1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 20:23:11 +01:00
llvm-mirror/lib/Transforms/IPO/HotColdSplitting.cpp
2021-06-13 20:16:07 -07:00

796 lines
28 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//===- HotColdSplitting.cpp -- Outline Cold Regions -------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// The goal of hot/cold splitting is to improve the memory locality of code.
/// The splitting pass does this by identifying cold blocks and moving them into
/// separate functions.
///
/// When the splitting pass finds a cold block (referred to as "the sink"), it
/// grows a maximal cold region around that block. The maximal region contains
/// all blocks (post-)dominated by the sink [*]. In theory, these blocks are as
/// cold as the sink. Once a region is found, it's split out of the original
/// function provided it's profitable to do so.
///
/// [*] In practice, there is some added complexity because some blocks are not
/// safe to extract.
///
/// TODO: Use the PM to get domtrees, and preserve BFI/BPI.
/// TODO: Reorder outlined functions.
///
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO/HotColdSplitting.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/BlockFrequency.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/CodeExtractor.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <algorithm>
#include <limits>
#include <cassert>
#include <string>
#define DEBUG_TYPE "hotcoldsplit"
STATISTIC(NumColdRegionsFound, "Number of cold regions found.");
STATISTIC(NumColdRegionsOutlined, "Number of cold regions outlined.");
using namespace llvm;
static cl::opt<bool> EnableStaticAnalysis("hot-cold-static-analysis",
cl::init(true), cl::Hidden);
static cl::opt<int>
SplittingThreshold("hotcoldsplit-threshold", cl::init(2), cl::Hidden,
cl::desc("Base penalty for splitting cold code (as a "
"multiple of TCC_Basic)"));
static cl::opt<bool> EnableColdSection(
"enable-cold-section", cl::init(false), cl::Hidden,
cl::desc("Enable placement of extracted cold functions"
" into a separate section after hot-cold splitting."));
static cl::opt<std::string>
ColdSectionName("hotcoldsplit-cold-section-name", cl::init("__llvm_cold"),
cl::Hidden,
cl::desc("Name for the section containing cold functions "
"extracted by hot-cold splitting."));
static cl::opt<int> MaxParametersForSplit(
"hotcoldsplit-max-params", cl::init(4), cl::Hidden,
cl::desc("Maximum number of parameters for a split function"));
namespace {
// Same as blockEndsInUnreachable in CodeGen/BranchFolding.cpp. Do not modify
// this function unless you modify the MBB version as well.
//
/// A no successor, non-return block probably ends in unreachable and is cold.
/// Also consider a block that ends in an indirect branch to be a return block,
/// since many targets use plain indirect branches to return.
bool blockEndsInUnreachable(const BasicBlock &BB) {
if (!succ_empty(&BB))
return false;
if (BB.empty())
return true;
const Instruction *I = BB.getTerminator();
return !(isa<ReturnInst>(I) || isa<IndirectBrInst>(I));
}
bool unlikelyExecuted(BasicBlock &BB) {
// Exception handling blocks are unlikely executed.
if (BB.isEHPad() || isa<ResumeInst>(BB.getTerminator()))
return true;
// The block is cold if it calls/invokes a cold function. However, do not
// mark sanitizer traps as cold.
for (Instruction &I : BB)
if (auto *CB = dyn_cast<CallBase>(&I))
if (CB->hasFnAttr(Attribute::Cold) && !CB->getMetadata("nosanitize"))
return true;
// The block is cold if it has an unreachable terminator, unless it's
// preceded by a call to a (possibly warm) noreturn call (e.g. longjmp).
if (blockEndsInUnreachable(BB)) {
if (auto *CI =
dyn_cast_or_null<CallInst>(BB.getTerminator()->getPrevNode()))
if (CI->hasFnAttr(Attribute::NoReturn))
return false;
return true;
}
return false;
}
/// Check whether it's safe to outline \p BB.
static bool mayExtractBlock(const BasicBlock &BB) {
// EH pads are unsafe to outline because doing so breaks EH type tables. It
// follows that invoke instructions cannot be extracted, because CodeExtractor
// requires unwind destinations to be within the extraction region.
