mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-24 19:52:54 +01:00
db4396f62a
This change introduces a new IR intrinsic named `llvm.pseudoprobe` for pseudo-probe block instrumentation. Please refer to https://reviews.llvm.org/D86193 for the whole story. A pseudo probe is used to collect the execution count of the block where the probe is instrumented. This requires a pseudo probe to be persisting. The LLVM PGO instrumentation also instruments in similar places by placing a counter in the form of atomic read/write operations or runtime helper calls. While these operations are very persisting or optimization-resilient, in theory we can borrow the atomic read/write implementation from PGO counters and cut it off at the end of compilation with all the atomics converted into binary data. This was our initial design and we’ve seen promising sample correlation quality with it. However, the atomics approach has a couple issues: 1. IR Optimizations are blocked unexpectedly. Those atomic instructions are not going to be physically present in the binary code, but since they are on the IR till very end of compilation, they can still prevent certain IR optimizations and result in lower code quality. 2. The counter atomics may not be fully cleaned up from the code stream eventually. 3. Extra work is needed for re-targeting. We choose to implement pseudo probes based on a special LLVM intrinsic, which is expected to have most of the semantics that comes with an atomic operation but does not block desired optimizations as much as possible. More specifically the semantics associated with the new intrinsic enforces a pseudo probe to be virtually executed exactly the same number of times before and after an IR optimization. The intrinsic also comes with certain flags that are carefully chosen so that the places they are probing are not going to be messed up by the optimizer while most of the IR optimizations still work. The core flags given to the special intrinsic is `IntrInaccessibleMemOnly`, which means the intrinsic accesses memory and does have a side effect so that it is not removable, but is does not access memory locations that are accessible by any original instructions. This way the intrinsic does not alias with any original instruction and thus it does not block optimizations as much as an atomic operation does. We also assign a function GUID and a block index to an intrinsic so that they are uniquely identified and not merged in order to achieve good correlation quality. Let's now look at an example. Given the following LLVM IR: ``` define internal void @foo2(i32 %x, void (i32)* %f) !dbg !4 { bb0: %cmp = icmp eq i32 %x, 0 br i1 %cmp, label %bb1, label %bb2 bb1: br label %bb3 bb2: br label %bb3 bb3: ret void } ``` The instrumented IR will look like below. Note that each `llvm.pseudoprobe` intrinsic call represents a pseudo probe at a block, of which the first parameter is the GUID of the probe’s owner function and the second parameter is the probe’s ID. ``` define internal void @foo2(i32 %x, void (i32)* %f) !dbg !4 { bb0: %cmp = icmp eq i32 %x, 0 call void @llvm.pseudoprobe(i64 837061429793323041, i64 1) br i1 %cmp, label %bb1, label %bb2 bb1: call void @llvm.pseudoprobe(i64 837061429793323041, i64 2) br label %bb3 bb2: call void @llvm.pseudoprobe(i64 837061429793323041, i64 3) br label %bb3 bb3: call void @llvm.pseudoprobe(i64 837061429793323041, i64 4) ret void } ``` Reviewed By: wmi Differential Revision: https://reviews.llvm.org/D86490
733 lines
28 KiB
C++
733 lines
28 KiB
C++
//===- Evaluator.cpp - LLVM IR evaluator ----------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Function evaluator for LLVM IR.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Utils/Evaluator.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Analysis/ConstantFolding.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalAlias.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <iterator>
|
|
|
|
#define DEBUG_TYPE "evaluator"
|
|
|
|
using namespace llvm;
|
|
|
|
static inline bool
|
|
isSimpleEnoughValueToCommit(Constant *C,
|
|
SmallPtrSetImpl<Constant *> &SimpleConstants,
|
|
const DataLayout &DL);
|
|
|
|
/// Return true if the specified constant can be handled by the code generator.
|
|
/// We don't want to generate something like:
|
|
/// void *X = &X/42;
|
|
/// because the code generator doesn't have a relocation that can handle that.
|
|
///
|
|
/// This function should be called if C was not found (but just got inserted)
|
|
/// in SimpleConstants to avoid having to rescan the same constants all the
|
|
/// time.
