mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 04:02:41 +01:00
9a8d215400
Use range-based for loops in TableGen. Reviewed By: Paul-C-Anagnostopoulos Differential Revision: https://reviews.llvm.org/D101994
2270 lines
86 KiB
C++
2270 lines
86 KiB
C++
//===- CodeGenSchedule.cpp - Scheduling MachineModels ---------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines structures to encapsulate the machine model as described in
|
|
// the target description.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CodeGenSchedule.h"
|
|
#include "CodeGenInstruction.h"
|
|
#include "CodeGenTarget.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/Regex.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/TableGen/Error.h"
|
|
#include <algorithm>
|
|
#include <iterator>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "subtarget-emitter"
|
|
|
|
#ifndef NDEBUG
|
|
static void dumpIdxVec(ArrayRef<unsigned> V) {
|
|
for (unsigned Idx : V)
|
|
dbgs() << Idx << ", ";
|
|
}
|
|
#endif
|
|
|
|
namespace {
|
|
|
|
// (instrs a, b, ...) Evaluate and union all arguments. Identical to AddOp.
|
|
struct InstrsOp : public SetTheory::Operator {
|
|
void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
|
|
ArrayRef<SMLoc> Loc) override {
|
|
ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts, Loc);
|
|
}
|
|
};
|
|
|
|
// (instregex "OpcPat",...) Find all instructions matching an opcode pattern.
|
|
struct InstRegexOp : public SetTheory::Operator {
|
|
const CodeGenTarget &Target;
|
|
InstRegexOp(const CodeGenTarget &t): Target(t) {}
|
|
|
|
/// Remove any text inside of parentheses from S.
|
|
static std::string removeParens(llvm::StringRef S) {
|
|
std::string Result;
|
|
unsigned Paren = 0;
|
|
// NB: We don't care about escaped parens here.
|
|
for (char C : S) {
|
|
switch (C) {
|
|
case '(':
|
|
++Paren;
|
|
break;
|
|
case ')':
|
|
--Paren;
|
|
break;
|
|
default:
|
|
if (Paren == 0)
|
|
Result += C;
|
|
}
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
|
|
ArrayRef<SMLoc> Loc) override {
|
|
ArrayRef<const CodeGenInstruction *> Instructions =
|
|
Target.getInstructionsByEnumValue();
|
|
|
|
unsigned NumGeneric = Target.getNumFixedInstructions();
|
|
unsigned NumPseudos = Target.getNumPseudoInstructions();
|
|
auto Generics = Instructions.slice(0, NumGeneric);
|
|
auto Pseudos = Instructions.slice(NumGeneric, NumPseudos);
|
|
auto NonPseudos = Instructions.slice(NumGeneric + NumPseudos);
|
|
|
|
for (Init *Arg : Expr->getArgs()) {
|
|
StringInit *SI = dyn_cast<StringInit>(Arg);
|
|
if (!SI)
|
|
PrintFatalError(Loc, "instregex requires pattern string: " +
|
|
Expr->getAsString());
|
|
StringRef Original = SI->getValue();
|
|
|
|
// Extract a prefix that we can binary search on.
|
|
static const char RegexMetachars[] = "()^$|*+?.[]\\{}";
|
|
auto FirstMeta = Original.find_first_of(RegexMetachars);
|
|
|
|
// Look for top-level | or ?. We cannot optimize them to binary search.
|
|
if (removeParens(Original).find_first_of("|?") != std::string::npos)
|
|
FirstMeta = 0;
|
|
|
|
Optional<Regex> Regexpr = None;
|
|
StringRef Prefix = Original.substr(0, FirstMeta);
|
|
StringRef PatStr = Original.substr(FirstMeta);
|
|
if (!PatStr.empty()) {
|
|
// For the rest use a python-style prefix match.
|
|
std::string pat = std::string(PatStr);
|
|
if (pat[0] != '^') {
|
|
pat.insert(0, "^(");
|
|
pat.insert(pat.end(), ')');
|
|
}
|
|
Regexpr = Regex(pat);
|
|
}
|
|
|
|
int NumMatches = 0;
|
|
|
|
// The generic opcodes are unsorted, handle them manually.
|
|
for (auto *Inst : Generics) {
|
|
StringRef InstName = Inst->TheDef->getName();
|
|
if (InstName.startswith(Prefix) &&
|
|
(!Regexpr || Regexpr->match(InstName.substr(Prefix.size())))) {
|
|
Elts.insert(Inst->TheDef);
|
|
NumMatches++;
|
|
}
|
|
}
|
|
|
|
// Target instructions are split into two ranges: pseudo instructions
|
|
// first, than non-pseudos. Each range is in lexicographical order
|
|
// sorted by name. Find the sub-ranges that start with our prefix.
|
|
struct Comp {
|
|
bool operator()(const CodeGenInstruction *LHS, StringRef RHS) {
|
|
return LHS->TheDef->getName() < RHS;
|
|
}
|
|
bool operator()(StringRef LHS, const CodeGenInstruction *RHS) {
|
|
return LHS < RHS->TheDef->getName() &&
|
|
!RHS->TheDef->getName().startswith(LHS);
|
|
}
|
|
};
|
|
auto Range1 =
|
|
std::equal_range(Pseudos.begin(), Pseudos.end(), Prefix, Comp());
|
|
auto Range2 = std::equal_range(NonPseudos.begin(), NonPseudos.end(),
|
|
Prefix, Comp());
|
|
|
|
// For these ranges we know that instruction names start with the prefix.
|
|
// Check if there's a regex that needs to be checked.
|
|
const auto HandleNonGeneric = [&](const CodeGenInstruction *Inst) {
|
|
StringRef InstName = Inst->TheDef->getName();
|
|
if (!Regexpr || Regexpr->match(InstName.substr(Prefix.size()))) {
|
|
Elts.insert(Inst->TheDef);
|
|
NumMatches++;
|
|
}
|
|
};
|
|
std::for_each(Range1.first, Range1.second, HandleNonGeneric);
|
|
std::for_each(Range2.first, Range2.second, HandleNonGeneric);
|
|
|
|
if (0 == NumMatches)
|
|
PrintFatalError(Loc, "instregex has no matches: " + Original);
|
|
}
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// CodeGenModels ctor interprets machine model records and populates maps.
|
|
CodeGenSchedModels::CodeGenSchedModels(RecordKeeper &RK,
|
|
const CodeGenTarget &TGT):
|
|
Records(RK), Target(TGT) {
|
|
|
|
Sets.addFieldExpander("InstRW", "Instrs");
|
|
|
|
// Allow Set evaluation to recognize the dags used in InstRW records:
|
|
// (instrs Op1, Op1...)
|
|
Sets.addOperator("instrs", std::make_unique<InstrsOp>());
|
|
Sets.addOperator("instregex", std::make_unique<InstRegexOp>(Target));
|
|
|
|
// Instantiate a CodeGenProcModel for each SchedMachineModel with the values
|
|
// that are explicitly referenced in tablegen records. Resources associated
|
|
// with each processor will be derived later. Populate ProcModelMap with the
|
|
// CodeGenProcModel instances.
|
|
collectProcModels();
|
|
|
|
// Instantiate a CodeGenSchedRW for each SchedReadWrite record explicitly
|
|
// defined, and populate SchedReads and SchedWrites vectors. Implicit
|
|
// SchedReadWrites that represent sequences derived from expanded variant will
|
|
// be inferred later.
|
|
collectSchedRW();
|
|
|
|
// Instantiate a CodeGenSchedClass for each unique SchedRW signature directly
|
|
// required by an instruction definition, and populate SchedClassIdxMap. Set
|
|
// NumItineraryClasses to the number of explicit itinerary classes referenced
|
|
// by instructions. Set NumInstrSchedClasses to the number of itinerary
|
|
// classes plus any classes implied by instructions that derive from class
|
|
// Sched and provide SchedRW list. This does not infer any new classes from
|
|
// SchedVariant.
|
|
collectSchedClasses();
|
|
|
|
// Find instruction itineraries for each processor. Sort and populate
|
|
// CodeGenProcModel::ItinDefList. (Cycle-to-cycle itineraries). This requires
|
|
// all itinerary classes to be discovered.
|
|
collectProcItins();
|
|
|
|
// Find ItinRW records for each processor and itinerary class.
|
|
// (For per-operand resources mapped to itinerary classes).
|
|
collectProcItinRW();
|
|
|
|
// Find UnsupportedFeatures records for each processor.
|
|
// (For per-operand resources mapped to itinerary classes).
|
|
collectProcUnsupportedFeatures();
|
|
|
|
// Infer new SchedClasses from SchedVariant.
|
|
inferSchedClasses();
|
|
|
|
// Populate each CodeGenProcModel's WriteResDefs, ReadAdvanceDefs, and
|
|
// ProcResourceDefs.
|
|
LLVM_DEBUG(
|
|
dbgs() << "\n+++ RESOURCE DEFINITIONS (collectProcResources) +++\n");
|
|
collectProcResources();
|
|
|
|
// Collect optional processor description.
|
|
collectOptionalProcessorInfo();
|
|
|
|
// Check MCInstPredicate definitions.
|
|
checkMCInstPredicates();
|
|
|
|
// Check STIPredicate definitions.
|
|
checkSTIPredicates();
|
|
|
|
// Find STIPredicate definitions for each processor model, and construct
|
|
// STIPredicateFunction objects.
|
|
collectSTIPredicates();
|
|
|
|
checkCompleteness();
|
|
}
|
|
|
|
void CodeGenSchedModels::checkSTIPredicates() const {
|
|
DenseMap<StringRef, const Record *> Declarations;
|
|
|
|
// There cannot be multiple declarations with the same name.
|
|
const RecVec Decls = Records.getAllDerivedDefinitions("STIPredicateDecl");
|
|
for (const Record *R : Decls) {
|
|
StringRef Name = R->getValueAsString("Name");
|
|
const auto It = Declarations.find(Name);
|
|
if (It == Declarations.end()) {
|
|
Declarations[Name] = R;
|
|
continue;
|
|
}
|
|
|
|
PrintError(R->getLoc(), "STIPredicate " + Name + " multiply declared.");
|
|
PrintFatalNote(It->second->getLoc(), "Previous declaration was here.");
|
|
}
|
|
|
|
// Disallow InstructionEquivalenceClasses with an empty instruction list.
|
|
const RecVec Defs =
|
|
Records.getAllDerivedDefinitions("InstructionEquivalenceClass");
|
|
for (const Record *R : Defs) {
|
|
RecVec Opcodes = R->getValueAsListOfDefs("Opcodes");
|
|
if (Opcodes.empty()) {
|
|
PrintFatalError(R->getLoc(), "Invalid InstructionEquivalenceClass "
|
|
"defined with an empty opcode list.");
|
|
}
|
|
}
|
|
}
|
|
|
|
// Used by function `processSTIPredicate` to construct a mask of machine
|
|
// instruction operands.
|
|
static APInt constructOperandMask(ArrayRef<int64_t> Indices) {
|
|
APInt OperandMask;
|
|
if (Indices.empty())
|
|
return OperandMask;
|
|
|
|
int64_t MaxIndex = *std::max_element(Indices.begin(), Indices.end());
|
|
assert(MaxIndex >= 0 && "Invalid negative indices in input!");
|
|
OperandMask = OperandMask.zext(MaxIndex + 1);
|
|
for (const int64_t Index : Indices) {
|
|
assert(Index >= 0 && "Invalid negative indices!");
|
|
OperandMask.setBit(Index);
|
|
}
|
|
|
|
return OperandMask;
|
|
}
|
|
|
|
static void
|
|
processSTIPredicate(STIPredicateFunction &Fn,
|
|
const ProcModelMapTy &ProcModelMap) {
|
|
DenseMap<const Record *, unsigned> Opcode2Index;
|
|
using OpcodeMapPair = std::pair<const Record *, OpcodeInfo>;
|
|
std::vector<OpcodeMapPair> OpcodeMappings;
|
|
std::vector<std::pair<APInt, APInt>> OpcodeMasks;
|
|
|
|
DenseMap<const Record *, unsigned> Predicate2Index;
|
|
unsigned NumUniquePredicates = 0;
|
|
|
|
// Number unique predicates and opcodes used by InstructionEquivalenceClass
|
|
// definitions. Each unique opcode will be associated with an OpcodeInfo
|
|
// object.
|
|
for (const Record *Def : Fn.getDefinitions()) {
|
|
RecVec Classes = Def->getValueAsListOfDefs("Classes");
|
|
for (const Record *EC : Classes) {
|
|
const Record *Pred = EC->getValueAsDef("Predicate");
|
|
if (Predicate2Index.find(Pred) == Predicate2Index.end())
|
|
Predicate2Index[Pred] = NumUniquePredicates++;
|
|
|
|
RecVec Opcodes = EC->getValueAsListOfDefs("Opcodes");
|
|
for (const Record *Opcode : Opcodes) {
|
|
if (Opcode2Index.find(Opcode) == Opcode2Index.end()) {
|
|
Opcode2Index[Opcode] = OpcodeMappings.size();
|
|
OpcodeMappings.emplace_back(Opcode, OpcodeInfo());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Initialize vector `OpcodeMasks` with default values. We want to keep track
|
|
// of which processors "use" which opcodes. We also want to be able to
|
|
// identify predicates that are used by different processors for a same
|
|
// opcode.
|
|
// This information is used later on by this algorithm to sort OpcodeMapping
|
|
// elements based on their processor and predicate sets.