//
// Resumes that are not reachable from a cleanup landing pad are considered to
// be unreachable. Its not safe to split them out either.
if (BB.hasAddressTaken() || BB.isEHPad())
return false;
auto Term = BB.getTerminator();
return !isa<InvokeInst>(Term) && !isa<ResumeInst>(Term);
}
/// Mark \p F cold. Based on this assumption, also optimize it for minimum size.
/// If \p UpdateEntryCount is true (set when this is a new split function and
/// module has profile data), set entry count to 0 to ensure treated as cold.
/// Return true if the function is changed.
static bool markFunctionCold(Function &F, bool UpdateEntryCount = false) {
assert(!F.hasOptNone() && "Can't mark this cold");
bool Changed = false;
if (!F.hasFnAttribute(Attribute::Cold)) {
F.addFnAttr(Attribute::Cold);
Changed = true;
}
if (!F.hasFnAttribute(Attribute::MinSize)) {
F.addFnAttr(Attribute::MinSize);
Changed = true;
}
if (UpdateEntryCount) {
// Set the entry count to 0 to ensure it is placed in the unlikely text
// section when function sections are enabled.
F.setEntryCount(0);
Changed = true;
}
return Changed;
}
class HotColdSplittingLegacyPass : public ModulePass {
public:
static char ID;
HotColdSplittingLegacyPass() : ModulePass(ID) {
initializeHotColdSplittingLegacyPassPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<BlockFrequencyInfoWrapperPass>();
AU.addRequired<ProfileSummaryInfoWrapperPass>();
AU.addRequired<TargetTransformInfoWrapperPass>();
AU.addUsedIfAvailable<AssumptionCacheTracker>();
}
bool runOnModule(Module &M) override;
};
} // end anonymous namespace
/// Check whether \p F is inherently cold.
bool HotColdSplitting::isFunctionCold(const Function &F) const {
if (F.hasFnAttribute(Attribute::Cold))
return true;
if (F.getCallingConv() == CallingConv::Cold)
return true;
if (PSI->isFunctionEntryCold(&F))
return true;
return false;
}
// Returns false if the function should not be considered for hot-cold split
// optimization.
bool HotColdSplitting::shouldOutlineFrom(const Function &F) const {
if (F.hasFnAttribute(Attribute::AlwaysInline))
return false;
if (F.hasFnAttribute(Attribute::NoInline))
return false;
// A function marked `noreturn` may contain unreachable terminators: these
// should not be considered cold, as the function may be a trampoline.
if (F.hasFnAttribute(Attribute::NoReturn))
return false;
if (F.hasFnAttribute(Attribute::SanitizeAddress) ||
F.hasFnAttribute(Attribute::SanitizeHWAddress) ||
F.hasFnAttribute(Attribute::SanitizeThread) ||
F.hasFnAttribute(Attribute::SanitizeMemory))
return false;
return true;
}
/// Get the benefit score of outlining \p Region.
static InstructionCost getOutliningBenefit(ArrayRef<BasicBlock *> Region,
TargetTransformInfo &TTI) {
// Sum up the code size costs of non-terminator instructions. Tight coupling
// with \ref getOutliningPenalty is needed to model the costs of terminators.