|
|
static bool
|
|
isSimpleEnoughValueToCommitHelper(Constant *C,
|
|
SmallPtrSetImpl<Constant *> &SimpleConstants,
|
|
const DataLayout &DL) {
|
|
// Simple global addresses are supported, do not allow dllimport or
|
|
// thread-local globals.
|
|
if (auto *GV = dyn_cast<GlobalValue>(C))
|
|
return !GV->hasDLLImportStorageClass() && !GV->isThreadLocal();
|
|
|
|
// Simple integer, undef, constant aggregate zero, etc are all supported.
|
|
if (C->getNumOperands() == 0 || isa<BlockAddress>(C))
|
|
return true;
|
|
|
|
// Aggregate values are safe if all their elements are.
|
|
if (isa<ConstantAggregate>(C)) {
|
|
for (Value *Op : C->operands())
|
|
if (!isSimpleEnoughValueToCommit(cast<Constant>(Op), SimpleConstants, DL))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
// We don't know exactly what relocations are allowed in constant expressions,
|
|
// so we allow &global+constantoffset, which is safe and uniformly supported
|
|
// across targets.
|
|
ConstantExpr *CE = cast<ConstantExpr>(C);
|
|
switch (CE->getOpcode()) {
|
|
case Instruction::BitCast:
|
|
// Bitcast is fine if the casted value is fine.
|
|
return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
|
|
|
|
case Instruction::IntToPtr:
|
|
case Instruction::PtrToInt:
|
|
// int <=> ptr is fine if the int type is the same size as the
|
|
// pointer type.
|
|
if (DL.getTypeSizeInBits(CE->getType()) !=
|
|
DL.getTypeSizeInBits(CE->getOperand(0)->getType()))
|
|
return false;
|
|
return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
|
|
|
|
// GEP is fine if it is simple + constant offset.
|
|
case Instruction::GetElementPtr:
|
|
for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
|
|
if (!isa<ConstantInt>(CE->getOperand(i)))
|
|
return false;
|
|
return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
|
|
|
|
case Instruction::Add:
|
|
// We allow simple+cst.
|
|
if (!isa<ConstantInt>(CE->getOperand(1)))
|
|
return false;
|
|
return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static inline bool
|
|
isSimpleEnoughValueToCommit(Constant *C,
|
|
SmallPtrSetImpl<Constant *> &SimpleConstants,
|
|
const DataLayout &DL) {
|
|
// If we already checked this constant, we win.
|
|
if (!SimpleConstants.insert(C).second)
|
|
return true;
|
|
// Check the constant.
|
|
return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, DL);
|
|
}
|
|
|
|
/// Return true if this constant is simple enough for us to understand. In
|
|
/// particular, if it is a cast to anything other than from one pointer type to
|
|
/// another pointer type, we punt. We basically just support direct accesses to
|
|
/// globals and GEP's of globals. This should be kept up to date with
|
|
/// CommitValueTo.
|
|
static bool isSimpleEnoughPointerToCommit(Constant *C) {
|
|
// Conservatively, avoid aggregate types. This is because we don't
|
|
// want to worry about them partially overlapping other stores.
|
|
if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
|
|
return false;
|
|
|
|
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
|
|
// Do not allow weak/*_odr/linkonce linkage or external globals.
|
|
return GV->hasUniqueInitializer();
|
|
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
|
|
// Handle a constantexpr gep.
|
|
if (CE->getOpcode() == Instruction::GetElementPtr &&
|
|
isa<GlobalVariable>(CE->getOperand(0)) &&
|
|
cast<GEPOperator>(CE)->isInBounds()) {
|
|
GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
|
|
// Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
|
|
// external globals.
|
|
if (!GV->hasUniqueInitializer())
|
|
return false;
|
|
|
|
// The first index must be zero.
|
|
ConstantInt *CI = dyn_cast<ConstantInt>(*std::next(CE->op_begin()));
|
|
if (!CI || !CI->isZero()) return false;
|
|
|
|
// The remaining indices must be compile-time known integers within the
|
|
// notional bounds of the corresponding static array types.
