned NumArgOperands = FuncletPad.getNumArgOperands();
Vals.push_back(NumArgOperands);
for (unsigned Op = 0; Op != NumArgOperands; ++Op)
pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
break;
}
case Instruction::CatchSwitch: {
Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
const auto &CatchSwitch = cast<CatchSwitchInst>(I);
pushValue(CatchSwitch.getParentPad(), InstID, Vals);
unsigned NumHandlers = CatchSwitch.getNumHandlers();
Vals.push_back(NumHandlers);
for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
Vals.push_back(VE.getValueID(CatchPadBB));
if (CatchSwitch.hasUnwindDest())
Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
break;
}
case Instruction::Unreachable:
Code = bitc::FUNC_CODE_INST_UNREACHABLE;
AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
break;
case Instruction::PHI: {
const PHINode &PN = cast<PHINode>(I);
Code = bitc::FUNC_CODE_INST_PHI;
// With the newer instruction encoding, forward references could give
// negative valued IDs. This is most common for PHIs, so we use
// signed VBRs.
SmallVector<uint64_t, 128> Vals64;
Vals64.push_back(VE.getTypeID(PN.getType()));
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
}
// Emit a Vals64 vector and exit.
Stream.EmitRecord(Code, Vals64, AbbrevToUse);
Vals64.clear();
return;
}
case Instruction::LandingPad: {
const LandingPadInst &LP = cast<LandingPadInst>(I);
Code = bitc::FUNC_CODE_INST_LANDINGPAD;
Vals.push_back(VE.getTypeID(LP.getType()));
Vals.push_back(LP.isCleanup());
Vals.push_back(LP.getNumClauses());
for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
if (LP.isCatch(I))
Vals.push_back(LandingPadInst::Catch);
else
Vals.push_back(LandingPadInst::Filter);
pushValueAndType(LP.getClause(I), InstID, Vals);
}
break;
}
case Instruction::Alloca: {
Code = bitc::FUNC_CODE_INST_ALLOCA;
const AllocaInst &AI = cast<AllocaInst>(I);
Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
"not enough bits for maximum alignment");
assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
AlignRecord |= AI.isUsedWithInAlloca() << 5;
AlignRecord |= 1 << 6;
AlignRecord |= AI.isSwiftError() << 7;
Vals.push_back(AlignRecord);
break;
}
case Instruction::Load:
if (cast<LoadInst>(I).isAtomic()) {
Code = bitc::FUNC_CODE_INST_LOADATOMIC;
pushValueAndType(I.getOperand(0), InstID, Vals);
} else {
Code = bitc::FUNC_CODE_INST_LOAD;
if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
}
Vals.push_back(VE.getTypeID(I.getType()));
Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
Vals.push_back(cast<LoadInst>(I).isVolatile());
if (cast<LoadInst>(I).isAtomic()) {
Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
Vals.push_back(getEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
}
break;
case Instruction::Store:
if (cast<StoreInst>(I).isAtomic())
Code = bitc::FUNC_CODE_INST_STOREATOMIC;
else
Code = bitc::FUNC_CODE_INST_STORE;
pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
Vals.push_back(cast<StoreInst>(I).isVolatile());
if (cast<StoreInst>(I).isAtomic()) {
Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
Vals.push_back(getEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
}
break;
case Instruction::AtomicCmpXchg:
Code = bitc::FUNC_CODE_INST_CMPXCHG;
pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
pushValue(I.getOperand(2), InstID, Vals); // newval.
Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
Vals.push_back(
getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
Vals.push_back(
getEncodedSynchScope(cast<AtomicCmpXchgInst>(I).getSynchScope()));
Vals.push_back(
getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
break;
case Instruction::AtomicRMW:
Code = bitc::FUNC_CODE_INST_ATOMICRMW;
pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
pushValue(I.getOperand(1), InstID, Vals); // val.