InstructionCost Benefit = 0;
for (BasicBlock *BB : Region)
for (Instruction &I : BB->instructionsWithoutDebug())
if (&I != BB->getTerminator())
Benefit +=
TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize);
return Benefit;
}
/// Get the penalty score for outlining \p Region.
static int getOutliningPenalty(ArrayRef<BasicBlock *> Region,
unsigned NumInputs, unsigned NumOutputs) {
int Penalty = SplittingThreshold;
LLVM_DEBUG(dbgs() << "Applying penalty for splitting: " << Penalty << "\n");
// If the splitting threshold is set at or below zero, skip the usual
// profitability check.
if (SplittingThreshold <= 0)
return Penalty;
// Find the number of distinct exit blocks for the region. Use a conservative
// check to determine whether control returns from the region.
bool NoBlocksReturn = true;
SmallPtrSet<BasicBlock *, 2> SuccsOutsideRegion;
for (BasicBlock *BB : Region) {
// If a block has no successors, only assume it does not return if it's
// unreachable.
if (succ_empty(BB)) {
NoBlocksReturn &= isa<UnreachableInst>(BB->getTerminator());
continue;
}
for (BasicBlock *SuccBB : successors(BB)) {
if (!is_contained(Region, SuccBB)) {
NoBlocksReturn = false;
SuccsOutsideRegion.insert(SuccBB);
}
}
}
// Count the number of phis in exit blocks with >= 2 incoming values from the
// outlining region. These phis are split (\ref severSplitPHINodesOfExits),
// and new outputs are created to supply the split phis. CodeExtractor can't
// report these new outputs until extraction begins, but it's important to
// factor the cost of the outputs into the cost calculation.
unsigned NumSplitExitPhis = 0;
for (BasicBlock *ExitBB : SuccsOutsideRegion) {
for (PHINode &PN : ExitBB->phis()) {
// Find all incoming values from the outlining region.
int NumIncomingVals = 0;
for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i)
if (find(Region, PN.getIncomingBlock(i)) != Region.end()) {
++NumIncomingVals;
if (NumIncomingVals > 1) {
++NumSplitExitPhis;
break;
}
}
}
}
// Apply a penalty for calling the split function. Factor in the cost of
// materializing all of the parameters.
int NumOutputsAndSplitPhis = NumOutputs + NumSplitExitPhis;
int NumParams = NumInputs + NumOutputsAndSplitPhis;
if (NumParams > MaxParametersForSplit) {
LLVM_DEBUG(dbgs() << NumInputs << " inputs and " << NumOutputsAndSplitPhis
<< " outputs exceeds parameter limit ("
<< MaxParametersForSplit << ")\n");
return std::numeric_limits<int>::max();
}
const int CostForArgMaterialization = 2 * TargetTransformInfo::TCC_Basic;
LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumParams << " params\n");
Penalty += CostForArgMaterialization * NumParams;
// Apply the typical code size cost for an output alloca and its associated
// reload in the caller. Also penalize the associated store in the callee.
LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumOutputsAndSplitPhis
<< " outputs/split phis\n");
const int CostForRegionOutput = 3 * TargetTransformInfo::TCC_Basic;
Penalty += CostForRegionOutput * NumOutputsAndSplitPhis;
// Apply a `noreturn` bonus.
if (NoBlocksReturn) {
LLVM_DEBUG(dbgs() << "Applying bonus for: " << Region.size()
<< " non-returning terminators\n");
Penalty -= Region.size();
}
// Apply a penalty for having more than one successor outside of the region.
// This penalty accounts for the switch needed in the caller.
if (SuccsOutsideRegion.size() > 1) {
LLVM_DEBUG(dbgs() << "Applying penalty for: " << SuccsOutsideRegion.size()
<< " non-region successors\n");
Penalty += (SuccsOutsideRegion.size() - 1) * TargetTransformInfo::TCC_Basic;
}
return Penalty;
}
Function *HotColdSplitting::extractColdRegion(
const BlockSequence &Region, const CodeExtractorAnalysisCache &CEAC,
DominatorTree &DT, BlockFrequencyInfo *BFI, TargetTransformInfo &TTI,
OptimizationRemarkEmitter &ORE, AssumptionCache *AC, unsigned Count) {
assert(!Region.empty());
// TODO: Pass BFI and BPI to update profile information.