|
|
if (!CE->isGEPWithNoNotionalOverIndexing())
|
|
return false;
|
|
|
|
return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
|
|
|
|
// A constantexpr bitcast from a pointer to another pointer is a no-op,
|
|
// and we know how to evaluate it by moving the bitcast from the pointer
|
|
// operand to the value operand.
|
|
} else if (CE->getOpcode() == Instruction::BitCast &&
|
|
isa<GlobalVariable>(CE->getOperand(0))) {
|
|
// Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
|
|
// external globals.
|
|
return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer();
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Apply 'Func' to Ptr. If this returns nullptr, introspect the pointer's
|
|
/// type and walk down through the initial elements to obtain additional
|
|
/// pointers to try. Returns the first non-null return value from Func, or
|
|
/// nullptr if the type can't be introspected further.
|
|
static Constant *
|
|
evaluateBitcastFromPtr(Constant *Ptr, const DataLayout &DL,
|
|
const TargetLibraryInfo *TLI,
|
|
std::function<Constant *(Constant *)> Func) {
|
|
Constant *Val;
|
|
while (!(Val = Func(Ptr))) {
|
|
// If Ty is a struct, we can convert the pointer to the struct
|
|
// into a pointer to its first member.
|
|
// FIXME: This could be extended to support arrays as well.
|
|
Type *Ty = cast<PointerType>(Ptr->getType())->getElementType();
|
|
if (!isa<StructType>(Ty))
|
|
break;
|
|
|
|
IntegerType *IdxTy = IntegerType::get(Ty->getContext(), 32);
|
|
Constant *IdxZero = ConstantInt::get(IdxTy, 0, false);
|
|
Constant *const IdxList[] = {IdxZero, IdxZero};
|
|
|
|
Ptr = ConstantExpr::getGetElementPtr(Ty, Ptr, IdxList);
|
|
Ptr = ConstantFoldConstant(Ptr, DL, TLI);
|
|
}
|
|
return Val;
|
|
}
|
|
|
|
static Constant *getInitializer(Constant *C) {
|
|
auto *GV = dyn_cast<GlobalVariable>(C);
|
|
return GV && GV->hasDefinitiveInitializer() ? GV->getInitializer() : nullptr;
|
|
}
|
|
|
|
/// Return the value that would be computed by a load from P after the stores
|
|
/// reflected by 'memory' have been performed. If we can't decide, return null.
|
|
Constant *Evaluator::ComputeLoadResult(Constant *P) {
|
|
// If this memory location has been recently stored, use the stored value: it
|
|
// is the most up-to-date.
|
|
auto findMemLoc = [this](Constant *Ptr) {
|
|
DenseMap<Constant *, Constant *>::const_iterator I =
|
|
MutatedMemory.find(Ptr);
|
|
return I != MutatedMemory.end() ? I->second : nullptr;
|
|
};
|
|
|
|
if (Constant *Val = findMemLoc(P))
|
|
return Val;
|
|
|
|
// Access it.
|
|
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
|
|
if (GV->hasDefinitiveInitializer())
|
|
return GV->getInitializer();
|
|
return nullptr;
|
|
}
|
|
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P)) {
|
|
switch (CE->getOpcode()) {
|
|
// Handle a constantexpr getelementptr.
|
|
case Instruction::GetElementPtr:
|
|
if (auto *I = getInitializer(CE->getOperand(0)))
|
|
return ConstantFoldLoadThroughGEPConstantExpr(I, CE);
|
|
break;
|
|
// Handle a constantexpr bitcast.
|
|
case Instruction::BitCast:
|
|
// We're evaluating a load through a pointer that was bitcast to a
|
|
// different type. See if the "from" pointer has recently been stored.
|
|
// If it hasn't, we may still be able to find a stored pointer by
|
|
// introspecting the type.
|
|
Constant *Val =
|
|
evaluateBitcastFromPtr(CE->getOperand(0), DL, TLI, findMemLoc);
|
|
if (!Val)
|
|
Val = getInitializer(CE->getOperand(0));
|
|
if (Val)
|
|
return ConstantFoldLoadThroughBitcast(
|
|
Val, P->getType()->getPointerElementType(), DL);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return nullptr; // don't know how to evaluate.