|
|
OpcodeMasks.resize(OpcodeMappings.size());
|
|
APInt DefaultProcMask(ProcModelMap.size(), 0);
|
|
APInt DefaultPredMask(NumUniquePredicates, 0);
|
|
for (std::pair<APInt, APInt> &MaskPair : OpcodeMasks)
|
|
MaskPair = std::make_pair(DefaultProcMask, DefaultPredMask);
|
|
|
|
// Construct a OpcodeInfo object for every unique opcode declared by an
|
|
// InstructionEquivalenceClass definition.
|
|
for (const Record *Def : Fn.getDefinitions()) {
|
|
RecVec Classes = Def->getValueAsListOfDefs("Classes");
|
|
const Record *SchedModel = Def->getValueAsDef("SchedModel");
|
|
unsigned ProcIndex = ProcModelMap.find(SchedModel)->second;
|
|
APInt ProcMask(ProcModelMap.size(), 0);
|
|
ProcMask.setBit(ProcIndex);
|
|
|
|
for (const Record *EC : Classes) {
|
|
RecVec Opcodes = EC->getValueAsListOfDefs("Opcodes");
|
|
|
|
std::vector<int64_t> OpIndices =
|
|
EC->getValueAsListOfInts("OperandIndices");
|
|
APInt OperandMask = constructOperandMask(OpIndices);
|
|
|
|
const Record *Pred = EC->getValueAsDef("Predicate");
|
|
APInt PredMask(NumUniquePredicates, 0);
|
|
PredMask.setBit(Predicate2Index[Pred]);
|
|
|
|
for (const Record *Opcode : Opcodes) {
|
|
unsigned OpcodeIdx = Opcode2Index[Opcode];
|
|
if (OpcodeMasks[OpcodeIdx].first[ProcIndex]) {
|
|
std::string Message =
|
|
"Opcode " + Opcode->getName().str() +
|
|
" used by multiple InstructionEquivalenceClass definitions.";
|
|
PrintFatalError(EC->getLoc(), Message);
|
|
}
|
|
OpcodeMasks[OpcodeIdx].first |= ProcMask;
|
|
OpcodeMasks[OpcodeIdx].second |= PredMask;
|
|
OpcodeInfo &OI = OpcodeMappings[OpcodeIdx].second;
|
|
|
|
OI.addPredicateForProcModel(ProcMask, OperandMask, Pred);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Sort OpcodeMappings elements based on their CPU and predicate masks.
|
|
// As a last resort, order elements by opcode identifier.
|
|
llvm::sort(OpcodeMappings,
|
|
[&](const OpcodeMapPair &Lhs, const OpcodeMapPair &Rhs) {
|
|
unsigned LhsIdx = Opcode2Index[Lhs.first];
|
|
unsigned RhsIdx = Opcode2Index[Rhs.first];
|
|
const std::pair<APInt, APInt> &LhsMasks = OpcodeMasks[LhsIdx];
|
|
const std::pair<APInt, APInt> &RhsMasks = OpcodeMasks[RhsIdx];
|
|
|
|
auto LessThan = [](const APInt &Lhs, const APInt &Rhs) {
|
|
unsigned LhsCountPopulation = Lhs.countPopulation();
|
|
unsigned RhsCountPopulation = Rhs.countPopulation();
|
|
return ((LhsCountPopulation < RhsCountPopulation) ||
|
|
((LhsCountPopulation == RhsCountPopulation) &&
|
|
(Lhs.countLeadingZeros() > Rhs.countLeadingZeros())));
|
|
};
|
|
|
|
if (LhsMasks.first != RhsMasks.first)
|
|
return LessThan(LhsMasks.first, RhsMasks.first);
|
|
|
|
if (LhsMasks.second != RhsMasks.second)
|
|
return LessThan(LhsMasks.second, RhsMasks.second);
|
|
|
|
return LhsIdx < RhsIdx;
|
|
});
|
|
|
|
// Now construct opcode groups. Groups are used by the SubtargetEmitter when
|
|
// expanding the body of a STIPredicate function. In particular, each opcode
|
|
// group is expanded into a sequence of labels in a switch statement.
|
|
// It identifies opcodes for which different processors define same predicates
|
|
// and same opcode masks.
|
|
for (OpcodeMapPair &Info : OpcodeMappings)
|
|
Fn.addOpcode(Info.first, std::move(Info.second));
|
|
}
|
|
|
|
void CodeGenSchedModels::collectSTIPredicates() {
|
|
// Map STIPredicateDecl records to elements of vector
|
|
// CodeGenSchedModels::STIPredicates.
|
|
DenseMap<const Record *, unsigned> Decl2Index;
|
|
|
|
RecVec RV = Records.getAllDerivedDefinitions("STIPredicate");
|
|
for (const Record *R : RV) {
|
|
const Record *Decl = R->getValueAsDef("Declaration");
|
|
|
|
const auto It = Decl2Index.find(Decl);
|
|
if (It == Decl2Index.end()) {
|
|
Decl2Index[Decl] = STIPredicates.size();
|
|
STIPredicateFunction Predicate(Decl);
|
|
Predicate.addDefinition(R);
|
|
STIPredicates.emplace_back(std::move(Predicate));
|
|
continue;
|
|
}
|
|
|
|
STIPredicateFunction &PreviousDef = STIPredicates[It->second];
|
|
PreviousDef.addDefinition(R);
|
|
}
|
|
|
|
for (STIPredicateFunction &Fn : STIPredicates)
|
|
processSTIPredicate(Fn, ProcModelMap);
|
|
}
|
|
|
|
void OpcodeInfo::addPredicateForProcModel(const llvm::APInt &CpuMask,
|
|
const llvm::APInt &OperandMask,
|
|
const Record *Predicate) {
|
|
auto It = llvm::find_if(
|
|
Predicates, [&OperandMask, &Predicate](const PredicateInfo &P) {
|
|
return P.Predicate == Predicate && P.OperandMask == OperandMask;
|
|
});
|
|
if (It == Predicates.end()) {
|
|
Predicates.emplace_back(CpuMask, OperandMask, Predicate);
|
|
return;
|
|
}
|
|
It->ProcModelMask |= CpuMask;
|
|
}
|
|
|
|
void CodeGenSchedModels::checkMCInstPredicates() const {
|
|
RecVec MCPredicates = Records.getAllDerivedDefinitions("TIIPredicate");
|
|
if (MCPredicates.empty())
|
|
return;
|
|
|
|
// A target cannot have multiple TIIPredicate definitions with a same name.
|
|
llvm::StringMap<const Record *> TIIPredicates(MCPredicates.size());
|
|
for (const Record *TIIPred : MCPredicates) {
|
|
StringRef Name = TIIPred->getValueAsString("FunctionName");
|
|
StringMap<const Record *>::const_iterator It = TIIPredicates.find(Name);
|
|
if (It == TIIPredicates.end()) {
|
|
TIIPredicates[Name] = TIIPred;
|
|
continue;
|
|
}
|
|
|
|
PrintError(TIIPred->getLoc(),
|
|
"TIIPredicate " + Name + " is multiply defined.");
|
|
PrintFatalNote(It->second->getLoc(),
|
|
" Previous definition of " + Name + " was here.");
|
|
}
|
|
}
|
|
|
|
void CodeGenSchedModels::collectRetireControlUnits() {
|
|
RecVec Units = Records.getAllDerivedDefinitions("RetireControlUnit");
|
|
|
|
for (Record *RCU : Units) {
|
|
CodeGenProcModel &PM = getProcModel(RCU->getValueAsDef("SchedModel"));
|
|
if (PM.RetireControlUnit) {
|
|
PrintError(RCU->getLoc(),
|
|
"Expected a single RetireControlUnit definition");
|
|
PrintNote(PM.RetireControlUnit->getLoc(),
|
|
"Previous definition of RetireControlUnit was here");
|
|
}
|
|
PM.RetireControlUnit = RCU;
|
|
}
|
|
}
|
|
|
|
void CodeGenSchedModels::collectLoadStoreQueueInfo() {
|
|
RecVec Queues = Records.getAllDerivedDefinitions("MemoryQueue");
|
|
|
|
for (Record *Queue : Queues) {
|
|
CodeGenProcModel &PM = getProcModel(Queue->getValueAsDef("SchedModel"));
|
|
if (Queue->isSubClassOf("LoadQueue")) {
|
|
if (PM.LoadQueue) {
|
|
PrintError(Queue->getLoc(),
|
|
"Expected a single LoadQueue definition");
|
|
PrintNote(PM.LoadQueue->getLoc(),
|
|
"Previous definition of LoadQueue was here");
|
|
}
|
|
|
|
PM.LoadQueue = Queue;
|
|
}
|
|
|
|
if (Queue->isSubClassOf("StoreQueue")) {
|
|
if (PM.StoreQueue) {
|
|
PrintError(Queue->getLoc(),
|
|
"Expected a single StoreQueue definition");
|
|
PrintNote(PM.LoadQueue->getLoc(),
|
|
"Previous definition of StoreQueue was here");
|
|
}
|
|
|
|
PM.StoreQueue = Queue;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Collect optional processor information.
|
|
void CodeGenSchedModels::collectOptionalProcessorInfo() {
|
|
// Find register file definitions for each processor.
|
|
collectRegisterFiles();
|
|
|
|
// Collect processor RetireControlUnit descriptors if available.
|
|
collectRetireControlUnits();
|
|
|
|
// Collect information about load/store queues.
|
|
collectLoadStoreQueueInfo();
|
|
|
|
checkCompleteness();
|
|
}
|
|
|
|
/// Gather all processor models.
|
|
void CodeGenSchedModels::collectProcModels() {
|
|
RecVec ProcRecords = Records.getAllDerivedDefinitions("Processor");
|
|
llvm::sort(ProcRecords, LessRecordFieldName());
|
|
|
|
// Reserve space because we can. Reallocation would be ok.
|
|
ProcModels.reserve(ProcRecords.size()+1);
|
|
|
|
// Use idx=0 for NoModel/NoItineraries.
|
|
Record *NoModelDef = Records.getDef("NoSchedModel");
|
|
Record *NoItinsDef = Records.getDef("NoItineraries");
|
|
ProcModels.emplace_back(0, "NoSchedModel", NoModelDef, NoItinsDef);
|
|
ProcModelMap[NoModelDef] = 0;
|
|
|
|
// For each processor, find a unique machine model.
|
|
LLVM_DEBUG(dbgs() << "+++ PROCESSOR MODELs (addProcModel) +++\n");
|
|
for (Record *ProcRecord : ProcRecords)
|
|
addProcModel(ProcRecord);
|
|
}
|
|
|
|
/// Get a unique processor model based on the defined MachineModel and
|
|
/// ProcessorItineraries.
|
|
void CodeGenSchedModels::addProcModel(Record *ProcDef) {
|
|
Record *ModelKey = getModelOrItinDef(ProcDef);
|
|
if (!ProcModelMap.insert(std::make_pair(ModelKey, ProcModels.size())).second)
|
|
return;
|
|
|
|
std::string Name = std::string(ModelKey->getName());
|
|
if (ModelKey->isSubClassOf("SchedMachineModel")) {
|
|
Record *ItinsDef = ModelKey->getValueAsDef("Itineraries");
|
|
ProcModels.emplace_back(ProcModels.size(), Name, ModelKey, ItinsDef);
|
|
}
|
|
else {
|
|
// An itinerary is defined without a machine model. Infer a new model.
|
|
if (!ModelKey->getValueAsListOfDefs("IID").empty())
|
|
Name = Name + "Model";
|
|
ProcModels.emplace_back(ProcModels.size(), Name,
|
|
ProcDef->getValueAsDef("SchedModel"), ModelKey);
|
|
}
|
|
LLVM_DEBUG(ProcModels.back().dump());
|
|
}
|
|
|
|
// Recursively find all reachable SchedReadWrite records.
|
|
static void scanSchedRW(Record *RWDef, RecVec &RWDefs,
|
|
SmallPtrSet<Record*, 16> &RWSet) {
|
|
if (!RWSet.insert(RWDef).second)
|
|
return;
|
|
RWDefs.push_back(RWDef);
|
|
// Reads don't currently have sequence records, but it can be added later.
|
|
if (RWDef->isSubClassOf("WriteSequence")) {
|
|
RecVec Seq = RWDef->getValueAsListOfDefs("Writes");
|
|
for (Record *WSRec : Seq)
|
|
scanSchedRW(WSRec, RWDefs, RWSet);
|
|
}
|
|
else if (RWDef->isSubClassOf("SchedVariant")) {
|
|
// Visit each variant (guarded by a different predicate).
|
|
RecVec Vars = RWDef->getValueAsListOfDefs("Variants");
|
|
for (Record *Variant : Vars) {
|
|
// Visit each RW in the sequence selected by the current variant.
|
|
RecVec Selected = Variant->getValueAsListOfDefs("Selected");
|
|
for (Record *SelDef : Selected)
|
|
scanSchedRW(SelDef, RWDefs, RWSet);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Collect and sort all SchedReadWrites reachable via tablegen records.
|
|
// More may be inferred later when inferring new SchedClasses from variants.
|
|
void CodeGenSchedModels::collectSchedRW() {
|
|
// Reserve idx=0 for invalid writes/reads.
|
|
SchedWrites.resize(1);
|
|
SchedReads.resize(1);
|
|
|
|
SmallPtrSet<Record*, 16> RWSet;
|
|
|
|
// Find all SchedReadWrites referenced by instruction defs.
|
|
RecVec SWDefs, SRDefs;
|
|
for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
|
|
Record *SchedDef = Inst->TheDef;
|
|
if (SchedDef->isValueUnset("SchedRW"))
|
|
continue;
|
|
RecVec RWs = SchedDef->getValueAsListOfDefs("SchedRW");
|
|
for (Record *RW : RWs) {
|
|
if (RW->isSubClassOf("SchedWrite"))
|
|
scanSchedRW(RW, SWDefs, RWSet);
|
|
else {
|
|
assert(RW->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
|
|
scanSchedRW(RW, SRDefs, RWSet);
|
|
}
|
|
}
|
|
}
|
|
// Find all ReadWrites referenced by InstRW.