Vals.push_back(
getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
Vals.push_back(
getEncodedSynchScope(cast<AtomicRMWInst>(I).getSynchScope()));
break;
case Instruction::Fence:
Code = bitc::FUNC_CODE_INST_FENCE;
Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
Vals.push_back(getEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
break;
case Instruction::Call: {
const CallInst &CI = cast<CallInst>(I);
FunctionType *FTy = CI.getFunctionType();
if (CI.hasOperandBundles())
writeOperandBundles(&CI, InstID);
Code = bitc::FUNC_CODE_INST_CALL;
Vals.push_back(VE.getAttributeID(CI.getAttributes()));
unsigned Flags = getOptimizationFlags(&I);
Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
1 << bitc::CALL_EXPLICIT_TYPE |
unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
unsigned(Flags != 0) << bitc::CALL_FMF);
if (Flags != 0)
Vals.push_back(Flags);
Vals.push_back(VE.getTypeID(FTy));
pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee
// Emit value #'s for the fixed parameters.
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
// Check for labels (can happen with asm labels).
if (FTy->getParamType(i)->isLabelTy())
Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
else
pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
}
// Emit type/value pairs for varargs params.
if (FTy->isVarArg()) {
for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
i != e; ++i)
pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
}
break;
}
case Instruction::VAArg:
Code = bitc::FUNC_CODE_INST_VAARG;
Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
pushValue(I.getOperand(0), InstID, Vals); // valist.
Vals.push_back(VE.getTypeID(I.getType())); // restype.
break;
}
Stream.EmitRecord(Code, Vals, AbbrevToUse);
Vals.clear();
}
/// Emit names for globals/functions etc. \p IsModuleLevel is true when
/// we are writing the module-level VST, where we are including a function
/// bitcode index and need to backpatch the VST forward declaration record.
void ModuleBitcodeWriter::writeValueSymbolTable(
const ValueSymbolTable &VST, bool IsModuleLevel,
DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex) {
if (VST.empty()) {
// writeValueSymbolTableForwardDecl should have returned early as
// well. Ensure this handling remains in sync by asserting that
// the placeholder offset is not set.
assert(!IsModuleLevel || !hasVSTOffsetPlaceholder());
return;
}
if (IsModuleLevel && hasVSTOffsetPlaceholder()) {
// Get the offset of the VST we are writing, and backpatch it into
// the VST forward declaration record.
uint64_t VSTOffset = Stream.GetCurrentBitNo();
// The BitcodeStartBit was the stream offset of the actual bitcode
// (e.g. excluding any initial darwin header).
VSTOffset -= bitcodeStartBit();
assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32);
}
Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
// For the module-level VST, add abbrev Ids for the VST_CODE_FNENTRY
// records, which are not used in the per-function VSTs.
unsigned FnEntry8BitAbbrev;
unsigned FnEntry7BitAbbrev;
unsigned FnEntry6BitAbbrev;
unsigned GUIDEntryAbbrev;
if (IsModuleLevel && hasVSTOffsetPlaceholder()) {
// 8-bit fixed-width VST_CODE_FNENTRY function strings.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
FnEntry8BitAbbrev = Stream.EmitAbbrev(Abbv);
// 7-bit fixed width VST_CODE_FNENTRY function strings.
Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
FnEntry7BitAbbrev = Stream.EmitAbbrev(Abbv);
// 6-bit char6 VST_CODE_FNENTRY function strings.
Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
FnEntry6BitAbbrev = Stream.EmitAbbrev(Abbv);
// FIXME: Change the name of this record as it is now used by
// the per-module index as well.
Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid
GUIDEntryAbbrev = Stream.EmitAbbrev(Abbv);
}
// FIXME: Set up the abbrev, we know how many values there are!
// FIXME: We know if the type names can use 7-bit ascii.
SmallVector<uint64_t, 64> NameVals;
for (const ValueName &Name : VST) {
// Figure out the encoding to use for the name.