|
|
}
|
|
|
|
static Function *getFunction(Constant *C) {
|
|
if (auto *Fn = dyn_cast<Function>(C))
|
|
return Fn;
|
|
|
|
if (auto *Alias = dyn_cast<GlobalAlias>(C))
|
|
if (auto *Fn = dyn_cast<Function>(Alias->getAliasee()))
|
|
return Fn;
|
|
return nullptr;
|
|
}
|
|
|
|
Function *
|
|
Evaluator::getCalleeWithFormalArgs(CallBase &CB,
|
|
SmallVectorImpl<Constant *> &Formals) {
|
|
auto *V = CB.getCalledOperand();
|
|
if (auto *Fn = getFunction(getVal(V)))
|
|
return getFormalParams(CB, Fn, Formals) ? Fn : nullptr;
|
|
|
|
auto *CE = dyn_cast<ConstantExpr>(V);
|
|
if (!CE || CE->getOpcode() != Instruction::BitCast ||
|
|
!getFormalParams(CB, getFunction(CE->getOperand(0)), Formals))
|
|
return nullptr;
|
|
|
|
return dyn_cast<Function>(
|
|
ConstantFoldLoadThroughBitcast(CE, CE->getOperand(0)->getType(), DL));
|
|
}
|
|
|
|
bool Evaluator::getFormalParams(CallBase &CB, Function *F,
|
|
SmallVectorImpl<Constant *> &Formals) {
|
|
if (!F)
|
|
return false;
|
|
|
|
auto *FTy = F->getFunctionType();
|
|
if (FTy->getNumParams() > CB.getNumArgOperands()) {
|
|
LLVM_DEBUG(dbgs() << "Too few arguments for function.\n");
|
|
return false;
|
|
}
|
|
|
|
auto ArgI = CB.arg_begin();
|
|
for (auto ParI = FTy->param_begin(), ParE = FTy->param_end(); ParI != ParE;
|
|
++ParI) {
|
|
auto *ArgC = ConstantFoldLoadThroughBitcast(getVal(*ArgI), *ParI, DL);
|
|
if (!ArgC) {
|
|
LLVM_DEBUG(dbgs() << "Can not convert function argument.\n");
|
|
return false;
|
|
}
|
|
Formals.push_back(ArgC);
|
|
++ArgI;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// If call expression contains bitcast then we may need to cast
|
|
/// evaluated return value to a type of the call expression.
|
|
Constant *Evaluator::castCallResultIfNeeded(Value *CallExpr, Constant *RV) {
|
|
ConstantExpr *CE = dyn_cast<ConstantExpr>(CallExpr);
|
|
if (!RV || !CE || CE->getOpcode() != Instruction::BitCast)
|
|
return RV;
|
|
|
|
if (auto *FT =
|
|
dyn_cast<FunctionType>(CE->getType()->getPointerElementType())) {
|
|
RV = ConstantFoldLoadThroughBitcast(RV, FT->getReturnType(), DL);
|
|
if (!RV)
|
|
LLVM_DEBUG(dbgs() << "Failed to fold bitcast call expr\n");
|
|
}
|
|
return RV;
|
|
}
|
|
|
|
/// Evaluate all instructions in block BB, returning true if successful, false
|
|
/// if we can't evaluate it. NewBB returns the next BB that control flows into,
|
|
/// or null upon return.
|
|
bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
|
|
BasicBlock *&NextBB) {
|
|
// This is the main evaluation loop.
|
|
while (true) {
|
|
Constant *InstResult = nullptr;
|
|
|
|
LLVM_DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n");
|
|
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
|
|
if (!SI->isSimple()) {
|
|
LLVM_DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n");
|
|
return false; // no volatile/atomic accesses.
|
|
}
|
|
Constant *Ptr = getVal(SI->getOperand(1));
|
|
Constant *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI);
|
|
if (Ptr != FoldedPtr) {
|
|
LLVM_DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr);
|
|
Ptr = FoldedPtr;
|
|
LLVM_DEBUG(dbgs() << "; To: " << *Ptr << "\n");
|
|
}
|
|
if (!isSimpleEnoughPointerToCommit(Ptr)) {
|
|
// If this is too complex for us to commit, reject it.