|
|
RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW");
|
|
for (Record *InstRWDef : InstRWDefs) {
|
|
// For all OperandReadWrites.
|
|
RecVec RWDefs = InstRWDef->getValueAsListOfDefs("OperandReadWrites");
|
|
for (Record *RWDef : RWDefs) {
|
|
if (RWDef->isSubClassOf("SchedWrite"))
|
|
scanSchedRW(RWDef, SWDefs, RWSet);
|
|
else {
|
|
assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
|
|
scanSchedRW(RWDef, SRDefs, RWSet);
|
|
}
|
|
}
|
|
}
|
|
// Find all ReadWrites referenced by ItinRW.
|
|
RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW");
|
|
for (Record *ItinRWDef : ItinRWDefs) {
|
|
// For all OperandReadWrites.
|
|
RecVec RWDefs = ItinRWDef->getValueAsListOfDefs("OperandReadWrites");
|
|
for (Record *RWDef : RWDefs) {
|
|
if (RWDef->isSubClassOf("SchedWrite"))
|
|
scanSchedRW(RWDef, SWDefs, RWSet);
|
|
else {
|
|
assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
|
|
scanSchedRW(RWDef, SRDefs, RWSet);
|
|
}
|
|
}
|
|
}
|
|
// Find all ReadWrites referenced by SchedAlias. AliasDefs needs to be sorted
|
|
// for the loop below that initializes Alias vectors.
|
|
RecVec AliasDefs = Records.getAllDerivedDefinitions("SchedAlias");
|
|
llvm::sort(AliasDefs, LessRecord());
|
|
for (Record *ADef : AliasDefs) {
|
|
Record *MatchDef = ADef->getValueAsDef("MatchRW");
|
|
Record *AliasDef = ADef->getValueAsDef("AliasRW");
|
|
if (MatchDef->isSubClassOf("SchedWrite")) {
|
|
if (!AliasDef->isSubClassOf("SchedWrite"))
|
|
PrintFatalError(ADef->getLoc(), "SchedWrite Alias must be SchedWrite");
|
|
scanSchedRW(AliasDef, SWDefs, RWSet);
|
|
}
|
|
else {
|
|
assert(MatchDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
|
|
if (!AliasDef->isSubClassOf("SchedRead"))
|
|
PrintFatalError(ADef->getLoc(), "SchedRead Alias must be SchedRead");
|
|
scanSchedRW(AliasDef, SRDefs, RWSet);
|
|
}
|
|
}
|
|
// Sort and add the SchedReadWrites directly referenced by instructions or
|
|
// itinerary resources. Index reads and writes in separate domains.
|
|
llvm::sort(SWDefs, LessRecord());
|
|
for (Record *SWDef : SWDefs) {
|
|
assert(!getSchedRWIdx(SWDef, /*IsRead=*/false) && "duplicate SchedWrite");
|
|
SchedWrites.emplace_back(SchedWrites.size(), SWDef);
|
|
}
|
|
llvm::sort(SRDefs, LessRecord());
|
|
for (Record *SRDef : SRDefs) {
|
|
assert(!getSchedRWIdx(SRDef, /*IsRead-*/true) && "duplicate SchedWrite");
|
|
SchedReads.emplace_back(SchedReads.size(), SRDef);
|
|
}
|
|
// Initialize WriteSequence vectors.
|
|
for (CodeGenSchedRW &CGRW : SchedWrites) {
|
|
if (!CGRW.IsSequence)
|
|
continue;
|
|
findRWs(CGRW.TheDef->getValueAsListOfDefs("Writes"), CGRW.Sequence,
|
|
/*IsRead=*/false);
|
|
}
|
|
// Initialize Aliases vectors.
|
|
for (Record *ADef : AliasDefs) {
|
|
Record *AliasDef = ADef->getValueAsDef("AliasRW");
|
|
getSchedRW(AliasDef).IsAlias = true;
|
|
Record *MatchDef = ADef->getValueAsDef("MatchRW");
|
|
CodeGenSchedRW &RW = getSchedRW(MatchDef);
|
|
if (RW.IsAlias)
|
|
PrintFatalError(ADef->getLoc(), "Cannot Alias an Alias");
|
|
RW.Aliases.push_back(ADef);
|
|
}
|
|
LLVM_DEBUG(
|
|
dbgs() << "\n+++ SCHED READS and WRITES (collectSchedRW) +++\n";
|
|
for (unsigned WIdx = 0, WEnd = SchedWrites.size(); WIdx != WEnd; ++WIdx) {
|
|
dbgs() << WIdx << ": ";
|
|
SchedWrites[WIdx].dump();
|
|
dbgs() << '\n';
|
|
} for (unsigned RIdx = 0, REnd = SchedReads.size(); RIdx != REnd;
|
|
++RIdx) {
|
|
dbgs() << RIdx << ": ";
|
|
SchedReads[RIdx].dump();
|
|
dbgs() << '\n';
|
|
} RecVec RWDefs = Records.getAllDerivedDefinitions("SchedReadWrite");
|
|
for (Record *RWDef
|
|
: RWDefs) {
|
|
if (!getSchedRWIdx(RWDef, RWDef->isSubClassOf("SchedRead"))) {
|
|
StringRef Name = RWDef->getName();
|
|
if (Name != "NoWrite" && Name != "ReadDefault")
|
|
dbgs() << "Unused SchedReadWrite " << Name << '\n';
|
|
}
|
|
});
|
|
}
|
|
|
|
/// Compute a SchedWrite name from a sequence of writes.
|
|
std::string CodeGenSchedModels::genRWName(ArrayRef<unsigned> Seq, bool IsRead) {
|
|
std::string Name("(");
|
|
ListSeparator LS("_");
|
|
for (unsigned I : Seq) {
|
|
Name += LS;
|
|
Name += getSchedRW(I, IsRead).Name;
|
|
}
|
|
Name += ')';
|
|
return Name;
|
|
}
|
|
|
|
unsigned CodeGenSchedModels::getSchedRWIdx(const Record *Def,
|
|
bool IsRead) const {
|
|
const std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
|
|
const auto I = find_if(
|
|
RWVec, [Def](const CodeGenSchedRW &RW) { return RW.TheDef == Def; });
|
|
return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I);
|
|
}
|
|
|
|
bool CodeGenSchedModels::hasReadOfWrite(Record *WriteDef) const {
|
|
for (const CodeGenSchedRW &Read : SchedReads) {
|
|
Record *ReadDef = Read.TheDef;
|
|
if (!ReadDef || !ReadDef->isSubClassOf("ProcReadAdvance"))
|
|
continue;
|
|
|
|
RecVec ValidWrites = ReadDef->getValueAsListOfDefs("ValidWrites");
|
|
if (is_contained(ValidWrites, WriteDef)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void splitSchedReadWrites(const RecVec &RWDefs,
|
|
RecVec &WriteDefs, RecVec &ReadDefs) {
|
|
for (Record *RWDef : RWDefs) {
|
|
if (RWDef->isSubClassOf("SchedWrite"))
|
|
WriteDefs.push_back(RWDef);
|
|
else {
|
|
assert(RWDef->isSubClassOf("SchedRead") && "unknown SchedReadWrite");
|
|
ReadDefs.push_back(RWDef);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Split the SchedReadWrites defs and call findRWs for each list.
|
|
void CodeGenSchedModels::findRWs(const RecVec &RWDefs,
|
|
IdxVec &Writes, IdxVec &Reads) const {
|
|
RecVec WriteDefs;
|
|
RecVec ReadDefs;
|
|
splitSchedReadWrites(RWDefs, WriteDefs, ReadDefs);
|
|
findRWs(WriteDefs, Writes, false);
|
|
findRWs(ReadDefs, Reads, true);
|
|
}
|
|
|
|
// Call getSchedRWIdx for all elements in a sequence of SchedRW defs.
|
|
void CodeGenSchedModels::findRWs(const RecVec &RWDefs, IdxVec &RWs,
|
|
bool IsRead) const {
|
|
for (Record *RWDef : RWDefs) {
|
|
unsigned Idx = getSchedRWIdx(RWDef, IsRead);
|
|
assert(Idx && "failed to collect SchedReadWrite");
|
|
RWs.push_back(Idx);
|
|
}
|
|
}
|
|
|
|
void CodeGenSchedModels::expandRWSequence(unsigned RWIdx, IdxVec &RWSeq,
|
|
bool IsRead) const {
|
|
const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead);
|
|
if (!SchedRW.IsSequence) {
|
|
RWSeq.push_back(RWIdx);
|
|
return;
|
|
}
|
|
int Repeat =
|
|
SchedRW.TheDef ? SchedRW.TheDef->getValueAsInt("Repeat") : 1;
|
|
for (int i = 0; i < Repeat; ++i) {
|
|
for (unsigned I : SchedRW.Sequence) {
|
|
expandRWSequence(I, RWSeq, IsRead);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Expand a SchedWrite as a sequence following any aliases that coincide with
|
|
// the given processor model.
|
|
void CodeGenSchedModels::expandRWSeqForProc(
|
|
unsigned RWIdx, IdxVec &RWSeq, bool IsRead,
|
|
const CodeGenProcModel &ProcModel) const {
|
|
|
|
const CodeGenSchedRW &SchedWrite = getSchedRW(RWIdx, IsRead);
|
|
Record *AliasDef = nullptr;
|
|
for (const Record *Rec : SchedWrite.Aliases) {
|
|
const CodeGenSchedRW &AliasRW = getSchedRW(Rec->getValueAsDef("AliasRW"));
|
|
if (Rec->getValueInit("SchedModel")->isComplete()) {
|
|
Record *ModelDef = Rec->getValueAsDef("SchedModel");
|
|
if (&getProcModel(ModelDef) != &ProcModel)
|
|
continue;
|
|
}
|
|
if (AliasDef)
|
|
PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
|
|
"defined for processor " + ProcModel.ModelName +
|
|
" Ensure only one SchedAlias exists per RW.");
|
|
AliasDef = AliasRW.TheDef;
|
|
}
|
|
if (AliasDef) {
|
|
expandRWSeqForProc(getSchedRWIdx(AliasDef, IsRead),
|
|
RWSeq, IsRead,ProcModel);
|
|
return;
|
|
}
|
|
if (!SchedWrite.IsSequence) {
|
|
RWSeq.push_back(RWIdx);
|
|
return;
|
|
}
|
|
int Repeat =
|
|
SchedWrite.TheDef ? SchedWrite.TheDef->getValueAsInt("Repeat") : 1;
|
|
for (int I = 0, E = Repeat; I < E; ++I) {
|
|
for (unsigned Idx : SchedWrite.Sequence) {
|
|
expandRWSeqForProc(Idx, RWSeq, IsRead, ProcModel);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Find the existing SchedWrite that models this sequence of writes.
|
|
unsigned CodeGenSchedModels::findRWForSequence(ArrayRef<unsigned> Seq,
|
|
bool IsRead) {
|
|
std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
|
|
|
|
auto I = find_if(RWVec, [Seq](CodeGenSchedRW &RW) {
|
|
return makeArrayRef(RW.Sequence) == Seq;
|
|
});
|
|
// Index zero reserved for invalid RW.
|
|
return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I);
|
|
}
|
|
|
|
/// Add this ReadWrite if it doesn't already exist.
|
|
unsigned CodeGenSchedModels::findOrInsertRW(ArrayRef<unsigned> Seq,
|
|
bool IsRead) {
|
|
assert(!Seq.empty() && "cannot insert empty sequence");
|
|
if (Seq.size() == 1)
|
|
return Seq.back();
|
|
|
|
unsigned Idx = findRWForSequence(Seq, IsRead);
|
|
if (Idx)
|
|
return Idx;
|
|
|
|
std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
|
|
unsigned RWIdx = RWVec.size();
|
|
CodeGenSchedRW SchedRW(RWIdx, IsRead, Seq, genRWName(Seq, IsRead));
|
|
RWVec.push_back(SchedRW);
|
|
return RWIdx;
|
|
}
|
|
|
|
/// Visit all the instruction definitions for this target to gather and
|
|
/// enumerate the itinerary classes. These are the explicitly specified
|
|
/// SchedClasses. More SchedClasses may be inferred.
|
|
void CodeGenSchedModels::collectSchedClasses() {
|
|
|
|
// NoItinerary is always the first class at Idx=0
|
|
assert(SchedClasses.empty() && "Expected empty sched class");
|
|
SchedClasses.emplace_back(0, "NoInstrModel",
|
|
Records.getDef("NoItinerary"));
|
|
SchedClasses.back().ProcIndices.push_back(0);
|
|
|
|
// Create a SchedClass for each unique combination of itinerary class and
|
|
// SchedRW list.
|
|
for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
|
|
Record *ItinDef = Inst->TheDef->getValueAsDef("Itinerary");
|
|
IdxVec Writes, Reads;
|
|
if (!Inst->TheDef->isValueUnset("SchedRW"))
|
|
findRWs(Inst->TheDef->getValueAsListOfDefs("SchedRW"), Writes, Reads);
|
|
|
|
// ProcIdx == 0 indicates the class applies to all processors.
|
|
unsigned SCIdx = addSchedClass(ItinDef, Writes, Reads, /*ProcIndices*/{0});
|
|
InstrClassMap[Inst->TheDef] = SCIdx;
|
|
}
|
|
// Create classes for InstRW defs.