StringEncoding Bits =
getStringEncoding(Name.getKeyData(), Name.getKeyLength());
unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
NameVals.push_back(VE.getValueID(Name.getValue()));
Function *F = dyn_cast<Function>(Name.getValue());
if (!F) {
// If value is an alias, need to get the aliased base object to
// see if it is a function.
auto *GA = dyn_cast<GlobalAlias>(Name.getValue());
if (GA && GA->getBaseObject())
F = dyn_cast<Function>(GA->getBaseObject());
}
// VST_CODE_ENTRY: [valueid, namechar x N]
// VST_CODE_FNENTRY: [valueid, funcoffset, namechar x N]
// VST_CODE_BBENTRY: [bbid, namechar x N]
unsigned Code;
if (isa<BasicBlock>(Name.getValue())) {
Code = bitc::VST_CODE_BBENTRY;
if (Bits == SE_Char6)
AbbrevToUse = VST_BBENTRY_6_ABBREV;
} else if (F && !F->isDeclaration()) {
// Must be the module-level VST, where we pass in the Index and
// have a VSTOffsetPlaceholder. The function-level VST should not
// contain any Function symbols.
assert(FunctionToBitcodeIndex);
assert(hasVSTOffsetPlaceholder());
// Save the word offset of the function (from the start of the
// actual bitcode written to the stream).
uint64_t BitcodeIndex = (*FunctionToBitcodeIndex)[F] - bitcodeStartBit();
assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
NameVals.push_back(BitcodeIndex / 32);
Code = bitc::VST_CODE_FNENTRY;
AbbrevToUse = FnEntry8BitAbbrev;
if (Bits == SE_Char6)
AbbrevToUse = FnEntry6BitAbbrev;
else if (Bits == SE_Fixed7)
AbbrevToUse = FnEntry7BitAbbrev;
} else {
Code = bitc::VST_CODE_ENTRY;
if (Bits == SE_Char6)
AbbrevToUse = VST_ENTRY_6_ABBREV;
else if (Bits == SE_Fixed7)
AbbrevToUse = VST_ENTRY_7_ABBREV;
}
for (const auto P : Name.getKey())
NameVals.push_back((unsigned char)P);
// Emit the finished record.
Stream.EmitRecord(Code, NameVals, AbbrevToUse);
NameVals.clear();
}
// Emit any GUID valueIDs created for indirect call edges into the
// module-level VST.
if (IsModuleLevel && hasVSTOffsetPlaceholder())
for (const auto &GI : valueIds()) {
NameVals.push_back(GI.second);
NameVals.push_back(GI.first);
Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals,
GUIDEntryAbbrev);
NameVals.clear();
}
Stream.ExitBlock();
}
/// Emit function names and summary offsets for the combined index
/// used by ThinLTO.
void IndexBitcodeWriter::writeCombinedValueSymbolTable() {
assert(hasVSTOffsetPlaceholder() && "Expected non-zero VSTOffsetPlaceholder");
// Get the offset of the VST we are writing, and backpatch it into
// the VST forward declaration record.
uint64_t VSTOffset = Stream.GetCurrentBitNo();
assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32);
Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid
unsigned EntryAbbrev = Stream.EmitAbbrev(Abbv);
SmallVector<uint64_t, 64> NameVals;
for (const auto &GVI : valueIds()) {
// VST_CODE_COMBINED_ENTRY: [valueid, refguid]
NameVals.push_back(GVI.second);
NameVals.push_back(GVI.first);
// Emit the finished record.
Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals, EntryAbbrev);
NameVals.clear();
}
Stream.ExitBlock();
}
void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
unsigned Code;
if (isa<BasicBlock>(Order.V))
Code = bitc::USELIST_CODE_BB;
else
Code = bitc::USELIST_CODE_DEFAULT;
SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
Record.push_back(VE.getValueID(Order.V));
Stream.EmitRecord(Code, Record);
}
void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
assert(VE.shouldPreserveUseListOrder() &&
"Expected to be preserving use-list order");
auto hasMore = [&]() {
return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
};
if (!hasMore())
// Nothing to do.
return;
Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
while (hasMore()) {
writeUseList(std::move(VE.UseListOrders.back()));
VE.UseListOrders.pop_back();
}
Stream.ExitBlock();
}
/// Emit a function body to the module stream.
void ModuleBitcodeWriter::writeFunction(
const Function &F,
DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
// Save the bitcode index of the start of this function block for recording
// in the VST.
FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
VE.incorporateFunction(F);
SmallVector<unsigned, 64> Vals;
// Emit the number of basic blocks, so the reader can create them ahead of
// time.