|
|
LLVM_DEBUG(
|
|
dbgs() << "Pointer is too complex for us to evaluate store.");
|
|
return false;
|
|
}
|
|
|
|
Constant *Val = getVal(SI->getOperand(0));
|
|
|
|
// If this might be too difficult for the backend to handle (e.g. the addr
|
|
// of one global variable divided by another) then we can't commit it.
|
|
if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, DL)) {
|
|
LLVM_DEBUG(dbgs() << "Store value is too complex to evaluate store. "
|
|
<< *Val << "\n");
|
|
return false;
|
|
}
|
|
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
|
|
if (CE->getOpcode() == Instruction::BitCast) {
|
|
LLVM_DEBUG(dbgs()
|
|
<< "Attempting to resolve bitcast on constant ptr.\n");
|
|
// If we're evaluating a store through a bitcast, then we need
|
|
// to pull the bitcast off the pointer type and push it onto the
|
|
// stored value. In order to push the bitcast onto the stored value,
|
|
// a bitcast from the pointer's element type to Val's type must be
|
|
// legal. If it's not, we can try introspecting the type to find a
|
|
// legal conversion.
|
|
|
|
auto castValTy = [&](Constant *P) -> Constant * {
|
|
Type *Ty = cast<PointerType>(P->getType())->getElementType();
|
|
if (Constant *FV = ConstantFoldLoadThroughBitcast(Val, Ty, DL)) {
|
|
Ptr = P;
|
|
return FV;
|
|
}
|
|
return nullptr;
|
|
};
|
|
|
|
Constant *NewVal =
|
|
evaluateBitcastFromPtr(CE->getOperand(0), DL, TLI, castValTy);
|
|
if (!NewVal) {
|
|
LLVM_DEBUG(dbgs() << "Failed to bitcast constant ptr, can not "
|
|
"evaluate.\n");
|
|
return false;
|
|
}
|
|
|
|
Val = NewVal;
|
|
LLVM_DEBUG(dbgs() << "Evaluated bitcast: " << *Val << "\n");
|
|
}
|
|
}
|
|
|
|
MutatedMemory[Ptr] = Val;
|
|
} else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
|
|
InstResult = ConstantExpr::get(BO->getOpcode(),
|
|
getVal(BO->getOperand(0)),
|
|
getVal(BO->getOperand(1)));
|
|
LLVM_DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: "
|
|
<< *InstResult << "\n");
|
|
} else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
|
|
InstResult = ConstantExpr::getCompare(CI->getPredicate(),
|
|
getVal(CI->getOperand(0)),
|
|
getVal(CI->getOperand(1)));
|
|
LLVM_DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult
|
|
<< "\n");
|
|
} else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
|
|
InstResult = ConstantExpr::getCast(CI->getOpcode(),
|
|
getVal(CI->getOperand(0)),
|
|
CI->getType());
|
|
LLVM_DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult
|
|
<< "\n");
|
|
} else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
|
|
InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)),
|
|
getVal(SI->getOperand(1)),
|
|
getVal(SI->getOperand(2)));
|
|
LLVM_DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult
|
|
<< "\n");
|
|
} else if (auto *EVI = dyn_cast<ExtractValueInst>(CurInst)) {
|
|
InstResult = ConstantExpr::getExtractValue(
|
|
getVal(EVI->getAggregateOperand()), EVI->getIndices());
|
|
LLVM_DEBUG(dbgs() << "Found an ExtractValueInst! Simplifying: "
|
|
<< *InstResult << "\n");
|
|
} else if (auto *IVI = dyn_cast<InsertValueInst>(CurInst)) {
|
|
InstResult = ConstantExpr::getInsertValue(
|
|
getVal(IVI->getAggregateOperand()),
|
|
getVal(IVI->getInsertedValueOperand()), IVI->getIndices());
|
|
LLVM_DEBUG(dbgs() << "Found an InsertValueInst! Simplifying: "
|
|
<< *InstResult << "\n");
|
|
} else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
|
|
Constant *P = getVal(GEP->getOperand(0));
|
|
SmallVector<Constant*, 8> GEPOps;
|
|
for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
|
|
i != e; ++i)
|
|
GEPOps.push_back(getVal(*i));
|
|
InstResult =
|
|
ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), P, GEPOps,
|
|
cast<GEPOperator>(GEP)->isInBounds());
|
|
LLVM_DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult << "\n");
|
|
} else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
|
|
if (!LI->isSimple()) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "Found a Load! Not a simple load, can not evaluate.\n");
|
|
return false; // no volatile/atomic accesses.