|
|
RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW");
|
|
llvm::sort(InstRWDefs, LessRecord());
|
|
LLVM_DEBUG(dbgs() << "\n+++ SCHED CLASSES (createInstRWClass) +++\n");
|
|
for (Record *RWDef : InstRWDefs)
|
|
createInstRWClass(RWDef);
|
|
|
|
NumInstrSchedClasses = SchedClasses.size();
|
|
|
|
bool EnableDump = false;
|
|
LLVM_DEBUG(EnableDump = true);
|
|
if (!EnableDump)
|
|
return;
|
|
|
|
LLVM_DEBUG(
|
|
dbgs()
|
|
<< "\n+++ ITINERARIES and/or MACHINE MODELS (collectSchedClasses) +++\n");
|
|
for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
|
|
StringRef InstName = Inst->TheDef->getName();
|
|
unsigned SCIdx = getSchedClassIdx(*Inst);
|
|
if (!SCIdx) {
|
|
LLVM_DEBUG({
|
|
if (!Inst->hasNoSchedulingInfo)
|
|
dbgs() << "No machine model for " << Inst->TheDef->getName() << '\n';
|
|
});
|
|
continue;
|
|
}
|
|
CodeGenSchedClass &SC = getSchedClass(SCIdx);
|
|
if (SC.ProcIndices[0] != 0)
|
|
PrintFatalError(Inst->TheDef->getLoc(), "Instruction's sched class "
|
|
"must not be subtarget specific.");
|
|
|
|
IdxVec ProcIndices;
|
|
if (SC.ItinClassDef->getName() != "NoItinerary") {
|
|
ProcIndices.push_back(0);
|
|
dbgs() << "Itinerary for " << InstName << ": "
|
|
<< SC.ItinClassDef->getName() << '\n';
|
|
}
|
|
if (!SC.Writes.empty()) {
|
|
ProcIndices.push_back(0);
|
|
LLVM_DEBUG({
|
|
dbgs() << "SchedRW machine model for " << InstName;
|
|
for (unsigned int Write : SC.Writes)
|
|
dbgs() << " " << SchedWrites[Write].Name;
|
|
for (unsigned int Read : SC.Reads)
|
|
dbgs() << " " << SchedReads[Read].Name;
|
|
dbgs() << '\n';
|
|
});
|
|
}
|
|
const RecVec &RWDefs = SchedClasses[SCIdx].InstRWs;
|
|
for (Record *RWDef : RWDefs) {
|
|
const CodeGenProcModel &ProcModel =
|
|
getProcModel(RWDef->getValueAsDef("SchedModel"));
|
|
ProcIndices.push_back(ProcModel.Index);
|
|
LLVM_DEBUG(dbgs() << "InstRW on " << ProcModel.ModelName << " for "
|
|
<< InstName);
|
|
IdxVec Writes;
|
|
IdxVec Reads;
|
|
findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"),
|
|
Writes, Reads);
|
|
LLVM_DEBUG({
|
|
for (unsigned WIdx : Writes)
|
|
dbgs() << " " << SchedWrites[WIdx].Name;
|
|
for (unsigned RIdx : Reads)
|
|
dbgs() << " " << SchedReads[RIdx].Name;
|
|
dbgs() << '\n';
|
|
});
|
|
}
|
|
// If ProcIndices contains zero, the class applies to all processors.
|
|
LLVM_DEBUG({
|
|
if (!llvm::is_contained(ProcIndices, 0)) {
|
|
for (const CodeGenProcModel &PM : ProcModels) {
|
|
if (!llvm::is_contained(ProcIndices, PM.Index))
|
|
dbgs() << "No machine model for " << Inst->TheDef->getName()
|
|
<< " on processor " << PM.ModelName << '\n';
|
|
}
|
|
}
|
|
});
|
|
}
|
|
}
|
|
|
|
// Get the SchedClass index for an instruction.
|
|
unsigned
|
|
CodeGenSchedModels::getSchedClassIdx(const CodeGenInstruction &Inst) const {
|
|
return InstrClassMap.lookup(Inst.TheDef);
|
|
}
|
|
|
|
std::string
|
|
CodeGenSchedModels::createSchedClassName(Record *ItinClassDef,
|
|
ArrayRef<unsigned> OperWrites,
|
|
ArrayRef<unsigned> OperReads) {
|
|
|
|
std::string Name;
|
|
if (ItinClassDef && ItinClassDef->getName() != "NoItinerary")
|
|
Name = std::string(ItinClassDef->getName());
|
|
for (unsigned Idx : OperWrites) {
|
|
if (!Name.empty())
|
|
Name += '_';
|
|
Name += SchedWrites[Idx].Name;
|
|
}
|
|
for (unsigned Idx : OperReads) {
|
|
Name += '_';
|
|
Name += SchedReads[Idx].Name;
|
|
}
|
|
return Name;
|
|
}
|
|
|
|
std::string CodeGenSchedModels::createSchedClassName(const RecVec &InstDefs) {
|
|
|
|
std::string Name;
|
|
ListSeparator LS("_");
|
|
for (const Record *InstDef : InstDefs) {
|
|
Name += LS;
|
|
Name += InstDef->getName();
|
|
}
|
|
return Name;
|
|
}
|
|
|
|
/// Add an inferred sched class from an itinerary class and per-operand list of
|
|
/// SchedWrites and SchedReads. ProcIndices contains the set of IDs of
|
|
/// processors that may utilize this class.
|
|
unsigned CodeGenSchedModels::addSchedClass(Record *ItinClassDef,
|
|
ArrayRef<unsigned> OperWrites,
|
|
ArrayRef<unsigned> OperReads,
|
|
ArrayRef<unsigned> ProcIndices) {
|
|
assert(!ProcIndices.empty() && "expect at least one ProcIdx");
|
|
|
|
auto IsKeyEqual = [=](const CodeGenSchedClass &SC) {
|
|
return SC.isKeyEqual(ItinClassDef, OperWrites, OperReads);
|
|
};
|
|
|
|
auto I = find_if(make_range(schedClassBegin(), schedClassEnd()), IsKeyEqual);
|
|
unsigned Idx = I == schedClassEnd() ? 0 : std::distance(schedClassBegin(), I);
|
|
if (Idx || SchedClasses[0].isKeyEqual(ItinClassDef, OperWrites, OperReads)) {
|
|
IdxVec PI;
|
|
std::set_union(SchedClasses[Idx].ProcIndices.begin(),
|
|
SchedClasses[Idx].ProcIndices.end(),
|
|
ProcIndices.begin(), ProcIndices.end(),
|
|
std::back_inserter(PI));
|
|
SchedClasses[Idx].ProcIndices = std::move(PI);
|
|
return Idx;
|
|
}
|
|
Idx = SchedClasses.size();
|
|
SchedClasses.emplace_back(Idx,
|
|
createSchedClassName(ItinClassDef, OperWrites,
|
|
OperReads),
|
|
ItinClassDef);
|
|
CodeGenSchedClass &SC = SchedClasses.back();
|
|
SC.Writes = OperWrites;
|
|
SC.Reads = OperReads;
|
|
SC.ProcIndices = ProcIndices;
|
|
|
|
return Idx;
|
|
}
|
|
|
|
// Create classes for each set of opcodes that are in the same InstReadWrite
|
|
// definition across all processors.
|
|
void CodeGenSchedModels::createInstRWClass(Record *InstRWDef) {
|
|
// ClassInstrs will hold an entry for each subset of Instrs in InstRWDef that
|
|
// intersects with an existing class via a previous InstRWDef. Instrs that do
|
|
// not intersect with an existing class refer back to their former class as
|
|
// determined from ItinDef or SchedRW.
|
|
SmallMapVector<unsigned, SmallVector<Record *, 8>, 4> ClassInstrs;
|
|
// Sort Instrs into sets.
|
|
const RecVec *InstDefs = Sets.expand(InstRWDef);
|
|
if (InstDefs->empty())
|
|
PrintFatalError(InstRWDef->getLoc(), "No matching instruction opcodes");
|
|
|
|
for (Record *InstDef : *InstDefs) {
|
|
InstClassMapTy::const_iterator Pos = InstrClassMap.find(InstDef);
|
|
if (Pos == InstrClassMap.end())
|
|
PrintFatalError(InstDef->getLoc(), "No sched class for instruction.");
|
|
unsigned SCIdx = Pos->second;
|
|
ClassInstrs[SCIdx].push_back(InstDef);
|
|
}
|
|
// For each set of Instrs, create a new class if necessary, and map or remap
|
|
// the Instrs to it.
|
|
for (auto &Entry : ClassInstrs) {
|
|
unsigned OldSCIdx = Entry.first;
|
|
ArrayRef<Record*> InstDefs = Entry.second;
|
|
// If the all instrs in the current class are accounted for, then leave
|
|
// them mapped to their old class.
|
|
if (OldSCIdx) {
|
|
const RecVec &RWDefs = SchedClasses[OldSCIdx].InstRWs;
|
|
if (!RWDefs.empty()) {
|
|
const RecVec *OrigInstDefs = Sets.expand(RWDefs[0]);
|
|
unsigned OrigNumInstrs =
|
|
count_if(*OrigInstDefs, [&](Record *OIDef) {
|
|
return InstrClassMap[OIDef] == OldSCIdx;
|
|
});
|
|
if (OrigNumInstrs == InstDefs.size()) {
|
|
assert(SchedClasses[OldSCIdx].ProcIndices[0] == 0 &&
|
|
"expected a generic SchedClass");
|
|
Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel");
|
|
// Make sure we didn't already have a InstRW containing this
|
|
// instruction on this model.
|
|
for (Record *RWD : RWDefs) {
|
|
if (RWD->getValueAsDef("SchedModel") == RWModelDef &&
|
|
RWModelDef->getValueAsBit("FullInstRWOverlapCheck")) {
|
|
assert(!InstDefs.empty()); // Checked at function start.
|
|
PrintError(
|
|
InstRWDef->getLoc(),
|
|
"Overlapping InstRW definition for \"" +
|
|
InstDefs.front()->getName() +
|
|
"\" also matches previous \"" +
|
|
RWD->getValue("Instrs")->getValue()->getAsString() +
|
|
"\".");
|
|
PrintFatalNote(RWD->getLoc(), "Previous match was here.");
|
|
}
|
|
}
|
|
LLVM_DEBUG(dbgs() << "InstRW: Reuse SC " << OldSCIdx << ":"
|
|
<< SchedClasses[OldSCIdx].Name << " on "
|
|
<< RWModelDef->getName() << "\n");
|
|
SchedClasses[OldSCIdx].InstRWs.push_back(InstRWDef);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
unsigned SCIdx = SchedClasses.size();
|
|
SchedClasses.emplace_back(SCIdx, createSchedClassName(InstDefs), nullptr);
|
|
CodeGenSchedClass &SC = SchedClasses.back();
|
|
LLVM_DEBUG(dbgs() << "InstRW: New SC " << SCIdx << ":" << SC.Name << " on "
|
|
<< InstRWDef->getValueAsDef("SchedModel")->getName()
|
|
<< "\n");
|
|
|
|
// Preserve ItinDef and Writes/Reads for processors without an InstRW entry.
|
|
SC.ItinClassDef = SchedClasses[OldSCIdx].ItinClassDef;
|
|
SC.Writes = SchedClasses[OldSCIdx].Writes;
|
|
SC.Reads = SchedClasses[OldSCIdx].Reads;
|
|
SC.ProcIndices.push_back(0);
|
|
// If we had an old class, copy it's InstRWs to this new class.
|
|
if (OldSCIdx) {
|
|
Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel");
|
|
for (Record *OldRWDef : SchedClasses[OldSCIdx].InstRWs) {
|
|
if (OldRWDef->getValueAsDef("SchedModel") == RWModelDef) {
|
|
assert(!InstDefs.empty()); // Checked at function start.
|
|
PrintError(
|
|
InstRWDef->getLoc(),
|
|
"Overlapping InstRW definition for \"" +
|
|
InstDefs.front()->getName() + "\" also matches previous \"" +
|
|
OldRWDef->getValue("Instrs")->getValue()->getAsString() +
|
|
"\".");
|
|
PrintFatalNote(OldRWDef->getLoc(), "Previous match was here.");
|
|
}
|
|
assert(OldRWDef != InstRWDef &&
|
|
"SchedClass has duplicate InstRW def");
|
|
SC.InstRWs.push_back(OldRWDef);
|
|
}
|
|
}
|
|
// Map each Instr to this new class.
|
|
for (Record *InstDef : InstDefs)
|
|
InstrClassMap[InstDef] = SCIdx;
|
|
SC.InstRWs.push_back(InstRWDef);
|
|
}
|
|
}
|
|
|
|
// True if collectProcItins found anything.
|
|
bool CodeGenSchedModels::hasItineraries() const {
|
|
for (const CodeGenProcModel &PM : make_range(procModelBegin(),procModelEnd()))
|
|
if (PM.hasItineraries())
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
// Gather the processor itineraries.
|
|
void CodeGenSchedModels::collectProcItins() {
|
|
LLVM_DEBUG(dbgs() << "\n+++ PROBLEM ITINERARIES (collectProcItins) +++\n");
|
|
for (CodeGenProcModel &ProcModel : ProcModels) {
|
|
if (!ProcModel.hasItineraries())
|
|
continue;
|
|
|
|
RecVec ItinRecords = ProcModel.ItinsDef->getValueAsListOfDefs("IID");
|
|
assert(!ItinRecords.empty() && "ProcModel.hasItineraries is incorrect");
|
|
|
|
// Populate ItinDefList with Itinerary records.
|
|
ProcModel.ItinDefList.resize(NumInstrSchedClasses);
|
|
|
|
// Insert each itinerary data record in the correct position within
|
|
// the processor model's ItinDefList.