Vals.push_back(VE.getBasicBlocks().size());
Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
Vals.clear();
// If there are function-local constants, emit them now.
unsigned CstStart, CstEnd;
VE.getFunctionConstantRange(CstStart, CstEnd);
writeConstants(CstStart, CstEnd, false);
// If there is function-local metadata, emit it now.
writeFunctionMetadata(F);
// Keep a running idea of what the instruction ID is.
unsigned InstID = CstEnd;
bool NeedsMetadataAttachment = F.hasMetadata();
DILocation *LastDL = nullptr;
// Finally, emit all the instructions, in order.
for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
I != E; ++I) {
writeInstruction(*I, InstID, Vals);
if (!I->getType()->isVoidTy())
++InstID;
// If the instruction has metadata, write a metadata attachment later.
NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
// If the instruction has a debug location, emit it.
DILocation *DL = I->getDebugLoc();
if (!DL)
continue;
if (DL == LastDL) {
// Just repeat the same debug loc as last time.
Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
continue;
}
Vals.push_back(DL->getLine());
Vals.push_back(DL->getColumn());
Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
Vals.clear();
LastDL = DL;
}
// Emit names for all the instructions etc.
writeValueSymbolTable(F.getValueSymbolTable());
if (NeedsMetadataAttachment)
writeFunctionMetadataAttachment(F);
if (VE.shouldPreserveUseListOrder())
writeUseListBlock(&F);
VE.purgeFunction();
Stream.ExitBlock();
}
// Emit blockinfo, which defines the standard abbreviations etc.
void ModuleBitcodeWriter::writeBlockInfo() {
// We only want to emit block info records for blocks that have multiple
// instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
// Other blocks can define their abbrevs inline.
Stream.EnterBlockInfoBlock(2);
{ // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
VST_ENTRY_8_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // 7-bit fixed width VST_CODE_ENTRY strings.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
VST_ENTRY_7_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // 6-bit char6 VST_CODE_ENTRY strings.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
VST_ENTRY_6_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // 6-bit char6 VST_CODE_BBENTRY strings.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
VST_BBENTRY_6_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // SETTYPE abbrev for CONSTANTS_BLOCK.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
VE.computeBitsRequiredForTypeIndicies()));
if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
CONSTANTS_SETTYPE_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // INTEGER abbrev for CONSTANTS_BLOCK.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
CONSTANTS_INTEGER_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // CE_CAST abbrev for CONSTANTS_BLOCK.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
VE.computeBitsRequiredForTypeIndicies()));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
CONSTANTS_CE_CAST_Abbrev)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // NULL abbrev for CONSTANTS_BLOCK.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
CONSTANTS_NULL_Abbrev)
llvm_unreachable("Unexpected abbrev ordering!");
}
// FIXME: This should only use space for first class types!
{ // INST_LOAD abbrev for FUNCTION_BLOCK.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
VE.computeBitsRequiredForTypeIndicies()));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
FUNCTION_INST_LOAD_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // INST_BINOP abbrev for FUNCTION_BLOCK.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
FUNCTION_INST_BINOP_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
FUNCTION_INST_BINOP_FLAGS_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // INST_CAST abbrev for FUNCTION_BLOCK.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
VE.computeBitsRequiredForTypeIndicies()));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
FUNCTION_INST_CAST_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // INST_RET abbrev for FUNCTION_BLOCK.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
FUNCTION_INST_RET_VOID_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // INST_RET abbrev for FUNCTION_BLOCK.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
FUNCTION_INST_RET_VAL_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
FUNCTION_INST_UNREACHABLE_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
Log2_32_Ceil(VE.getTypes().size() + 1)));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
FUNCTION_INST_GEP_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
Stream.ExitBlock();
}
/// Write the module path strings, currently only used when generating
/// a combined index file.
void IndexBitcodeWriter::writeModStrings() {
Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
// TODO: See which abbrev sizes we actually need to emit
// 8-bit fixed-width MST_ENTRY strings.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
unsigned Abbrev8Bit = Stream.EmitAbbrev(Abbv);
// 7-bit fixed width MST_ENTRY strings.
Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
unsigned Abbrev7Bit = Stream.EmitAbbrev(Abbv);
// 6-bit char6 MST_ENTRY strings.
Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
unsigned Abbrev6Bit = Stream.EmitAbbrev(Abbv);
// Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
unsigned AbbrevHash = Stream.EmitAbbrev(Abbv);
SmallVector<unsigned, 64> Vals;
for (const auto &MPSE : Index.modulePaths()) {
if (!doIncludeModule(MPSE.getKey()))
continue;
StringEncoding Bits =
getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size());
unsigned AbbrevToUse = Abbrev8Bit;
if (Bits == SE_Char6)
AbbrevToUse = Abbrev6Bit;
else if (Bits == SE_Fixed7)
AbbrevToUse = Abbrev7Bit;
Vals.push_back(MPSE.getValue().first);
for (const auto P : MPSE.getKey())
Vals.push_back((unsigned char)P);
// Emit the finished record.
Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);
Vals.clear();
// Emit an optional hash for the module now
auto &Hash = MPSE.getValue().second;
bool AllZero = true; // Detect if the hash is empty, and do not generate it
for (auto Val : Hash) {
if (Val)
AllZero = false;
Vals.push_back(Val);
}
if (!AllZero) {
// Emit the hash record.
Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
}
Vals.clear();
}
Stream.ExitBlock();
}
// Helper to emit a single function summary record.
void ModuleBitcodeWriter::writePerModuleFunctionSummaryRecord(
SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
const Function &F) {
NameVals.push_back(ValueID);
FunctionSummary *FS = cast<FunctionSummary>(Summary);
NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
NameVals.push_back(FS->instCount());
NameVals.push_back(FS->refs().size());
unsigned SizeBeforeRefs = NameVals.size();
for (auto &RI : FS->refs())
NameVals.push_back(VE.getValueID(RI.getValue()));
// Sort the refs for determinism output, the vector returned by FS->refs() has
// been initialized from a DenseSet.
std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end());
std::vector<FunctionSummary::EdgeTy> Calls = FS->calls();
std::sort(Calls.begin(), Calls.end(),
[this](const FunctionSummary::EdgeTy &L,
const FunctionSummary::EdgeTy &R) {
return getValueId(L.first) < getValueId(R.first);
});
bool HasProfileData = F.getEntryCount().hasValue();
for (auto &ECI : Calls) {
NameVals.push_back(getValueId(ECI.first));
assert(ECI.second.CallsiteCount > 0 && "Expected at least one callsite");
NameVals.push_back(ECI.second.CallsiteCount);
if (HasProfileData)
NameVals.push_back(ECI.second.ProfileCount);
}
unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
unsigned Code =
(HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE);
// Emit the finished record.
Stream.EmitRecord(Code, NameVals, FSAbbrev);
NameVals.clear();
}
// Collect the global value references in the given variable's initializer,
// and emit them in a summary record.
void ModuleBitcodeWriter::writeModuleLevelReferences(
const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
unsigned FSModRefsAbbrev) {
// Only interested in recording variable defs in the summary.
if (V.isDeclaration())
return;
NameVals.push_back(VE.getValueID(&V));
NameVals.push_back(getEncodedGVSummaryFlags(V));
auto *Summary = Index->getGlobalValueSummary(V);
GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
unsigned SizeBeforeRefs = NameVals.size();
for (auto &RI : VS->refs())
NameVals.push_back(VE.getValueID(RI.getValue()));
// Sort the refs for determinism output, the vector returned by FS->refs() has
// been initialized from a DenseSet.
std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end());
Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
FSModRefsAbbrev);
NameVals.clear();
}
// Current version for the summary.
// This is bumped whenever we introduce changes in the way some record are
// interpreted, like flags for instance.
static const uint64_t INDEX_VERSION = 1;
/// Emit the per-module summary section alongside the rest of
/// the module's bitcode.
void ModuleBitcodeWriter::writePerModuleGlobalValueSummary() {
if (Index->begin() == Index->end())
return;
Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4);
Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
// Abbrev for FS_PERMODULE.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
// numrefs x valueid, n x (valueid, callsitecount)
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv);
// Abbrev for FS_PERMODULE_PROFILE.
Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
// numrefs x valueid, n x (valueid, callsitecount, profilecount)
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv);
// Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv);
// Abbrev for FS_ALIAS.
Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
unsigned FSAliasAbbrev = Stream.EmitAbbrev(Abbv);
SmallVector<uint64_t, 64> NameVals;
// Iterate over the list of functions instead of the Index to
// ensure the ordering is stable.
for (const Function &F : M) {
if (F.isDeclaration())
continue;
// Summary emission does not support anonymous functions, they have to
// renamed using the anonymous function renaming pass.
if (!F.hasName())
report_fatal_error("Unexpected anonymous function when writing summary");
auto *Summary = Index->getGlobalValueSummary(F);
writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F),
FSCallsAbbrev, FSCallsProfileAbbrev, F);
}
// Capture references from GlobalVariable initializers, which are outside
// of a function scope.
for (const GlobalVariable &G : M.globals())
writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev);
for (const GlobalAlias &A : M.aliases()) {
auto *Aliasee = A.getBaseObject();
if (!Aliasee->hasName())
// Nameless function don't have an entry in the summary, skip it.
continue;
auto AliasId = VE.getValueID(&A);
auto AliaseeId = VE.getValueID(Aliasee);
NameVals.push_back(AliasId);
NameVals.push_back(getEncodedGVSummaryFlags(A));
NameVals.push_back(AliaseeId);
Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
NameVals.clear();
}
Stream.ExitBlock();
}
/// Emit the combined summary section into the combined index file.
void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3);
Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
// Abbrev for FS_COMBINED.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
// numrefs x valueid, n x (valueid, callsitecount)
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv);
// Abbrev for FS_COMBINED_PROFILE.
Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
// numrefs x valueid, n x (valueid, callsitecount, profilecount)
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv);
// Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv);
// Abbrev for FS_COMBINED_ALIAS.
Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
unsigned FSAliasAbbrev = Stream.EmitAbbrev(Abbv);
// The aliases are emitted as a post-pass, and will point to the value
// id of the aliasee. Save them in a vector for post-processing.
SmallVector<AliasSummary *, 64> Aliases;
// Save the value id for each summary for alias emission.
DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap;
SmallVector<uint64_t, 64> NameVals;
// For local linkage, we also emit the original name separately
// immediately after the record.
auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
if (!GlobalValue::isLocalLinkage(S.linkage()))
return;
NameVals.push_back(S.getOriginalName());
Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
NameVals.clear();
};
for (const auto &I : *this) {
GlobalValueSummary *S = I.second;
assert(S);
assert(hasValueId(I.first));
unsigned ValueId = getValueId(I.first);
SummaryToValueIdMap[S] = ValueId;
if (auto *AS = dyn_cast<AliasSummary>(S)) {
// Will process aliases as a post-pass because the reader wants all
// global to be loaded first.
Aliases.push_back(AS);
continue;
}
if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
NameVals.push_back(ValueId);
NameVals.push_back(Index.getModuleId(VS->modulePath()));
NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
for (auto &RI : VS->refs()) {
NameVals.push_back(getValueId(RI.getGUID()));
}
// Emit the finished record.
Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
FSModRefsAbbrev);
NameVals.clear();
MaybeEmitOriginalName(*S);
continue;
}
auto *FS = cast<FunctionSummary>(S);
NameVals.push_back(ValueId);
NameVals.push_back(Index.getModuleId(FS->modulePath()));
NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
NameVals.push_back(FS->instCount());
NameVals.push_back(FS->refs().size());
for (auto &RI : FS->refs()) {
NameVals.push_back(getValueId(RI.getGUID()));
}
bool HasProfileData = false;
for (auto &EI : FS->calls()) {
HasProfileData |= EI.second.ProfileCount != 0;
if (HasProfileData)
break;
}
for (auto &EI : FS->calls()) {
// If this GUID doesn't have a value id, it doesn't have a function
// summary and we don't need to record any calls to it.
if (!hasValueId(EI.first.getGUID()))
continue;
NameVals.push_back(getValueId(EI.first.getGUID()));
assert(EI.second.CallsiteCount > 0 && "Expected at least one callsite");
NameVals.push_back(EI.second.CallsiteCount);
if (HasProfileData)
NameVals.push_back(EI.second.ProfileCount);
}
unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
unsigned Code =
(HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED);
// Emit the finished record.