CodeExtractor CE(Region, &DT, /* AggregateArgs */ false, /* BFI */ nullptr,
/* BPI */ nullptr, AC, /* AllowVarArgs */ false,
/* AllowAlloca */ false,
/* Suffix */ "cold." + std::to_string(Count));
// Perform a simple cost/benefit analysis to decide whether or not to permit
// splitting.
SetVector<Value *> Inputs, Outputs, Sinks;
CE.findInputsOutputs(Inputs, Outputs, Sinks);
InstructionCost OutliningBenefit = getOutliningBenefit(Region, TTI);
int OutliningPenalty =
getOutliningPenalty(Region, Inputs.size(), Outputs.size());
LLVM_DEBUG(dbgs() << "Split profitability: benefit = " << OutliningBenefit
<< ", penalty = " << OutliningPenalty << "\n");
if (!OutliningBenefit.isValid() || OutliningBenefit <= OutliningPenalty)
return nullptr;
Function *OrigF = Region[0]->getParent();
if (Function *OutF = CE.extractCodeRegion(CEAC)) {
User *U = *OutF->user_begin();
CallInst *CI = cast<CallInst>(U);
NumColdRegionsOutlined++;
if (TTI.useColdCCForColdCall(*OutF)) {
OutF->setCallingConv(CallingConv::Cold);
CI->setCallingConv(CallingConv::Cold);
}
CI->setIsNoInline();
if (EnableColdSection)
OutF->setSection(ColdSectionName);
else {
if (OrigF->hasSection())
OutF->setSection(OrigF->getSection());
}
markFunctionCold(*OutF, BFI != nullptr);
LLVM_DEBUG(llvm::dbgs() << "Outlined Region: " << *OutF);
ORE.emit([&]() {
return OptimizationRemark(DEBUG_TYPE, "HotColdSplit",
&*Region[0]->begin())
<< ore::NV("Original", OrigF) << " split cold code into "
<< ore::NV("Split", OutF);
});
return OutF;
}
ORE.emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed",
&*Region[0]->begin())
<< "Failed to extract region at block "
<< ore::NV("Block", Region.front());
});
return nullptr;
}
/// A pair of (basic block, score).
using BlockTy = std::pair<BasicBlock *, unsigned>;
namespace {
/// A maximal outlining region. This contains all blocks post-dominated by a
/// sink block, the sink block itself, and all blocks dominated by the sink.
/// If sink-predecessors and sink-successors cannot be extracted in one region,
/// the static constructor returns a list of suitable extraction regions.
class OutliningRegion {
/// A list of (block, score) pairs. A block's score is non-zero iff it's a
/// viable sub-region entry point. Blocks with higher scores are better entry
/// points (i.e. they are more distant ancestors of the sink block).
SmallVector<BlockTy, 0> Blocks = {};
/// The suggested entry point into the region. If the region has multiple
/// entry points, all blocks within the region may not be reachable from this
/// entry point.
BasicBlock *SuggestedEntryPoint = nullptr;
/// Whether the entire function is cold.
bool EntireFunctionCold = false;
/// If \p BB is a viable entry point, return \p Score. Return 0 otherwise.
static unsigned getEntryPointScore(BasicBlock &BB, unsigned Score) {
return mayExtractBlock(BB) ? Score : 0;
}
/// These scores should be lower than the score for predecessor blocks,
/// because regions starting at predecessor blocks are typically larger.
static constexpr unsigned ScoreForSuccBlock = 1;
static constexpr unsigned ScoreForSinkBlock = 1;
OutliningRegion(const OutliningRegion &) = delete;
OutliningRegion &operator=(const OutliningRegion &) = delete;
public:
OutliningRegion() = default;
OutliningRegion(OutliningRegion &&) = default;
OutliningRegion &operator=(OutliningRegion &&) = default;
static std::vector<OutliningRegion> create(BasicBlock &SinkBB,
const DominatorTree &DT,
const PostDominatorTree &PDT) {
std::vector<OutliningRegion> Regions;
SmallPtrSet<BasicBlock *, 4> RegionBlocks;
Regions.emplace_back();
OutliningRegion *ColdRegion = &Regions.back();
auto addBlockToRegion = [&](BasicBlock *BB, unsigned Score) {
RegionBlocks.insert(BB);
ColdRegion->Blocks.emplace_back(BB, Score);
};
// The ancestor farthest-away from SinkBB, and also post-dominated by it.