|
|
for (Record *ItinData : ItinRecords) {
|
|
const Record *ItinDef = ItinData->getValueAsDef("TheClass");
|
|
bool FoundClass = false;
|
|
|
|
for (const CodeGenSchedClass &SC :
|
|
make_range(schedClassBegin(), schedClassEnd())) {
|
|
// Multiple SchedClasses may share an itinerary. Update all of them.
|
|
if (SC.ItinClassDef == ItinDef) {
|
|
ProcModel.ItinDefList[SC.Index] = ItinData;
|
|
FoundClass = true;
|
|
}
|
|
}
|
|
if (!FoundClass) {
|
|
LLVM_DEBUG(dbgs() << ProcModel.ItinsDef->getName()
|
|
<< " missing class for itinerary "
|
|
<< ItinDef->getName() << '\n');
|
|
}
|
|
}
|
|
// Check for missing itinerary entries.
|
|
assert(!ProcModel.ItinDefList[0] && "NoItinerary class can't have rec");
|
|
LLVM_DEBUG(
|
|
for (unsigned i = 1, N = ProcModel.ItinDefList.size(); i < N; ++i) {
|
|
if (!ProcModel.ItinDefList[i])
|
|
dbgs() << ProcModel.ItinsDef->getName()
|
|
<< " missing itinerary for class " << SchedClasses[i].Name
|
|
<< '\n';
|
|
});
|
|
}
|
|
}
|
|
|
|
// Gather the read/write types for each itinerary class.
|
|
void CodeGenSchedModels::collectProcItinRW() {
|
|
RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW");
|
|
llvm::sort(ItinRWDefs, LessRecord());
|
|
for (Record *RWDef : ItinRWDefs) {
|
|
if (!RWDef->getValueInit("SchedModel")->isComplete())
|
|
PrintFatalError(RWDef->getLoc(), "SchedModel is undefined");
|
|
Record *ModelDef = RWDef->getValueAsDef("SchedModel");
|
|
ProcModelMapTy::const_iterator I = ProcModelMap.find(ModelDef);
|
|
if (I == ProcModelMap.end()) {
|
|
PrintFatalError(RWDef->getLoc(), "Undefined SchedMachineModel "
|
|
+ ModelDef->getName());
|
|
}
|
|
ProcModels[I->second].ItinRWDefs.push_back(RWDef);
|
|
}
|
|
}
|
|
|
|
// Gather the unsupported features for processor models.
|
|
void CodeGenSchedModels::collectProcUnsupportedFeatures() {
|
|
for (CodeGenProcModel &ProcModel : ProcModels)
|
|
append_range(
|
|
ProcModel.UnsupportedFeaturesDefs,
|
|
ProcModel.ModelDef->getValueAsListOfDefs("UnsupportedFeatures"));
|
|
}
|
|
|
|
/// Infer new classes from existing classes. In the process, this may create new
|
|
/// SchedWrites from sequences of existing SchedWrites.
|
|
void CodeGenSchedModels::inferSchedClasses() {
|
|
LLVM_DEBUG(
|
|
dbgs() << "\n+++ INFERRING SCHED CLASSES (inferSchedClasses) +++\n");
|
|
LLVM_DEBUG(dbgs() << NumInstrSchedClasses << " instr sched classes.\n");
|
|
|
|
// Visit all existing classes and newly created classes.
|
|
for (unsigned Idx = 0; Idx != SchedClasses.size(); ++Idx) {
|
|
assert(SchedClasses[Idx].Index == Idx && "bad SCIdx");
|
|
|
|
if (SchedClasses[Idx].ItinClassDef)
|
|
inferFromItinClass(SchedClasses[Idx].ItinClassDef, Idx);
|
|
if (!SchedClasses[Idx].InstRWs.empty())
|
|
inferFromInstRWs(Idx);
|
|
if (!SchedClasses[Idx].Writes.empty()) {
|
|
inferFromRW(SchedClasses[Idx].Writes, SchedClasses[Idx].Reads,
|
|
Idx, SchedClasses[Idx].ProcIndices);
|
|
}
|
|
assert(SchedClasses.size() < (NumInstrSchedClasses*6) &&
|
|
"too many SchedVariants");
|
|
}
|
|
}
|
|
|
|
/// Infer classes from per-processor itinerary resources.
|
|
void CodeGenSchedModels::inferFromItinClass(Record *ItinClassDef,
|
|
unsigned FromClassIdx) {
|
|
for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) {
|
|
const CodeGenProcModel &PM = ProcModels[PIdx];
|
|
// For all ItinRW entries.
|
|
bool HasMatch = false;
|
|
for (const Record *Rec : PM.ItinRWDefs) {
|
|
RecVec Matched = Rec->getValueAsListOfDefs("MatchedItinClasses");
|
|
if (!llvm::is_contained(Matched, ItinClassDef))
|
|
continue;
|
|
if (HasMatch)
|
|
PrintFatalError(Rec->getLoc(), "Duplicate itinerary class "
|
|
+ ItinClassDef->getName()
|
|
+ " in ItinResources for " + PM.ModelName);
|
|
HasMatch = true;
|
|
IdxVec Writes, Reads;
|
|
findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
|
|
inferFromRW(Writes, Reads, FromClassIdx, PIdx);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Infer classes from per-processor InstReadWrite definitions.
|
|
void CodeGenSchedModels::inferFromInstRWs(unsigned SCIdx) {
|
|
for (unsigned I = 0, E = SchedClasses[SCIdx].InstRWs.size(); I != E; ++I) {
|
|
assert(SchedClasses[SCIdx].InstRWs.size() == E && "InstrRWs was mutated!");
|
|
Record *Rec = SchedClasses[SCIdx].InstRWs[I];
|
|
const RecVec *InstDefs = Sets.expand(Rec);
|
|
RecIter II = InstDefs->begin(), IE = InstDefs->end();
|
|
for (; II != IE; ++II) {
|
|
if (InstrClassMap[*II] == SCIdx)
|
|
break;
|
|
}
|
|
// If this class no longer has any instructions mapped to it, it has become
|
|
// irrelevant.
|
|
if (II == IE)
|
|
continue;
|
|
IdxVec Writes, Reads;
|
|
findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
|
|
unsigned PIdx = getProcModel(Rec->getValueAsDef("SchedModel")).Index;
|
|
inferFromRW(Writes, Reads, SCIdx, PIdx); // May mutate SchedClasses.
|
|
SchedClasses[SCIdx].InstRWProcIndices.insert(PIdx);
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
|
|
// Helper for substituteVariantOperand.
|
|
struct TransVariant {
|
|
Record *VarOrSeqDef; // Variant or sequence.
|
|
unsigned RWIdx; // Index of this variant or sequence's matched type.
|
|
unsigned ProcIdx; // Processor model index or zero for any.
|
|
unsigned TransVecIdx; // Index into PredTransitions::TransVec.
|
|
|
|
TransVariant(Record *def, unsigned rwi, unsigned pi, unsigned ti):
|
|
VarOrSeqDef(def), RWIdx(rwi), ProcIdx(pi), TransVecIdx(ti) {}
|
|
};
|
|
|
|
// Associate a predicate with the SchedReadWrite that it guards.
|
|
// RWIdx is the index of the read/write variant.
|
|
struct PredCheck {
|
|
bool IsRead;
|
|
unsigned RWIdx;
|
|
Record *Predicate;
|
|
|
|
PredCheck(bool r, unsigned w, Record *p): IsRead(r), RWIdx(w), Predicate(p) {}
|
|
};
|
|
|
|
// A Predicate transition is a list of RW sequences guarded by a PredTerm.
|
|
struct PredTransition {
|
|
// A predicate term is a conjunction of PredChecks.
|
|
SmallVector<PredCheck, 4> PredTerm;
|
|
SmallVector<SmallVector<unsigned,4>, 16> WriteSequences;
|
|
SmallVector<SmallVector<unsigned,4>, 16> ReadSequences;
|
|
unsigned ProcIndex = 0;
|
|
|
|
PredTransition() = default;
|
|
PredTransition(ArrayRef<PredCheck> PT, unsigned ProcId) {
|
|
PredTerm.assign(PT.begin(), PT.end());
|
|
ProcIndex = ProcId;
|
|
}
|
|
};
|
|
|
|
// Encapsulate a set of partially constructed transitions.
|
|
// The results are built by repeated calls to substituteVariants.
|
|
class PredTransitions {
|
|
CodeGenSchedModels &SchedModels;
|
|
|
|
public:
|
|
std::vector<PredTransition> TransVec;
|
|
|
|
PredTransitions(CodeGenSchedModels &sm): SchedModels(sm) {}
|
|
|
|
bool substituteVariantOperand(const SmallVectorImpl<unsigned> &RWSeq,
|
|
bool IsRead, unsigned StartIdx);
|
|
|
|
bool substituteVariants(const PredTransition &Trans);
|
|
|
|
#ifndef NDEBUG
|
|
void dump() const;
|
|
#endif
|
|
|
|
private:
|
|
bool mutuallyExclusive(Record *PredDef, ArrayRef<Record *> Preds,
|
|
ArrayRef<PredCheck> Term);
|
|
void getIntersectingVariants(
|
|
const CodeGenSchedRW &SchedRW, unsigned TransIdx,
|
|
std::vector<TransVariant> &IntersectingVariants);
|
|
void pushVariant(const TransVariant &VInfo, bool IsRead);
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
// Return true if this predicate is mutually exclusive with a PredTerm. This
|
|
// degenerates into checking if the predicate is mutually exclusive with any
|
|
// predicate in the Term's conjunction.
|
|
//
|
|
// All predicates associated with a given SchedRW are considered mutually
|
|
// exclusive. This should work even if the conditions expressed by the
|
|
// predicates are not exclusive because the predicates for a given SchedWrite
|
|
// are always checked in the order they are defined in the .td file. Later
|
|
// conditions implicitly negate any prior condition.
|
|
bool PredTransitions::mutuallyExclusive(Record *PredDef,
|
|
ArrayRef<Record *> Preds,
|
|
ArrayRef<PredCheck> Term) {
|
|
for (const PredCheck &PC: Term) {
|
|
if (PC.Predicate == PredDef)
|
|
return false;
|
|
|
|
const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(PC.RWIdx, PC.IsRead);
|
|
assert(SchedRW.HasVariants && "PredCheck must refer to a SchedVariant");
|
|
RecVec Variants = SchedRW.TheDef->getValueAsListOfDefs("Variants");
|
|
if (any_of(Variants, [PredDef](const Record *R) {
|
|
return R->getValueAsDef("Predicate") == PredDef;
|
|
})) {
|
|
// To check if PredDef is mutually exclusive with PC we also need to
|
|
// check that PC.Predicate is exclusive with all predicates from variant
|
|
// we're expanding. Consider following RW sequence with two variants
|
|
// (1 & 2), where A, B and C are predicates from corresponding SchedVars:
|
|
//
|
|
// 1:A/B - 2:C/B
|
|
//
|
|
// Here C is not mutually exclusive with variant (1), because A doesn't
|
|
// exist in variant (2). This means we have possible transitions from A
|
|
// to C and from A to B, and fully expanded sequence would look like:
|
|
//
|
|
// if (A & C) return ...;
|
|
// if (A & B) return ...;
|
|
// if (B) return ...;
|
|
//
|
|
// Now let's consider another sequence:
|
|
//
|
|
// 1:A/B - 2:A/B
|
|
//
|
|
// Here A in variant (2) is mutually exclusive with variant (1), because
|
|
// A also exists in (2). This means A->B transition is impossible and
|
|
// expanded sequence would look like:
|
|
//
|
|
// if (A) return ...;
|
|
// if (B) return ...;
|
|
if (!count(Preds, PC.Predicate))
|
|
continue;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static std::vector<Record *> getAllPredicates(ArrayRef<TransVariant> Variants,
|
|
unsigned ProcId) {
|
|
std::vector<Record *> Preds;
|
|
for (auto &Variant : Variants) {
|
|
if (!Variant.VarOrSeqDef->isSubClassOf("SchedVar"))
|
|
continue;
|
|
Preds.push_back(Variant.VarOrSeqDef->getValueAsDef("Predicate"));
|
|
}
|
|
return Preds;
|
|
}
|
|
|
|
// Populate IntersectingVariants with any variants or aliased sequences of the
|
|
// given SchedRW whose processor indices and predicates are not mutually
|
|
// exclusive with the given transition.
|
|
void PredTransitions::getIntersectingVariants(
|
|
const CodeGenSchedRW &SchedRW, unsigned TransIdx,
|
|
std::vector<TransVariant> &IntersectingVariants) {
|
|
|
|
bool GenericRW = false;
|
|
|
|
std::vector<TransVariant> Variants;
|
|
if (SchedRW.HasVariants) {
|
|
unsigned VarProcIdx = 0;
|
|
if (SchedRW.TheDef->getValueInit("SchedModel")->isComplete()) {
|
|
Record *ModelDef = SchedRW.TheDef->getValueAsDef("SchedModel");
|
|
VarProcIdx = SchedModels.getProcModel(ModelDef).Index;
|
|
}
|
|
if (VarProcIdx == 0 || VarProcIdx == TransVec[TransIdx].ProcIndex) {
|
|
// Push each variant. Assign TransVecIdx later.
|
|
const RecVec VarDefs = SchedRW.TheDef->getValueAsListOfDefs("Variants");
|
|
for (Record *VarDef : VarDefs)
|
|
Variants.emplace_back(VarDef, SchedRW.Index, VarProcIdx, 0);
|
|
if (VarProcIdx == 0)
|
|
GenericRW = true;
|
|
}
|
|
}
|
|
for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end();
|
|
AI != AE; ++AI) {
|
|
// If either the SchedAlias itself or the SchedReadWrite that it aliases
|
|
// to is defined within a processor model, constrain all variants to
|
|
// that processor.