Stream.EmitRecord(Code, NameVals, FSAbbrev);
NameVals.clear();
MaybeEmitOriginalName(*S);
}
for (auto *AS : Aliases) {
auto AliasValueId = SummaryToValueIdMap[AS];
assert(AliasValueId);
NameVals.push_back(AliasValueId);
NameVals.push_back(Index.getModuleId(AS->modulePath()));
NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
assert(AliaseeValueId);
NameVals.push_back(AliaseeValueId);
// Emit the finished record.
Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
NameVals.clear();
MaybeEmitOriginalName(*AS);
}
Stream.ExitBlock();
}
void ModuleBitcodeWriter::writeIdentificationBlock() {
Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
// Write the "user readable" string identifying the bitcode producer
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
auto StringAbbrev = Stream.EmitAbbrev(Abbv);
writeStringRecord(bitc::IDENTIFICATION_CODE_STRING,
"LLVM" LLVM_VERSION_STRING, StringAbbrev);
// Write the epoch version
Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
auto EpochAbbrev = Stream.EmitAbbrev(Abbv);
SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH};
Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
Stream.ExitBlock();
}
void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) {
// Emit the module's hash.
// MODULE_CODE_HASH: [5*i32]
SHA1 Hasher;
Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos],
Buffer.size() - BlockStartPos));
auto Hash = Hasher.result();
SmallVector<uint64_t, 20> Vals;
auto LShift = [&](unsigned char Val, unsigned Amount)
-> uint64_t { return ((uint64_t)Val) << Amount; };
for (int Pos = 0; Pos < 20; Pos += 4) {
uint32_t SubHash = LShift(Hash[Pos + 0], 24);
SubHash |= LShift(Hash[Pos + 1], 16) | LShift(Hash[Pos + 2], 8) |
(unsigned)(unsigned char)Hash[Pos + 3];
Vals.push_back(SubHash);
}
// Emit the finished record.
Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);
}
void BitcodeWriter::write() {
// Emit the file header first.
writeBitcodeHeader();
writeBlocks();
}
void ModuleBitcodeWriter::writeBlocks() {
writeIdentificationBlock();
writeModule();
}
void IndexBitcodeWriter::writeBlocks() {
// Index contains only a single outer (module) block.
writeIndex();
}
void ModuleBitcodeWriter::writeModule() {
Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
size_t BlockStartPos = Buffer.size();
SmallVector<unsigned, 1> Vals;
unsigned CurVersion = 1;
Vals.push_back(CurVersion);
Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
// Emit blockinfo, which defines the standard abbreviations etc.
writeBlockInfo();
// Emit information about attribute groups.
writeAttributeGroupTable();
// Emit information about parameter attributes.
writeAttributeTable();
// Emit information describing all of the types in the module.
writeTypeTable();
writeComdats();
// Emit top-level description of module, including target triple, inline asm,
// descriptors for global variables, and function prototype info.
writeModuleInfo();
// Emit constants.
writeModuleConstants();
// Emit metadata kind names.
writeModuleMetadataKinds();
// Emit metadata.
writeModuleMetadata();
// Emit module-level use-lists.
if (VE.shouldPreserveUseListOrder())
writeUseListBlock(nullptr);
writeOperandBundleTags();
// Emit function bodies.
DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F)
if (!F->isDeclaration())
writeFunction(*F, FunctionToBitcodeIndex);
// Need to write after the above call to WriteFunction which populates
// the summary information in the index.
if (Index)
writePerModuleGlobalValueSummary();
writeValueSymbolTable(M.getValueSymbolTable(),
/* IsModuleLevel */ true, &FunctionToBitcodeIndex);
if (GenerateHash) {
writeModuleHash(BlockStartPos);
}
Stream.ExitBlock();
}
static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
uint32_t &Position) {
support::endian::write32le(&Buffer[Position], Value);
Position += 4;
}
/// If generating a bc file on darwin, we have to emit a
/// header and trailer to make it compatible with the system archiver. To do
/// this we emit the following header, and then emit a trailer that pads the
/// file out to be a multiple of 16 bytes.
///
/// struct bc_header {
/// uint32_t Magic; // 0x0B17C0DE
/// uint32_t Version; // Version, currently always 0.
/// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
/// uint32_t BitcodeSize; // Size of traditional bitcode file.