unsigned SinkScore = getEntryPointScore(SinkBB, ScoreForSinkBlock);
ColdRegion->SuggestedEntryPoint = (SinkScore > 0) ? &SinkBB : nullptr;
unsigned BestScore = SinkScore;
// Visit SinkBB's ancestors using inverse DFS.
auto PredIt = ++idf_begin(&SinkBB);
auto PredEnd = idf_end(&SinkBB);
while (PredIt != PredEnd) {
BasicBlock &PredBB = **PredIt;
bool SinkPostDom = PDT.dominates(&SinkBB, &PredBB);
// If the predecessor is cold and has no predecessors, the entire
// function must be cold.
if (SinkPostDom && pred_empty(&PredBB)) {
ColdRegion->EntireFunctionCold = true;
return Regions;
}
// If SinkBB does not post-dominate a predecessor, do not mark the
// predecessor (or any of its predecessors) cold.
if (!SinkPostDom || !mayExtractBlock(PredBB)) {
PredIt.skipChildren();
continue;
}
// Keep track of the post-dominated ancestor farthest away from the sink.
// The path length is always >= 2, ensuring that predecessor blocks are
// considered as entry points before the sink block.
unsigned PredScore = getEntryPointScore(PredBB, PredIt.getPathLength());
if (PredScore > BestScore) {
ColdRegion->SuggestedEntryPoint = &PredBB;
BestScore = PredScore;
}
addBlockToRegion(&PredBB, PredScore);
++PredIt;
}
// If the sink can be added to the cold region, do so. It's considered as
// an entry point before any sink-successor blocks.
//
// Otherwise, split cold sink-successor blocks using a separate region.
// This satisfies the requirement that all extraction blocks other than the
// first have predecessors within the extraction region.
if (mayExtractBlock(SinkBB)) {
addBlockToRegion(&SinkBB, SinkScore);
if (pred_empty(&SinkBB)) {
ColdRegion->EntireFunctionCold = true;
return Regions;
}
} else {
Regions.emplace_back();
ColdRegion = &Regions.back();
BestScore = 0;
}
// Find all successors of SinkBB dominated by SinkBB using DFS.
auto SuccIt = ++df_begin(&SinkBB);
auto SuccEnd = df_end(&SinkBB);
while (SuccIt != SuccEnd) {
BasicBlock &SuccBB = **SuccIt;
bool SinkDom = DT.dominates(&SinkBB, &SuccBB);
// Don't allow the backwards & forwards DFSes to mark the same block.
bool DuplicateBlock = RegionBlocks.count(&SuccBB);
// If SinkBB does not dominate a successor, do not mark the successor (or
// any of its successors) cold.
if (DuplicateBlock || !SinkDom || !mayExtractBlock(SuccBB)) {
SuccIt.skipChildren();
continue;
}
unsigned SuccScore = getEntryPointScore(SuccBB, ScoreForSuccBlock);
if (SuccScore > BestScore) {
ColdRegion->SuggestedEntryPoint = &SuccBB;
BestScore = SuccScore;
}
addBlockToRegion(&SuccBB, SuccScore);
++SuccIt;
}
return Regions;
}
/// Whether this region has nothing to extract.
bool empty() const { return !SuggestedEntryPoint; }
/// The blocks in this region.
ArrayRef<std::pair<BasicBlock *, unsigned>> blocks() const { return Blocks; }
/// Whether the entire function containing this region is cold.
bool isEntireFunctionCold() const { return EntireFunctionCold; }
/// Remove a sub-region from this region and return it as a block sequence.
