mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-24 19:52:54 +01:00
9d121924fd
PR2957 ISD::VECTOR_SHUFFLE now stores an array of integers representing the shuffle mask internal to the node, rather than taking a BUILD_VECTOR of ConstantSDNodes as the shuffle mask. A value of -1 represents UNDEF. In addition to eliminating the creation of illegal BUILD_VECTORS just to represent shuffle masks, we are better about canonicalizing the shuffle mask, resulting in substantially better code for some classes of shuffles. llvm-svn: 70225
2555 lines
94 KiB
C++
2555 lines
94 KiB
C++
//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file declares the SDNode class and derived classes, which are used to
|
|
// represent the nodes and operations present in a SelectionDAG. These nodes
|
|
// and operations are machine code level operations, with some similarities to
|
|
// the GCC RTL representation.
|
|
//
|
|
// Clients should include the SelectionDAG.h file instead of this file directly.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
|
|
#define LLVM_CODEGEN_SELECTIONDAGNODES_H
|
|
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/ADT/FoldingSet.h"
|
|
#include "llvm/ADT/GraphTraits.h"
|
|
#include "llvm/ADT/iterator.h"
|
|
#include "llvm/ADT/ilist_node.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/CodeGen/ValueTypes.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "llvm/Support/RecyclingAllocator.h"
|
|
#include "llvm/Support/DataTypes.h"
|
|
#include "llvm/CodeGen/DebugLoc.h"
|
|
#include <cassert>
|
|
#include <climits>
|
|
|
|
namespace llvm {
|
|
|
|
class SelectionDAG;
|
|
class GlobalValue;
|
|
class MachineBasicBlock;
|
|
class MachineConstantPoolValue;
|
|
class SDNode;
|
|
class Value;
|
|
template <typename T> struct DenseMapInfo;
|
|
template <typename T> struct simplify_type;
|
|
template <typename T> struct ilist_traits;
|
|
|
|
/// SDVTList - This represents a list of ValueType's that has been intern'd by
|
|
/// a SelectionDAG. Instances of this simple value class are returned by
|
|
/// SelectionDAG::getVTList(...).
|
|
///
|
|
struct SDVTList {
|
|
const MVT *VTs;
|
|
unsigned int NumVTs;
|
|
};
|
|
|
|
/// ISD namespace - This namespace contains an enum which represents all of the
|
|
/// SelectionDAG node types and value types.
|
|
///
|
|
namespace ISD {
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
/// ISD::NodeType enum - This enum defines the target-independent operators
|
|
/// for a SelectionDAG.
|
|
///
|
|
/// Targets may also define target-dependent operator codes for SDNodes. For
|
|
/// example, on x86, these are the enum values in the X86ISD namespace.
|
|
/// Targets should aim to use target-independent operators to model their
|
|
/// instruction sets as much as possible, and only use target-dependent
|
|
/// operators when they have special requirements.
|
|
///
|
|
/// Finally, during and after selection proper, SNodes may use special
|
|
/// operator codes that correspond directly with MachineInstr opcodes. These
|
|
/// are used to represent selected instructions. See the isMachineOpcode()
|
|
/// and getMachineOpcode() member functions of SDNode.
|
|
///
|
|
enum NodeType {
|
|
// DELETED_NODE - This is an illegal value that is used to catch
|
|
// errors. This opcode is not a legal opcode for any node.
|
|
DELETED_NODE,
|
|
|
|
// EntryToken - This is the marker used to indicate the start of the region.
|
|
EntryToken,
|
|
|
|
// TokenFactor - This node takes multiple tokens as input and produces a
|
|
// single token result. This is used to represent the fact that the operand
|
|
// operators are independent of each other.
|
|
TokenFactor,
|
|
|
|
// AssertSext, AssertZext - These nodes record if a register contains a
|
|
// value that has already been zero or sign extended from a narrower type.
|
|
// These nodes take two operands. The first is the node that has already
|
|
// been extended, and the second is a value type node indicating the width
|
|
// of the extension
|
|
AssertSext, AssertZext,
|
|
|
|
// Various leaf nodes.
|
|
BasicBlock, VALUETYPE, ARG_FLAGS, CONDCODE, Register,
|
|
Constant, ConstantFP,
|
|
GlobalAddress, GlobalTLSAddress, FrameIndex,
|
|
JumpTable, ConstantPool, ExternalSymbol,
|
|
|
|
// The address of the GOT
|
|
GLOBAL_OFFSET_TABLE,
|
|
|
|
// FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
|
|
// llvm.returnaddress on the DAG. These nodes take one operand, the index
|
|
// of the frame or return address to return. An index of zero corresponds
|
|
// to the current function's frame or return address, an index of one to the
|
|
// parent's frame or return address, and so on.
|
|
FRAMEADDR, RETURNADDR,
|
|
|
|
// FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to
|
|
// first (possible) on-stack argument. This is needed for correct stack
|
|
// adjustment during unwind.
|
|
FRAME_TO_ARGS_OFFSET,
|
|
|
|
// RESULT, OUTCHAIN = EXCEPTIONADDR(INCHAIN) - This node represents the
|
|
// address of the exception block on entry to an landing pad block.
|
|
EXCEPTIONADDR,
|
|
|
|
// RESULT, OUTCHAIN = EHSELECTION(INCHAIN, EXCEPTION) - This node represents
|
|
// the selection index of the exception thrown.