|
|
unsigned AliasProcIdx = 0;
|
|
if ((*AI)->getValueInit("SchedModel")->isComplete()) {
|
|
Record *ModelDef = (*AI)->getValueAsDef("SchedModel");
|
|
AliasProcIdx = SchedModels.getProcModel(ModelDef).Index;
|
|
}
|
|
if (AliasProcIdx && AliasProcIdx != TransVec[TransIdx].ProcIndex)
|
|
continue;
|
|
if (!Variants.empty()) {
|
|
const CodeGenProcModel &PM =
|
|
*(SchedModels.procModelBegin() + AliasProcIdx);
|
|
PrintFatalError((*AI)->getLoc(),
|
|
"Multiple variants defined for processor " +
|
|
PM.ModelName +
|
|
" Ensure only one SchedAlias exists per RW.");
|
|
}
|
|
|
|
const CodeGenSchedRW &AliasRW =
|
|
SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW"));
|
|
|
|
if (AliasRW.HasVariants) {
|
|
const RecVec VarDefs = AliasRW.TheDef->getValueAsListOfDefs("Variants");
|
|
for (Record *VD : VarDefs)
|
|
Variants.emplace_back(VD, AliasRW.Index, AliasProcIdx, 0);
|
|
}
|
|
if (AliasRW.IsSequence)
|
|
Variants.emplace_back(AliasRW.TheDef, SchedRW.Index, AliasProcIdx, 0);
|
|
if (AliasProcIdx == 0)
|
|
GenericRW = true;
|
|
}
|
|
std::vector<Record *> AllPreds =
|
|
getAllPredicates(Variants, TransVec[TransIdx].ProcIndex);
|
|
for (TransVariant &Variant : Variants) {
|
|
// Don't expand variants if the processor models don't intersect.
|
|
// A zero processor index means any processor.
|
|
if (Variant.VarOrSeqDef->isSubClassOf("SchedVar")) {
|
|
Record *PredDef = Variant.VarOrSeqDef->getValueAsDef("Predicate");
|
|
if (mutuallyExclusive(PredDef, AllPreds, TransVec[TransIdx].PredTerm))
|
|
continue;
|
|
}
|
|
|
|
if (IntersectingVariants.empty()) {
|
|
// The first variant builds on the existing transition.
|
|
Variant.TransVecIdx = TransIdx;
|
|
IntersectingVariants.push_back(Variant);
|
|
}
|
|
else {
|
|
// Push another copy of the current transition for more variants.
|
|
Variant.TransVecIdx = TransVec.size();
|
|
IntersectingVariants.push_back(Variant);
|
|
TransVec.push_back(TransVec[TransIdx]);
|
|
}
|
|
}
|
|
if (GenericRW && IntersectingVariants.empty()) {
|
|
PrintFatalError(SchedRW.TheDef->getLoc(), "No variant of this type has "
|
|
"a matching predicate on any processor");
|
|
}
|
|
}
|
|
|
|
// Push the Reads/Writes selected by this variant onto the PredTransition
|
|
// specified by VInfo.
|
|
void PredTransitions::
|
|
pushVariant(const TransVariant &VInfo, bool IsRead) {
|
|
PredTransition &Trans = TransVec[VInfo.TransVecIdx];
|
|
|
|
// If this operand transition is reached through a processor-specific alias,
|
|
// then the whole transition is specific to this processor.
|
|
IdxVec SelectedRWs;
|
|
if (VInfo.VarOrSeqDef->isSubClassOf("SchedVar")) {
|
|
Record *PredDef = VInfo.VarOrSeqDef->getValueAsDef("Predicate");
|
|
Trans.PredTerm.emplace_back(IsRead, VInfo.RWIdx,PredDef);
|
|
RecVec SelectedDefs = VInfo.VarOrSeqDef->getValueAsListOfDefs("Selected");
|
|
SchedModels.findRWs(SelectedDefs, SelectedRWs, IsRead);
|
|
}
|
|
else {
|
|
assert(VInfo.VarOrSeqDef->isSubClassOf("WriteSequence") &&
|
|
"variant must be a SchedVariant or aliased WriteSequence");
|
|
SelectedRWs.push_back(SchedModels.getSchedRWIdx(VInfo.VarOrSeqDef, IsRead));
|
|
}
|
|
|
|
const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(VInfo.RWIdx, IsRead);
|
|
|
|
SmallVectorImpl<SmallVector<unsigned,4>> &RWSequences = IsRead
|
|
? Trans.ReadSequences : Trans.WriteSequences;
|
|
if (SchedRW.IsVariadic) {
|
|
unsigned OperIdx = RWSequences.size()-1;
|
|
// Make N-1 copies of this transition's last sequence.
|
|
RWSequences.reserve(RWSequences.size() + SelectedRWs.size() - 1);
|
|
RWSequences.insert(RWSequences.end(), SelectedRWs.size() - 1,
|
|
RWSequences[OperIdx]);
|
|
// Push each of the N elements of the SelectedRWs onto a copy of the last
|
|
// sequence (split the current operand into N operands).
|
|
// Note that write sequences should be expanded within this loop--the entire
|
|
// sequence belongs to a single operand.
|
|
for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end();
|
|
RWI != RWE; ++RWI, ++OperIdx) {
|
|
IdxVec ExpandedRWs;
|
|
if (IsRead)
|
|
ExpandedRWs.push_back(*RWI);
|
|
else
|
|
SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead);
|
|
llvm::append_range(RWSequences[OperIdx], ExpandedRWs);
|
|
}
|
|
assert(OperIdx == RWSequences.size() && "missed a sequence");
|
|
}
|
|
else {
|
|
// Push this transition's expanded sequence onto this transition's last
|
|
// sequence (add to the current operand's sequence).
|
|
SmallVectorImpl<unsigned> &Seq = RWSequences.back();
|
|
IdxVec ExpandedRWs;
|
|
for (unsigned int SelectedRW : SelectedRWs) {
|
|
if (IsRead)
|
|
ExpandedRWs.push_back(SelectedRW);
|
|
else
|
|
SchedModels.expandRWSequence(SelectedRW, ExpandedRWs, IsRead);
|
|
}
|
|
llvm::append_range(Seq, ExpandedRWs);
|
|
}
|
|
}
|
|
|
|
// RWSeq is a sequence of all Reads or all Writes for the next read or write
|
|
// operand. StartIdx is an index into TransVec where partial results
|
|
// starts. RWSeq must be applied to all transitions between StartIdx and the end
|
|
// of TransVec.
|
|
bool PredTransitions::substituteVariantOperand(
|
|
const SmallVectorImpl<unsigned> &RWSeq, bool IsRead, unsigned StartIdx) {
|
|
bool Subst = false;
|
|
// Visit each original RW within the current sequence.
|
|
for (unsigned int RWI : RWSeq) {
|
|
const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(RWI, IsRead);
|
|
// Push this RW on all partial PredTransitions or distribute variants.
|
|
// New PredTransitions may be pushed within this loop which should not be
|
|
// revisited (TransEnd must be loop invariant).
|
|
for (unsigned TransIdx = StartIdx, TransEnd = TransVec.size();
|
|
TransIdx != TransEnd; ++TransIdx) {
|
|
// Distribute this partial PredTransition across intersecting variants.
|
|
// This will push a copies of TransVec[TransIdx] on the back of TransVec.
|
|
std::vector<TransVariant> IntersectingVariants;
|
|
getIntersectingVariants(SchedRW, TransIdx, IntersectingVariants);
|
|
// Now expand each variant on top of its copy of the transition.
|
|
for (const TransVariant &IV : IntersectingVariants)
|
|
pushVariant(IV, IsRead);
|
|
if (IntersectingVariants.empty()) {
|
|
if (IsRead)
|
|
TransVec[TransIdx].ReadSequences.back().push_back(RWI);
|
|
else
|
|
TransVec[TransIdx].WriteSequences.back().push_back(RWI);
|
|
continue;
|
|
} else {
|
|
Subst = true;
|
|
}
|
|
}
|
|
}
|
|
return Subst;
|
|
}
|
|
|
|
// For each variant of a Read/Write in Trans, substitute the sequence of
|
|
// Read/Writes guarded by the variant. This is exponential in the number of
|
|
// variant Read/Writes, but in practice detection of mutually exclusive
|
|
// predicates should result in linear growth in the total number variants.
|
|
//
|
|
// This is one step in a breadth-first search of nested variants.
|
|
bool PredTransitions::substituteVariants(const PredTransition &Trans) {
|
|
// Build up a set of partial results starting at the back of
|
|
// PredTransitions. Remember the first new transition.
|
|
unsigned StartIdx = TransVec.size();
|
|
bool Subst = false;
|
|
assert(Trans.ProcIndex != 0);
|
|
TransVec.emplace_back(Trans.PredTerm, Trans.ProcIndex);
|
|
|
|
// Visit each original write sequence.
|
|
for (const auto &WriteSequence : Trans.WriteSequences) {
|
|
// Push a new (empty) write sequence onto all partial Transitions.
|
|
for (std::vector<PredTransition>::iterator I =
|
|
TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) {
|
|
I->WriteSequences.emplace_back();
|
|
}
|
|
Subst |=
|
|
substituteVariantOperand(WriteSequence, /*IsRead=*/false, StartIdx);
|
|
}
|
|
// Visit each original read sequence.
|
|
for (const auto &ReadSequence : Trans.ReadSequences) {
|
|
// Push a new (empty) read sequence onto all partial Transitions.
|
|
for (std::vector<PredTransition>::iterator I =
|
|
TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) {
|
|
I->ReadSequences.emplace_back();
|
|
}
|
|
Subst |= substituteVariantOperand(ReadSequence, /*IsRead=*/true, StartIdx);
|
|
}
|
|
return Subst;
|
|
}
|
|
|
|
static void addSequences(CodeGenSchedModels &SchedModels,
|
|
const SmallVectorImpl<SmallVector<unsigned, 4>> &Seqs,
|
|
IdxVec &Result, bool IsRead) {
|
|
for (const auto &S : Seqs)
|
|
if (!S.empty())
|
|
Result.push_back(SchedModels.findOrInsertRW(S, IsRead));
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
static void dumpRecVec(const RecVec &RV) {
|
|
for (const Record *R : RV)
|
|
dbgs() << R->getName() << ", ";
|
|
}
|
|
#endif
|
|
|
|
static void dumpTransition(const CodeGenSchedModels &SchedModels,
|
|
const CodeGenSchedClass &FromSC,
|
|
const CodeGenSchedTransition &SCTrans,
|
|
const RecVec &Preds) {
|
|
LLVM_DEBUG(dbgs() << "Adding transition from " << FromSC.Name << "("
|
|
<< FromSC.Index << ") to "
|
|
<< SchedModels.getSchedClass(SCTrans.ToClassIdx).Name << "("
|
|
<< SCTrans.ToClassIdx << ") on pred term: (";
|
|
dumpRecVec(Preds);
|
|
dbgs() << ") on processor (" << SCTrans.ProcIndex << ")\n");
|
|
}
|
|
// Create a new SchedClass for each variant found by inferFromRW. Pass
|
|
static void inferFromTransitions(ArrayRef<PredTransition> LastTransitions,
|
|
unsigned FromClassIdx,
|
|
CodeGenSchedModels &SchedModels) {
|
|
// For each PredTransition, create a new CodeGenSchedTransition, which usually
|
|
// requires creating a new SchedClass.
|
|
for (const auto &LastTransition : LastTransitions) {
|
|
// Variant expansion (substituteVariants) may create unconditional
|
|
// transitions. We don't need to build sched classes for them.
|
|
if (LastTransition.PredTerm.empty())
|
|
continue;
|
|
IdxVec OperWritesVariant, OperReadsVariant;
|
|
addSequences(SchedModels, LastTransition.WriteSequences, OperWritesVariant,
|
|
false);
|
|
addSequences(SchedModels, LastTransition.ReadSequences, OperReadsVariant,
|
|
true);
|
|
CodeGenSchedTransition SCTrans;
|
|
|
|
// Transition should not contain processor indices already assigned to
|
|
// InstRWs in this scheduling class.
|
|
const CodeGenSchedClass &FromSC = SchedModels.getSchedClass(FromClassIdx);
|
|
if (FromSC.InstRWProcIndices.count(LastTransition.ProcIndex))
|
|
continue;
|
|
SCTrans.ProcIndex = LastTransition.ProcIndex;
|
|
SCTrans.ToClassIdx =
|
|
SchedModels.addSchedClass(/*ItinClassDef=*/nullptr, OperWritesVariant,
|
|
OperReadsVariant, LastTransition.ProcIndex);
|
|
|
|
// The final PredTerm is unique set of predicates guarding the transition.
|
|
RecVec Preds;
|
|
transform(LastTransition.PredTerm, std::back_inserter(Preds),
|
|
[](const PredCheck &P) { return P.Predicate; });
|
|
Preds.erase(std::unique(Preds.begin(), Preds.end()), Preds.end());
|
|
dumpTransition(SchedModels, FromSC, SCTrans, Preds);
|
|
SCTrans.PredTerm = std::move(Preds);
|
|
SchedModels.getSchedClass(FromClassIdx)
|
|
.Transitions.push_back(std::move(SCTrans));
|
|
}
|
|
}
|
|
|
|
std::vector<unsigned> CodeGenSchedModels::getAllProcIndices() const {
|
|
std::vector<unsigned> ProcIdVec;
|
|
for (const auto &PM : ProcModelMap)
|
|
if (PM.second != 0)
|
|
ProcIdVec.push_back(PM.second);
|
|
// The order of the keys (Record pointers) of ProcModelMap are not stable.