BlockSequence takeSingleEntrySubRegion(DominatorTree &DT) {
assert(!empty() && !isEntireFunctionCold() && "Nothing to extract");
// Remove blocks dominated by the suggested entry point from this region.
// During the removal, identify the next best entry point into the region.
// Ensure that the first extracted block is the suggested entry point.
BlockSequence SubRegion = {SuggestedEntryPoint};
BasicBlock *NextEntryPoint = nullptr;
unsigned NextScore = 0;
auto RegionEndIt = Blocks.end();
auto RegionStartIt = remove_if(Blocks, [&](const BlockTy &Block) {
BasicBlock *BB = Block.first;
unsigned Score = Block.second;
bool InSubRegion =
BB == SuggestedEntryPoint || DT.dominates(SuggestedEntryPoint, BB);
if (!InSubRegion && Score > NextScore) {
NextEntryPoint = BB;
NextScore = Score;
}
if (InSubRegion && BB != SuggestedEntryPoint)
SubRegion.push_back(BB);
return InSubRegion;
});
Blocks.erase(RegionStartIt, RegionEndIt);
// Update the suggested entry point.
SuggestedEntryPoint = NextEntryPoint;
return SubRegion;
}
};
} // namespace
bool HotColdSplitting::outlineColdRegions(Function &F, bool HasProfileSummary) {
bool Changed = false;
// The set of cold blocks.
SmallPtrSet<BasicBlock *, 4> ColdBlocks;
// The worklist of non-intersecting regions left to outline.
SmallVector<OutliningRegion, 2> OutliningWorklist;
// Set up an RPO traversal. Experimentally, this performs better (outlines
// more) than a PO traversal, because we prevent region overlap by keeping
// the first region to contain a block.
ReversePostOrderTraversal<Function *> RPOT(&F);
// Calculate domtrees lazily. This reduces compile-time significantly.
std::unique_ptr<DominatorTree> DT;
std::unique_ptr<PostDominatorTree> PDT;
// Calculate BFI lazily (it's only used to query ProfileSummaryInfo). This
// reduces compile-time significantly. TODO: When we *do* use BFI, we should
// be able to salvage its domtrees instead of recomputing them.
BlockFrequencyInfo *BFI = nullptr;
if (HasProfileSummary)
BFI = GetBFI(F);
TargetTransformInfo &TTI = GetTTI(F);
OptimizationRemarkEmitter &ORE = (*GetORE)(F);
AssumptionCache *AC = LookupAC(F);
// Find all cold regions.
for (BasicBlock *BB : RPOT) {
// This block is already part of some outlining region.
if (ColdBlocks.count(BB))
continue;
bool Cold = (BFI && PSI->isColdBlock(BB, BFI)) ||
(EnableStaticAnalysis && unlikelyExecuted(*BB));
if (!Cold)
continue;
LLVM_DEBUG({
dbgs() << "Found a cold block:\n";
BB->dump();
});
if (!DT)
DT = std::make_unique<DominatorTree>(F);
if (!PDT)
PDT = std::make_unique<PostDominatorTree>(F);
auto Regions = OutliningRegion::create(*BB, *DT, *PDT);
for (OutliningRegion &Region : Regions) {
if (Region.empty())
continue;
if (Region.isEntireFunctionCold()) {
LLVM_DEBUG(dbgs() << "Entire function is cold\n");
return markFunctionCold(F);
}
// If this outlining region intersects with another, drop the new region.
//
// TODO: It's theoretically possible to outline more by only keeping the
// largest region which contains a block, but the extra bookkeeping to do
// this is tricky/expensive.
bool RegionsOverlap = any_of(Region.blocks(), [&](const BlockTy &Block) {
return !ColdBlocks.insert(Block.first).second;
});
if (RegionsOverlap)
continue;
OutliningWorklist.emplace_back(std::move(Region));
++NumColdRegionsFound;
}
}
if (OutliningWorklist.empty())
return Changed;
// Outline single-entry cold regions, splitting up larger regions as needed.
unsigned OutlinedFunctionID = 1;
// Cache and recycle the CodeExtractor analysis to avoid O(n^2) compile-time.