/// uint32_t CPUType; // CPU specifier.
/// ... potentially more later ...
/// };
static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
const Triple &TT) {
unsigned CPUType = ~0U;
// Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
// armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
// number from /usr/include/mach/machine.h. It is ok to reproduce the
// specific constants here because they are implicitly part of the Darwin ABI.
enum {
DARWIN_CPU_ARCH_ABI64 = 0x01000000,
DARWIN_CPU_TYPE_X86 = 7,
DARWIN_CPU_TYPE_ARM = 12,
DARWIN_CPU_TYPE_POWERPC = 18
};
Triple::ArchType Arch = TT.getArch();
if (Arch == Triple::x86_64)
CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
else if (Arch == Triple::x86)
CPUType = DARWIN_CPU_TYPE_X86;
else if (Arch == Triple::ppc)
CPUType = DARWIN_CPU_TYPE_POWERPC;
else if (Arch == Triple::ppc64)
CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
else if (Arch == Triple::arm || Arch == Triple::thumb)
CPUType = DARWIN_CPU_TYPE_ARM;
// Traditional Bitcode starts after header.
assert(Buffer.size() >= BWH_HeaderSize &&
"Expected header size to be reserved");
unsigned BCOffset = BWH_HeaderSize;
unsigned BCSize = Buffer.size() - BWH_HeaderSize;
// Write the magic and version.
unsigned Position = 0;
writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
writeInt32ToBuffer(0, Buffer, Position); // Version.
writeInt32ToBuffer(BCOffset, Buffer, Position);
writeInt32ToBuffer(BCSize, Buffer, Position);
writeInt32ToBuffer(CPUType, Buffer, Position);
// If the file is not a multiple of 16 bytes, insert dummy padding.
while (Buffer.size() & 15)
Buffer.push_back(0);
}
/// Helper to write the header common to all bitcode files.
void BitcodeWriter::writeBitcodeHeader() {
// Emit the file header.
Stream.Emit((unsigned)'B', 8);
Stream.Emit((unsigned)'C', 8);
Stream.Emit(0x0, 4);
Stream.Emit(0xC, 4);
Stream.Emit(0xE, 4);
Stream.Emit(0xD, 4);
}
/// WriteBitcodeToFile - Write the specified module to the specified output
/// stream.
void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out,
bool ShouldPreserveUseListOrder,
const ModuleSummaryIndex *Index,
bool GenerateHash) {
SmallVector<char, 0> Buffer;
Buffer.reserve(256*1024);
// If this is darwin or another generic macho target, reserve space for the
// header.
Triple TT(M->getTargetTriple());
if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
// Emit the module into the buffer.
ModuleBitcodeWriter ModuleWriter(M, Buffer, ShouldPreserveUseListOrder, Index,
GenerateHash);
ModuleWriter.write();
if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
emitDarwinBCHeaderAndTrailer(Buffer, TT);
// Write the generated bitstream to "Out".
Out.write((char*)&Buffer.front(), Buffer.size());
}
void IndexBitcodeWriter::writeIndex() {
Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
SmallVector<unsigned, 1> Vals;
unsigned CurVersion = 1;
Vals.push_back(CurVersion);
Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
// If we have a VST, write the VSTOFFSET record placeholder.
writeValueSymbolTableForwardDecl();
// Write the module paths in the combined index.
writeModStrings();
// Write the summary combined index records.
writeCombinedGlobalValueSummary();
// Need a special VST writer for the combined index (we don't have a
// real VST and real values when this is invoked).
writeCombinedValueSymbolTable();
Stream.ExitBlock();
}
// Write the specified module summary index to the given raw output stream,
// where it will be written in a new bitcode block. This is used when
// writing the combined index file for ThinLTO. When writing a subset of the
// index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
void llvm::WriteIndexToFile(
const ModuleSummaryIndex &Index, raw_ostream &Out,
std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
SmallVector<char, 0> Buffer;
Buffer.reserve(256 * 1024);
IndexBitcodeWriter IndexWriter(Buffer, Index, ModuleToSummariesForIndex);
IndexWriter.write();
Out.write((char *)&Buffer.front(), Buffer.size());
}