|
|
// Sort to stabalize the values.
|
|
llvm::sort(ProcIdVec);
|
|
return ProcIdVec;
|
|
}
|
|
|
|
static std::vector<PredTransition>
|
|
makePerProcessorTransitions(const PredTransition &Trans,
|
|
ArrayRef<unsigned> ProcIndices) {
|
|
std::vector<PredTransition> PerCpuTransVec;
|
|
for (unsigned ProcId : ProcIndices) {
|
|
assert(ProcId != 0);
|
|
PerCpuTransVec.push_back(Trans);
|
|
PerCpuTransVec.back().ProcIndex = ProcId;
|
|
}
|
|
return PerCpuTransVec;
|
|
}
|
|
|
|
// Create new SchedClasses for the given ReadWrite list. If any of the
|
|
// ReadWrites refers to a SchedVariant, create a new SchedClass for each variant
|
|
// of the ReadWrite list, following Aliases if necessary.
|
|
void CodeGenSchedModels::inferFromRW(ArrayRef<unsigned> OperWrites,
|
|
ArrayRef<unsigned> OperReads,
|
|
unsigned FromClassIdx,
|
|
ArrayRef<unsigned> ProcIndices) {
|
|
LLVM_DEBUG(dbgs() << "INFER RW proc("; dumpIdxVec(ProcIndices);
|
|
dbgs() << ") ");
|
|
// Create a seed transition with an empty PredTerm and the expanded sequences
|
|
// of SchedWrites for the current SchedClass.
|
|
std::vector<PredTransition> LastTransitions;
|
|
LastTransitions.emplace_back();
|
|
|
|
for (unsigned WriteIdx : OperWrites) {
|
|
IdxVec WriteSeq;
|
|
expandRWSequence(WriteIdx, WriteSeq, /*IsRead=*/false);
|
|
LastTransitions[0].WriteSequences.emplace_back();
|
|
SmallVectorImpl<unsigned> &Seq = LastTransitions[0].WriteSequences.back();
|
|
Seq.append(WriteSeq.begin(), WriteSeq.end());
|
|
LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") ");
|
|
}
|
|
LLVM_DEBUG(dbgs() << " Reads: ");
|
|
for (unsigned ReadIdx : OperReads) {
|
|
IdxVec ReadSeq;
|
|
expandRWSequence(ReadIdx, ReadSeq, /*IsRead=*/true);
|
|
LastTransitions[0].ReadSequences.emplace_back();
|
|
SmallVectorImpl<unsigned> &Seq = LastTransitions[0].ReadSequences.back();
|
|
Seq.append(ReadSeq.begin(), ReadSeq.end());
|
|
LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") ");
|
|
}
|
|
LLVM_DEBUG(dbgs() << '\n');
|
|
|
|
LastTransitions = makePerProcessorTransitions(
|
|
LastTransitions[0], llvm::is_contained(ProcIndices, 0)
|
|
? ArrayRef<unsigned>(getAllProcIndices())
|
|
: ProcIndices);
|
|
// Collect all PredTransitions for individual operands.
|
|
// Iterate until no variant writes remain.
|
|
bool SubstitutedAny;
|
|
do {
|
|
SubstitutedAny = false;
|
|
PredTransitions Transitions(*this);
|
|
for (const PredTransition &Trans : LastTransitions)
|
|
SubstitutedAny |= Transitions.substituteVariants(Trans);
|
|
LLVM_DEBUG(Transitions.dump());
|
|
LastTransitions.swap(Transitions.TransVec);
|
|
} while (SubstitutedAny);
|
|
|
|
// WARNING: We are about to mutate the SchedClasses vector. Do not refer to
|
|
// OperWrites, OperReads, or ProcIndices after calling inferFromTransitions.
|
|
inferFromTransitions(LastTransitions, FromClassIdx, *this);
|
|
}
|
|
|
|
// Check if any processor resource group contains all resource records in
|
|
// SubUnits.
|
|
bool CodeGenSchedModels::hasSuperGroup(RecVec &SubUnits, CodeGenProcModel &PM) {
|
|
for (Record *ProcResourceDef : PM.ProcResourceDefs) {
|
|
if (!ProcResourceDef->isSubClassOf("ProcResGroup"))
|
|
continue;
|
|
RecVec SuperUnits = ProcResourceDef->getValueAsListOfDefs("Resources");
|
|
RecIter RI = SubUnits.begin(), RE = SubUnits.end();
|
|
for ( ; RI != RE; ++RI) {
|
|
if (!is_contained(SuperUnits, *RI)) {
|
|
break;
|
|
}
|
|
}
|
|
if (RI == RE)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Verify that overlapping groups have a common supergroup.
|
|
void CodeGenSchedModels::verifyProcResourceGroups(CodeGenProcModel &PM) {
|
|
for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) {
|
|
if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup"))
|
|
continue;
|
|
RecVec CheckUnits =
|
|
PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources");
|
|
for (unsigned j = i+1; j < e; ++j) {
|
|
if (!PM.ProcResourceDefs[j]->isSubClassOf("ProcResGroup"))
|
|
continue;
|
|
RecVec OtherUnits =
|
|
PM.ProcResourceDefs[j]->getValueAsListOfDefs("Resources");
|
|
if (std::find_first_of(CheckUnits.begin(), CheckUnits.end(),
|
|
OtherUnits.begin(), OtherUnits.end())
|
|
!= CheckUnits.end()) {
|
|
// CheckUnits and OtherUnits overlap
|
|
llvm::append_range(OtherUnits, CheckUnits);
|
|
if (!hasSuperGroup(OtherUnits, PM)) {
|
|
PrintFatalError((PM.ProcResourceDefs[i])->getLoc(),
|
|
"proc resource group overlaps with "
|
|
+ PM.ProcResourceDefs[j]->getName()
|
|
+ " but no supergroup contains both.");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Collect all the RegisterFile definitions available in this target.
|
|
void CodeGenSchedModels::collectRegisterFiles() {
|
|
RecVec RegisterFileDefs = Records.getAllDerivedDefinitions("RegisterFile");
|
|
|
|
// RegisterFiles is the vector of CodeGenRegisterFile.
|
|
for (Record *RF : RegisterFileDefs) {
|
|
// For each register file definition, construct a CodeGenRegisterFile object
|
|
// and add it to the appropriate scheduling model.
|
|
CodeGenProcModel &PM = getProcModel(RF->getValueAsDef("SchedModel"));
|
|
PM.RegisterFiles.emplace_back(CodeGenRegisterFile(RF->getName(),RF));
|
|
CodeGenRegisterFile &CGRF = PM.RegisterFiles.back();
|
|
CGRF.MaxMovesEliminatedPerCycle =
|
|
RF->getValueAsInt("MaxMovesEliminatedPerCycle");
|
|
CGRF.AllowZeroMoveEliminationOnly =
|
|
RF->getValueAsBit("AllowZeroMoveEliminationOnly");
|
|
|
|
// Now set the number of physical registers as well as the cost of registers
|
|
// in each register class.
|
|
CGRF.NumPhysRegs = RF->getValueAsInt("NumPhysRegs");
|
|
if (!CGRF.NumPhysRegs) {
|
|
PrintFatalError(RF->getLoc(),
|
|
"Invalid RegisterFile with zero physical registers");
|
|
}
|
|
|
|
RecVec RegisterClasses = RF->getValueAsListOfDefs("RegClasses");
|
|
std::vector<int64_t> RegisterCosts = RF->getValueAsListOfInts("RegCosts");
|
|
ListInit *MoveElimInfo = RF->getValueAsListInit("AllowMoveElimination");
|
|
for (unsigned I = 0, E = RegisterClasses.size(); I < E; ++I) {
|
|
int Cost = RegisterCosts.size() > I ? RegisterCosts[I] : 1;
|
|
|
|
bool AllowMoveElim = false;
|
|
if (MoveElimInfo->size() > I) {
|
|
BitInit *Val = cast<BitInit>(MoveElimInfo->getElement(I));
|
|
AllowMoveElim = Val->getValue();
|
|
}
|
|
|
|
CGRF.Costs.emplace_back(RegisterClasses[I], Cost, AllowMoveElim);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Collect and sort WriteRes, ReadAdvance, and ProcResources.
|
|
void CodeGenSchedModels::collectProcResources() {
|
|
ProcResourceDefs = Records.getAllDerivedDefinitions("ProcResourceUnits");
|
|
ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup");
|
|
|
|
// Add any subtarget-specific SchedReadWrites that are directly associated
|
|
// with processor resources. Refer to the parent SchedClass's ProcIndices to
|
|
// determine which processors they apply to.
|
|
for (const CodeGenSchedClass &SC :
|
|
make_range(schedClassBegin(), schedClassEnd())) {
|
|
if (SC.ItinClassDef) {
|
|
collectItinProcResources(SC.ItinClassDef);
|
|
continue;
|
|
}
|
|
|
|
// This class may have a default ReadWrite list which can be overriden by
|
|
// InstRW definitions.
|
|
for (Record *RW : SC.InstRWs) {
|
|
Record *RWModelDef = RW->getValueAsDef("SchedModel");
|
|
unsigned PIdx = getProcModel(RWModelDef).Index;
|
|
IdxVec Writes, Reads;
|
|
findRWs(RW->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
|
|
collectRWResources(Writes, Reads, PIdx);
|
|
}
|
|
|
|
collectRWResources(SC.Writes, SC.Reads, SC.ProcIndices);
|
|
}
|
|
// Add resources separately defined by each subtarget.
|
|
RecVec WRDefs = Records.getAllDerivedDefinitions("WriteRes");
|
|
for (Record *WR : WRDefs) {
|
|
Record *ModelDef = WR->getValueAsDef("SchedModel");
|
|
addWriteRes(WR, getProcModel(ModelDef).Index);
|
|
}
|
|
RecVec SWRDefs = Records.getAllDerivedDefinitions("SchedWriteRes");
|
|
for (Record *SWR : SWRDefs) {
|
|
Record *ModelDef = SWR->getValueAsDef("SchedModel");
|
|
addWriteRes(SWR, getProcModel(ModelDef).Index);
|
|
}
|
|
RecVec RADefs = Records.getAllDerivedDefinitions("ReadAdvance");
|
|
for (Record *RA : RADefs) {
|
|
Record *ModelDef = RA->getValueAsDef("SchedModel");
|
|
addReadAdvance(RA, getProcModel(ModelDef).Index);
|
|
}
|
|
RecVec SRADefs = Records.getAllDerivedDefinitions("SchedReadAdvance");
|
|
for (Record *SRA : SRADefs) {
|
|
if (SRA->getValueInit("SchedModel")->isComplete()) {
|
|
Record *ModelDef = SRA->getValueAsDef("SchedModel");
|
|
addReadAdvance(SRA, getProcModel(ModelDef).Index);
|
|
}
|
|
}
|
|
// Add ProcResGroups that are defined within this processor model, which may
|
|
// not be directly referenced but may directly specify a buffer size.
|
|
RecVec ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup");
|
|
for (Record *PRG : ProcResGroups) {
|
|
if (!PRG->getValueInit("SchedModel")->isComplete())
|
|
continue;
|
|
CodeGenProcModel &PM = getProcModel(PRG->getValueAsDef("SchedModel"));
|
|
if (!is_contained(PM.ProcResourceDefs, PRG))
|
|
PM.ProcResourceDefs.push_back(PRG);
|
|
}
|
|
// Add ProcResourceUnits unconditionally.
|
|
for (Record *PRU : Records.getAllDerivedDefinitions("ProcResourceUnits")) {
|
|
if (!PRU->getValueInit("SchedModel")->isComplete())
|
|
continue;
|
|
CodeGenProcModel &PM = getProcModel(PRU->getValueAsDef("SchedModel"));
|
|
if (!is_contained(PM.ProcResourceDefs, PRU))
|
|
PM.ProcResourceDefs.push_back(PRU);
|
|
}
|
|
// Finalize each ProcModel by sorting the record arrays.