CodeExtractorAnalysisCache CEAC(F);
do {
OutliningRegion Region = OutliningWorklist.pop_back_val();
assert(!Region.empty() && "Empty outlining region in worklist");
do {
BlockSequence SubRegion = Region.takeSingleEntrySubRegion(*DT);
LLVM_DEBUG({
dbgs() << "Hot/cold splitting attempting to outline these blocks:\n";
for (BasicBlock *BB : SubRegion)
BB->dump();
});
Function *Outlined = extractColdRegion(SubRegion, CEAC, *DT, BFI, TTI,
ORE, AC, OutlinedFunctionID);
if (Outlined) {
++OutlinedFunctionID;
Changed = true;
}
} while (!Region.empty());
} while (!OutliningWorklist.empty());
return Changed;
}
bool HotColdSplitting::run(Module &M) {
bool Changed = false;
bool HasProfileSummary = (M.getProfileSummary(/* IsCS */ false) != nullptr);
for (Function &F : M) {
// Do not touch declarations.
if (F.isDeclaration())
continue;
// Do not modify `optnone` functions.
if (F.hasOptNone())
continue;
// Detect inherently cold functions and mark them as such.
if (isFunctionCold(F)) {
Changed |= markFunctionCold(F);
continue;
}
if (!shouldOutlineFrom(F)) {
LLVM_DEBUG(llvm::dbgs() << "Skipping " << F.getName() << "\n");
continue;
}
LLVM_DEBUG(llvm::dbgs() << "Outlining in " << F.getName() << "\n");
Changed |= outlineColdRegions(F, HasProfileSummary);
}
return Changed;
}
bool HotColdSplittingLegacyPass::runOnModule(Module &M) {
if (skipModule(M))
return false;
ProfileSummaryInfo *PSI =
&getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
auto GTTI = [this](Function &F) -> TargetTransformInfo & {
return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
};
auto GBFI = [this](Function &F) {
return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
};
std::unique_ptr<OptimizationRemarkEmitter> ORE;
std::function<OptimizationRemarkEmitter &(Function &)> GetORE =
[&ORE](Function &F) -> OptimizationRemarkEmitter & {
ORE.reset(new OptimizationRemarkEmitter(&F));
return *ORE.get();
};
auto LookupAC = [this](Function &F) -> AssumptionCache * {
if (auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>())
return ACT->lookupAssumptionCache(F);
return nullptr;
};
return HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M);
}
PreservedAnalyses
HotColdSplittingPass::run(Module &M, ModuleAnalysisManager &AM) {
auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
auto LookupAC = [&FAM](Function &F) -> AssumptionCache * {
return FAM.getCachedResult<AssumptionAnalysis>(F);
};
auto GBFI = [&FAM](Function &F) {
return &FAM.getResult<BlockFrequencyAnalysis>(F);
};
std::function<TargetTransformInfo &(Function &)> GTTI =
[&FAM](Function &F) -> TargetTransformInfo & {
return FAM.getResult<TargetIRAnalysis>(F);
};
std::unique_ptr<OptimizationRemarkEmitter> ORE;
std::function<OptimizationRemarkEmitter &(Function &)> GetORE =
[&ORE](Function &F) -> OptimizationRemarkEmitter & {
ORE.reset(new OptimizationRemarkEmitter(&F));
return *ORE.get();
};
ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
if (HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M))
return PreservedAnalyses::none();
return PreservedAnalyses::all();
}
char HotColdSplittingLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(HotColdSplittingLegacyPass, "hotcoldsplit",
"Hot Cold Splitting", false, false)
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
INITIALIZE_PASS_END(HotColdSplittingLegacyPass, "hotcoldsplit",
"Hot Cold Splitting", false, false)
ModulePass *llvm::createHotColdSplittingPass() {
return new HotColdSplittingLegacyPass();
}