|
|
}
|
|
|
|
Constant *Ptr = getVal(LI->getOperand(0));
|
|
Constant *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI);
|
|
if (Ptr != FoldedPtr) {
|
|
Ptr = FoldedPtr;
|
|
LLVM_DEBUG(dbgs() << "Found a constant pointer expression, constant "
|
|
"folding: "
|
|
<< *Ptr << "\n");
|
|
}
|
|
InstResult = ComputeLoadResult(Ptr);
|
|
if (!InstResult) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "Failed to compute load result. Can not evaluate load."
|
|
"\n");
|
|
return false; // Could not evaluate load.
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n");
|
|
} else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
|
|
if (AI->isArrayAllocation()) {
|
|
LLVM_DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n");
|
|
return false; // Cannot handle array allocs.
|
|
}
|
|
Type *Ty = AI->getAllocatedType();
|
|
AllocaTmps.push_back(std::make_unique<GlobalVariable>(
|
|
Ty, false, GlobalValue::InternalLinkage, UndefValue::get(Ty),
|
|
AI->getName(), /*TLMode=*/GlobalValue::NotThreadLocal,
|
|
AI->getType()->getPointerAddressSpace()));
|
|
InstResult = AllocaTmps.back().get();
|
|
LLVM_DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n");
|
|
} else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) {
|
|
CallBase &CB = *cast<CallBase>(&*CurInst);
|
|
|
|
// Debug info can safely be ignored here.
|
|
if (isa<DbgInfoIntrinsic>(CB)) {
|
|
LLVM_DEBUG(dbgs() << "Ignoring debug info.\n");
|
|
++CurInst;
|
|
continue;
|
|
}
|
|
|
|
// Cannot handle inline asm.
|
|
if (CB.isInlineAsm()) {
|
|
LLVM_DEBUG(dbgs() << "Found inline asm, can not evaluate.\n");
|
|
return false;
|
|
}
|
|
|
|
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CB)) {
|
|
if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) {
|
|
if (MSI->isVolatile()) {
|
|
LLVM_DEBUG(dbgs() << "Can not optimize a volatile memset "
|
|
<< "intrinsic.\n");
|
|
return false;
|
|
}
|
|
Constant *Ptr = getVal(MSI->getDest());
|
|
Constant *Val = getVal(MSI->getValue());
|
|
Constant *DestVal = ComputeLoadResult(getVal(Ptr));
|
|
if (Val->isNullValue() && DestVal && DestVal->isNullValue()) {
|
|
// This memset is a no-op.
|
|
LLVM_DEBUG(dbgs() << "Ignoring no-op memset.\n");
|
|
++CurInst;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (II->isLifetimeStartOrEnd()) {
|
|
LLVM_DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n");
|
|
++CurInst;
|
|
continue;
|
|
}
|
|
|
|
if (II->getIntrinsicID() == Intrinsic::invariant_start) {
|
|
// We don't insert an entry into Values, as it doesn't have a
|
|
// meaningful return value.
|
|
if (!II->use_empty()) {
|
|
LLVM_DEBUG(dbgs()
|
|
<< "Found unused invariant_start. Can't evaluate.\n");
|
|
return false;
|
|
}
|
|
ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0));
|
|
Value *PtrArg = getVal(II->getArgOperand(1));
|
|
Value *Ptr = PtrArg->stripPointerCasts();
|
|
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
|
|
Type *ElemTy = GV->getValueType();
|
|
if (!Size->isMinusOne() &&
|
|
Size->getValue().getLimitedValue() >=
|
|
DL.getTypeStoreSize(ElemTy)) {
|
|
Invariants.insert(GV);
|
|
LLVM_DEBUG(dbgs() << "Found a global var that is an invariant: "
|
|
<< *GV << "\n");
|
|
} else {
|
|
LLVM_DEBUG(dbgs()
|
|
<< "Found a global var, but can not treat it as an "
|
|
"invariant.\n");
|
|
}
|
|
}
|
|
// Continue even if we do nothing.