|
|
for (CodeGenProcModel &PM : ProcModels) {
|
|
llvm::sort(PM.WriteResDefs, LessRecord());
|
|
llvm::sort(PM.ReadAdvanceDefs, LessRecord());
|
|
llvm::sort(PM.ProcResourceDefs, LessRecord());
|
|
LLVM_DEBUG(
|
|
PM.dump(); dbgs() << "WriteResDefs: "; for (auto WriteResDef
|
|
: PM.WriteResDefs) {
|
|
if (WriteResDef->isSubClassOf("WriteRes"))
|
|
dbgs() << WriteResDef->getValueAsDef("WriteType")->getName() << " ";
|
|
else
|
|
dbgs() << WriteResDef->getName() << " ";
|
|
} dbgs() << "\nReadAdvanceDefs: ";
|
|
for (Record *ReadAdvanceDef
|
|
: PM.ReadAdvanceDefs) {
|
|
if (ReadAdvanceDef->isSubClassOf("ReadAdvance"))
|
|
dbgs() << ReadAdvanceDef->getValueAsDef("ReadType")->getName()
|
|
<< " ";
|
|
else
|
|
dbgs() << ReadAdvanceDef->getName() << " ";
|
|
} dbgs()
|
|
<< "\nProcResourceDefs: ";
|
|
for (Record *ProcResourceDef
|
|
: PM.ProcResourceDefs) {
|
|
dbgs() << ProcResourceDef->getName() << " ";
|
|
} dbgs()
|
|
<< '\n');
|
|
verifyProcResourceGroups(PM);
|
|
}
|
|
|
|
ProcResourceDefs.clear();
|
|
ProcResGroups.clear();
|
|
}
|
|
|
|
void CodeGenSchedModels::checkCompleteness() {
|
|
bool Complete = true;
|
|
bool HadCompleteModel = false;
|
|
for (const CodeGenProcModel &ProcModel : procModels()) {
|
|
const bool HasItineraries = ProcModel.hasItineraries();
|
|
if (!ProcModel.ModelDef->getValueAsBit("CompleteModel"))
|
|
continue;
|
|
for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
|
|
if (Inst->hasNoSchedulingInfo)
|
|
continue;
|
|
if (ProcModel.isUnsupported(*Inst))
|
|
continue;
|
|
unsigned SCIdx = getSchedClassIdx(*Inst);
|
|
if (!SCIdx) {
|
|
if (Inst->TheDef->isValueUnset("SchedRW") && !HadCompleteModel) {
|
|
PrintError(Inst->TheDef->getLoc(),
|
|
"No schedule information for instruction '" +
|
|
Inst->TheDef->getName() + "' in SchedMachineModel '" +
|
|
ProcModel.ModelDef->getName() + "'");
|
|
Complete = false;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
const CodeGenSchedClass &SC = getSchedClass(SCIdx);
|
|
if (!SC.Writes.empty())
|
|
continue;
|
|
if (HasItineraries && SC.ItinClassDef != nullptr &&
|
|
SC.ItinClassDef->getName() != "NoItinerary")
|
|
continue;
|
|
|
|
const RecVec &InstRWs = SC.InstRWs;
|
|
auto I = find_if(InstRWs, [&ProcModel](const Record *R) {
|
|
return R->getValueAsDef("SchedModel") == ProcModel.ModelDef;
|
|
});
|
|
if (I == InstRWs.end()) {
|
|
PrintError(Inst->TheDef->getLoc(), "'" + ProcModel.ModelName +
|
|
"' lacks information for '" +
|
|
Inst->TheDef->getName() + "'");
|
|
Complete = false;
|
|
}
|
|
}
|
|
HadCompleteModel = true;
|
|
}
|
|
if (!Complete) {
|
|
errs() << "\n\nIncomplete schedule models found.\n"
|
|
<< "- Consider setting 'CompleteModel = 0' while developing new models.\n"
|
|
<< "- Pseudo instructions can be marked with 'hasNoSchedulingInfo = 1'.\n"
|
|
<< "- Instructions should usually have Sched<[...]> as a superclass, "
|
|
"you may temporarily use an empty list.\n"
|
|
<< "- Instructions related to unsupported features can be excluded with "
|
|
"list<Predicate> UnsupportedFeatures = [HasA,..,HasY]; in the "
|
|
"processor model.\n\n";
|
|
PrintFatalError("Incomplete schedule model");
|
|
}
|
|
}
|
|
|
|
// Collect itinerary class resources for each processor.
|
|
void CodeGenSchedModels::collectItinProcResources(Record *ItinClassDef) {
|
|
for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) {
|
|
const CodeGenProcModel &PM = ProcModels[PIdx];
|
|
// For all ItinRW entries.
|
|
bool HasMatch = false;
|
|
for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end();
|
|
II != IE; ++II) {
|
|
RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses");
|
|
if (!llvm::is_contained(Matched, ItinClassDef))
|
|
continue;
|
|
if (HasMatch)
|
|
PrintFatalError((*II)->getLoc(), "Duplicate itinerary class "
|
|
+ ItinClassDef->getName()
|
|
+ " in ItinResources for " + PM.ModelName);
|
|
HasMatch = true;
|
|
IdxVec Writes, Reads;
|
|
findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
|
|
collectRWResources(Writes, Reads, PIdx);
|
|
}
|
|
}
|
|
}
|
|
|
|
void CodeGenSchedModels::collectRWResources(unsigned RWIdx, bool IsRead,
|
|
ArrayRef<unsigned> ProcIndices) {
|
|
const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead);
|
|
if (SchedRW.TheDef) {
|
|
if (!IsRead && SchedRW.TheDef->isSubClassOf("SchedWriteRes")) {
|
|
for (unsigned Idx : ProcIndices)
|
|
addWriteRes(SchedRW.TheDef, Idx);
|
|
}
|
|
else if (IsRead && SchedRW.TheDef->isSubClassOf("SchedReadAdvance")) {
|
|
for (unsigned Idx : ProcIndices)
|
|
addReadAdvance(SchedRW.TheDef, Idx);
|
|
}
|
|
}
|
|
for (auto *Alias : SchedRW.Aliases) {
|
|
IdxVec AliasProcIndices;
|
|
if (Alias->getValueInit("SchedModel")->isComplete()) {
|
|
AliasProcIndices.push_back(
|
|
getProcModel(Alias->getValueAsDef("SchedModel")).Index);
|
|
} else
|
|
AliasProcIndices = ProcIndices;
|
|
const CodeGenSchedRW &AliasRW = getSchedRW(Alias->getValueAsDef("AliasRW"));
|
|
assert(AliasRW.IsRead == IsRead && "cannot alias reads to writes");
|
|
|
|
IdxVec ExpandedRWs;
|
|
expandRWSequence(AliasRW.Index, ExpandedRWs, IsRead);
|
|
for (unsigned int ExpandedRW : ExpandedRWs) {
|
|
collectRWResources(ExpandedRW, IsRead, AliasProcIndices);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Collect resources for a set of read/write types and processor indices.
|
|
void CodeGenSchedModels::collectRWResources(ArrayRef<unsigned> Writes,
|
|
ArrayRef<unsigned> Reads,
|
|
ArrayRef<unsigned> ProcIndices) {
|
|
for (unsigned Idx : Writes)
|
|
collectRWResources(Idx, /*IsRead=*/false, ProcIndices);
|
|
|
|
for (unsigned Idx : Reads)
|
|
collectRWResources(Idx, /*IsRead=*/true, ProcIndices);
|
|
}
|
|
|
|
// Find the processor's resource units for this kind of resource.
|
|
Record *CodeGenSchedModels::findProcResUnits(Record *ProcResKind,
|
|
const CodeGenProcModel &PM,
|
|
ArrayRef<SMLoc> Loc) const {
|
|
if (ProcResKind->isSubClassOf("ProcResourceUnits"))
|
|
return ProcResKind;
|
|
|
|
Record *ProcUnitDef = nullptr;
|
|
assert(!ProcResourceDefs.empty());
|
|
assert(!ProcResGroups.empty());
|
|
|
|
for (Record *ProcResDef : ProcResourceDefs) {
|
|
if (ProcResDef->getValueAsDef("Kind") == ProcResKind
|
|
&& ProcResDef->getValueAsDef("SchedModel") == PM.ModelDef) {
|
|
if (ProcUnitDef) {
|
|
PrintFatalError(Loc,
|
|
"Multiple ProcessorResourceUnits associated with "
|
|
+ ProcResKind->getName());
|
|
}
|
|
ProcUnitDef = ProcResDef;
|
|
}
|
|
}
|
|
for (Record *ProcResGroup : ProcResGroups) {
|
|
if (ProcResGroup == ProcResKind
|
|
&& ProcResGroup->getValueAsDef("SchedModel") == PM.ModelDef) {
|
|
if (ProcUnitDef) {
|
|
PrintFatalError(Loc,
|
|
"Multiple ProcessorResourceUnits associated with "
|
|
+ ProcResKind->getName());
|
|
}
|
|
ProcUnitDef = ProcResGroup;
|
|
}
|
|
}
|
|
if (!ProcUnitDef) {
|
|
PrintFatalError(Loc,
|
|
"No ProcessorResources associated with "
|
|
+ ProcResKind->getName());
|
|
}
|
|
return ProcUnitDef;
|
|
}
|
|
|
|
// Iteratively add a resource and its super resources.
|
|
void CodeGenSchedModels::addProcResource(Record *ProcResKind,
|
|
CodeGenProcModel &PM,
|
|
ArrayRef<SMLoc> Loc) {
|
|
while (true) {
|
|
Record *ProcResUnits = findProcResUnits(ProcResKind, PM, Loc);
|
|
|
|
// See if this ProcResource is already associated with this processor.
|
|
if (is_contained(PM.ProcResourceDefs, ProcResUnits))
|
|
return;
|
|
|
|
PM.ProcResourceDefs.push_back(ProcResUnits);
|
|
if (ProcResUnits->isSubClassOf("ProcResGroup"))
|
|
return;
|
|
|
|
if (!ProcResUnits->getValueInit("Super")->isComplete())
|
|
return;
|
|
|
|
ProcResKind = ProcResUnits->getValueAsDef("Super");
|
|
}
|
|
}
|
|
|
|
// Add resources for a SchedWrite to this processor if they don't exist.
|
|
void CodeGenSchedModels::addWriteRes(Record *ProcWriteResDef, unsigned PIdx) {
|
|
assert(PIdx && "don't add resources to an invalid Processor model");
|
|
|
|
RecVec &WRDefs = ProcModels[PIdx].WriteResDefs;
|
|
if (is_contained(WRDefs, ProcWriteResDef))
|
|
return;
|
|
WRDefs.push_back(ProcWriteResDef);
|
|
|
|
// Visit ProcResourceKinds referenced by the newly discovered WriteRes.
|
|
RecVec ProcResDefs = ProcWriteResDef->getValueAsListOfDefs("ProcResources");
|
|
for (auto *ProcResDef : ProcResDefs) {
|
|
addProcResource(ProcResDef, ProcModels[PIdx], ProcWriteResDef->getLoc());
|
|
}
|
|
}
|
|
|
|
// Add resources for a ReadAdvance to this processor if they don't exist.
|
|
void CodeGenSchedModels::addReadAdvance(Record *ProcReadAdvanceDef,
|
|
unsigned PIdx) {
|
|
RecVec &RADefs = ProcModels[PIdx].ReadAdvanceDefs;
|
|
if (is_contained(RADefs, ProcReadAdvanceDef))
|
|
return;
|
|
RADefs.push_back(ProcReadAdvanceDef);
|
|
}
|
|
|
|
unsigned CodeGenProcModel::getProcResourceIdx(Record *PRDef) const {
|
|
RecIter PRPos = find(ProcResourceDefs, PRDef);
|
|
if (PRPos == ProcResourceDefs.end())
|
|
PrintFatalError(PRDef->getLoc(), "ProcResource def is not included in "
|
|
"the ProcResources list for " + ModelName);
|
|
// Idx=0 is reserved for invalid.
|
|
return 1 + (PRPos - ProcResourceDefs.begin());
|
|
}
|
|
|
|
bool CodeGenProcModel::isUnsupported(const CodeGenInstruction &Inst) const {
|
|
for (const Record *TheDef : UnsupportedFeaturesDefs) {
|
|
for (const Record *PredDef : Inst.TheDef->getValueAsListOfDefs("Predicates")) {
|
|
if (TheDef->getName() == PredDef->getName())
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
void CodeGenProcModel::dump() const {
|
|
dbgs() << Index << ": " << ModelName << " "
|
|
<< (ModelDef ? ModelDef->getName() : "inferred") << " "
|
|
<< (ItinsDef ? ItinsDef->getName() : "no itinerary") << '\n';
|
|
}
|
|
|
|
void CodeGenSchedRW::dump() const {
|
|
dbgs() << Name << (IsVariadic ? " (V) " : " ");
|
|
if (IsSequence) {
|
|
dbgs() << "(";
|
|
dumpIdxVec(Sequence);
|
|
dbgs() << ")";
|
|
}
|
|
}
|
|
|
|
void CodeGenSchedClass::dump(const CodeGenSchedModels* SchedModels) const {
|
|
dbgs() << "SCHEDCLASS " << Index << ":" << Name << '\n'
|
|
<< " Writes: ";
|
|
for (unsigned i = 0, N = Writes.size(); i < N; ++i) {
|
|
SchedModels->getSchedWrite(Writes[i]).dump();
|
|
if (i < N-1) {
|
|
dbgs() << '\n';
|
|
dbgs().indent(10);
|
|
}
|
|
}
|
|
dbgs() << "\n Reads: ";
|
|
for (unsigned i = 0, N = Reads.size(); i < N; ++i) {
|
|
SchedModels->getSchedRead(Reads[i]).dump();
|
|
if (i < N-1) {
|
|
dbgs() << '\n';
|
|
dbgs().indent(10);
|
|
}
|
|
}
|
|
dbgs() << "\n ProcIdx: "; dumpIdxVec(ProcIndices);
|
|
if (!Transitions.empty()) {
|
|
dbgs() << "\n Transitions for Proc ";
|
|
for (const CodeGenSchedTransition &Transition : Transitions) {
|
|
dbgs() << Transition.ProcIndex << ", ";
|
|
}
|
|
}
|
|
dbgs() << '\n';
|
|
}
|
|
|
|
void PredTransitions::dump() const {
|
|
dbgs() << "Expanded Variants:\n";
|
|
for (const auto &TI : TransVec) {
|
|
dbgs() << "{";
|
|
ListSeparator LS;
|
|
for (const PredCheck &PC : TI.PredTerm)
|
|
dbgs() << LS << SchedModels.getSchedRW(PC.RWIdx, PC.IsRead).Name << ":"
|
|
<< PC.Predicate->getName();
|
|
dbgs() << "},\n => {";
|
|
for (SmallVectorImpl<SmallVector<unsigned, 4>>::const_iterator
|
|
WSI = TI.WriteSequences.begin(),
|
|
WSE = TI.WriteSequences.end();
|
|
WSI != WSE; ++WSI) {
|
|
dbgs() << "(";
|
|
ListSeparator LS;
|
|
for (unsigned N : *WSI)
|
|
dbgs() << LS << SchedModels.getSchedWrite(N).Name;
|
|
dbgs() << "),";
|
|
}
|
|
dbgs() << "}\n";
|
|
}
|
|
}
|
|
#endif // NDEBUG
|