|
|
++CurInst;
|
|
continue;
|
|
} else if (II->getIntrinsicID() == Intrinsic::assume) {
|
|
LLVM_DEBUG(dbgs() << "Skipping assume intrinsic.\n");
|
|
++CurInst;
|
|
continue;
|
|
} else if (II->getIntrinsicID() == Intrinsic::sideeffect) {
|
|
LLVM_DEBUG(dbgs() << "Skipping sideeffect intrinsic.\n");
|
|
++CurInst;
|
|
continue;
|
|
} else if (II->getIntrinsicID() == Intrinsic::pseudoprobe) {
|
|
LLVM_DEBUG(dbgs() << "Skipping pseudoprobe intrinsic.\n");
|
|
++CurInst;
|
|
continue;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Unknown intrinsic. Can not evaluate.\n");
|
|
return false;
|
|
}
|
|
|
|
// Resolve function pointers.
|
|
SmallVector<Constant *, 8> Formals;
|
|
Function *Callee = getCalleeWithFormalArgs(CB, Formals);
|
|
if (!Callee || Callee->isInterposable()) {
|
|
LLVM_DEBUG(dbgs() << "Can not resolve function pointer.\n");
|
|
return false; // Cannot resolve.
|
|
}
|
|
|
|
if (Callee->isDeclaration()) {
|
|
// If this is a function we can constant fold, do it.
|
|
if (Constant *C = ConstantFoldCall(&CB, Callee, Formals, TLI)) {
|
|
InstResult = castCallResultIfNeeded(CB.getCalledOperand(), C);
|
|
if (!InstResult)
|
|
return false;
|
|
LLVM_DEBUG(dbgs() << "Constant folded function call. Result: "
|
|
<< *InstResult << "\n");
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << "Can not constant fold function call.\n");
|
|
return false;
|
|
}
|
|
} else {
|
|
if (Callee->getFunctionType()->isVarArg()) {
|
|
LLVM_DEBUG(dbgs() << "Can not constant fold vararg function call.\n");
|
|
return false;
|
|
}
|
|
|
|
Constant *RetVal = nullptr;
|
|
// Execute the call, if successful, use the return value.
|
|
ValueStack.emplace_back();
|
|
if (!EvaluateFunction(Callee, RetVal, Formals)) {
|
|
LLVM_DEBUG(dbgs() << "Failed to evaluate function.\n");
|
|
return false;
|
|
}
|
|
ValueStack.pop_back();
|
|
InstResult = castCallResultIfNeeded(CB.getCalledOperand(), RetVal);
|
|
if (RetVal && !InstResult)
|
|
return false;
|
|
|
|
if (InstResult) {
|
|
LLVM_DEBUG(dbgs() << "Successfully evaluated function. Result: "
|
|
<< *InstResult << "\n\n");
|
|
} else {
|
|
LLVM_DEBUG(dbgs()
|
|
<< "Successfully evaluated function. Result: 0\n\n");
|
|
}
|
|
}
|
|
} else if (CurInst->isTerminator()) {
|
|
LLVM_DEBUG(dbgs() << "Found a terminator instruction.\n");
|
|
|
|
if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
|
|
if (BI->isUnconditional()) {
|
|
NextBB = BI->getSuccessor(0);
|
|
} else {
|
|
ConstantInt *Cond =
|
|
dyn_cast<ConstantInt>(getVal(BI->getCondition()));
|
|
if (!Cond) return false; // Cannot determine.
|
|
|
|
NextBB = BI->getSuccessor(!Cond->getZExtValue());
|
|
}
|
|
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
|
|
ConstantInt *Val =
|
|
dyn_cast<ConstantInt>(getVal(SI->getCondition()));
|
|
if (!Val) return false; // Cannot determine.
|
|
NextBB = SI->findCaseValue(Val)->getCaseSuccessor();
|
|
} else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) {
|
|
Value *Val = getVal(IBI->getAddress())->stripPointerCasts();
|
|
if (BlockAddress *BA = dyn_cast<BlockAddress>(Val))
|
|
NextBB = BA->getBasicBlock();
|
|
else
|
|
return false; // Cannot determine.
|
|
} else if (isa<ReturnInst>(CurInst)) {
|
|
NextBB = nullptr;
|
|
} else {
|
|
// invoke, unwind, resume, unreachable.
|
|
LLVM_DEBUG(dbgs() << "Can not handle terminator.");
|
|
return false; // Cannot handle this terminator.
|
|
}
|
|
|
|
// We succeeded at evaluating this block!
|
|
LLVM_DEBUG(dbgs() << "Successfully evaluated block.\n");
|
|
return true;
|
|
} else {
|
|
// Did not know how to evaluate this!
|
|
LLVM_DEBUG(
|
|
dbgs() << "Failed to evaluate block due to unhandled instruction."
|
|
"\n");
|
|
return false;
|
|
}
|
|
|
|
if (!CurInst->use_empty()) {
|
|
InstResult = ConstantFoldConstant(InstResult, DL, TLI);
|
|
setVal(&*CurInst, InstResult);
|
|
}
|
|
|
|
// If we just processed an invoke, we finished evaluating the block.
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) {
|
|
NextBB = II->getNormalDest();
|
|
LLVM_DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n");
|
|
return true;
|
|
}
|
|
|
|
// Advance program counter.
|
|
++CurInst;
|
|
}
|
|
}
|
|
|
|
/// Evaluate a call to function F, returning true if successful, false if we
|
|
/// can't evaluate it. ActualArgs contains the formal arguments for the
|
|
/// function.
|
|
bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal,
|
|
const SmallVectorImpl<Constant*> &ActualArgs) {
|
|
// Check to see if this function is already executing (recursion). If so,
|
|
// bail out. TODO: we might want to accept limited recursion.
|
|
if (is_contained(CallStack, F))
|
|
return false;
|
|
|
|
CallStack.push_back(F);
|
|
|
|
// Initialize arguments to the incoming values specified.
|
|
unsigned ArgNo = 0;
|
|
for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
|
|
++AI, ++ArgNo)
|
|
setVal(&*AI, ActualArgs[ArgNo]);
|
|
|
|
// ExecutedBlocks - We only handle non-looping, non-recursive code. As such,
|
|
// we can only evaluate any one basic block at most once. This set keeps
|
|
// track of what we have executed so we can detect recursive cases etc.
|
|
SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
|
|
|
|
// CurBB - The current basic block we're evaluating.
|
|
BasicBlock *CurBB = &F->front();
|
|
|
|
BasicBlock::iterator CurInst = CurBB->begin();
|
|
|
|
while (true) {
|
|
BasicBlock *NextBB = nullptr; // Initialized to avoid compiler warnings.
|
|
LLVM_DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n");
|
|
|
|
if (!EvaluateBlock(CurInst, NextBB))
|
|
return false;
|
|
|
|
if (!NextBB) {
|
|
// Successfully running until there's no next block means that we found
|
|
// the return. Fill it the return value and pop the call stack.
|
|
ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator());
|
|
if (RI->getNumOperands())
|
|
RetVal = getVal(RI->getOperand(0));
|
|
CallStack.pop_back();
|
|
return true;
|
|
}
|
|
|
|
// Okay, we succeeded in evaluating this control flow. See if we have
|
|
// executed the new block before. If so, we have a looping function,
|
|
// which we cannot evaluate in reasonable time.
|
|
if (!ExecutedBlocks.insert(NextBB).second)
|
|
return false; // looped!
|
|
|
|
// Okay, we have never been in this block before. Check to see if there
|
|
// are any PHI nodes. If so, evaluate them with information about where
|
|
// we came from.
|
|
PHINode *PN = nullptr;
|
|
for (CurInst = NextBB->begin();
|
|
(PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
|
|
setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB)));
|
|
|
|
// Advance to the next block.
|
|
CurBB = NextBB;
|
|
}
|
|
}
|