|
|
EHSELECTION,
|
|
|
|
// OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents
|
|
// 'eh_return' gcc dwarf builtin, which is used to return from
|
|
// exception. The general meaning is: adjust stack by OFFSET and pass
|
|
// execution to HANDLER. Many platform-related details also :)
|
|
EH_RETURN,
|
|
|
|
// TargetConstant* - Like Constant*, but the DAG does not do any folding or
|
|
// simplification of the constant.
|
|
TargetConstant,
|
|
TargetConstantFP,
|
|
|
|
// TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
|
|
// anything else with this node, and this is valid in the target-specific
|
|
// dag, turning into a GlobalAddress operand.
|
|
TargetGlobalAddress,
|
|
TargetGlobalTLSAddress,
|
|
TargetFrameIndex,
|
|
TargetJumpTable,
|
|
TargetConstantPool,
|
|
TargetExternalSymbol,
|
|
|
|
/// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
|
|
/// This node represents a target intrinsic function with no side effects.
|
|
/// The first operand is the ID number of the intrinsic from the
|
|
/// llvm::Intrinsic namespace. The operands to the intrinsic follow. The
|
|
/// node has returns the result of the intrinsic.
|
|
INTRINSIC_WO_CHAIN,
|
|
|
|
/// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
|
|
/// This node represents a target intrinsic function with side effects that
|
|
/// returns a result. The first operand is a chain pointer. The second is
|
|
/// the ID number of the intrinsic from the llvm::Intrinsic namespace. The
|
|
/// operands to the intrinsic follow. The node has two results, the result
|
|
/// of the intrinsic and an output chain.
|
|
INTRINSIC_W_CHAIN,
|
|
|
|
/// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
|
|
/// This node represents a target intrinsic function with side effects that
|
|
/// does not return a result. The first operand is a chain pointer. The
|
|
/// second is the ID number of the intrinsic from the llvm::Intrinsic
|
|
/// namespace. The operands to the intrinsic follow.
|
|
INTRINSIC_VOID,
|
|
|
|
// CopyToReg - This node has three operands: a chain, a register number to
|
|
// set to this value, and a value.
|
|
CopyToReg,
|
|
|
|
// CopyFromReg - This node indicates that the input value is a virtual or
|
|
// physical register that is defined outside of the scope of this
|
|
// SelectionDAG. The register is available from the RegisterSDNode object.
|
|
CopyFromReg,
|
|
|
|
// UNDEF - An undefined node
|
|
UNDEF,
|
|
|
|
/// FORMAL_ARGUMENTS(CHAIN, CC#, ISVARARG, FLAG0, ..., FLAGn) - This node
|
|
/// represents the formal arguments for a function. CC# is a Constant value
|
|
/// indicating the calling convention of the function, and ISVARARG is a
|
|
/// flag that indicates whether the function is varargs or not. This node
|
|
/// has one result value for each incoming argument, plus one for the output
|
|
/// chain. It must be custom legalized. See description of CALL node for
|
|
/// FLAG argument contents explanation.
|
|
///
|
|
FORMAL_ARGUMENTS,
|
|
|
|
/// RV1, RV2...RVn, CHAIN = CALL(CHAIN, CALLEE,
|
|
/// ARG0, FLAG0, ARG1, FLAG1, ... ARGn, FLAGn)
|
|
/// This node represents a fully general function call, before the legalizer
|
|
/// runs. This has one result value for each argument / flag pair, plus
|
|
/// a chain result. It must be custom legalized. Flag argument indicates
|
|
/// misc. argument attributes. Currently:
|
|
/// Bit 0 - signness
|
|
/// Bit 1 - 'inreg' attribute
|
|
/// Bit 2 - 'sret' attribute
|
|
/// Bit 4 - 'byval' attribute
|
|
/// Bit 5 - 'nest' attribute
|
|
/// Bit 6-9 - alignment of byval structures
|
|
/// Bit 10-26 - size of byval structures
|
|
/// Bits 31:27 - argument ABI alignment in the first argument piece and
|
|
/// alignment '1' in other argument pieces.
|
|
///
|
|
/// CALL nodes use the CallSDNode subclass of SDNode, which
|
|
/// additionally carries information about the calling convention,
|
|
/// whether the call is varargs, and if it's marked as a tail call.
|
|
///
|
|
CALL,
|
|
|
|
// EXTRACT_ELEMENT - This is used to get the lower or upper (determined by
|
|
// a Constant, which is required to be operand #1) half of the integer or
|
|
// float value specified as operand #0. This is only for use before
|
|
// legalization, for values that will be broken into multiple registers.
|
|
EXTRACT_ELEMENT,
|
|
|
|
// BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways. Given
|
|
// two values of the same integer value type, this produces a value twice as
|
|
// big. Like EXTRACT_ELEMENT, this can only be used before legalization.
|
|
BUILD_PAIR,
|
|
|
|
// MERGE_VALUES - This node takes multiple discrete operands and returns
|
|
// them all as its individual results. This nodes has exactly the same
|
|
// number of inputs and outputs, and is only valid before legalization.
|
|
// This node is useful for some pieces of the code generator that want to
|
|
// think about a single node with multiple results, not multiple nodes.
|
|
MERGE_VALUES,
|
|
|
|
// Simple integer binary arithmetic operators.
|
|
ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
|
|
|
|
// SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing
|
|
// a signed/unsigned value of type i[2*N], and return the full value as
|
|
// two results, each of type iN.
|
|
SMUL_LOHI, UMUL_LOHI,
|
|
|
|
// SDIVREM/UDIVREM - Divide two integers and produce both a quotient and
|
|
// remainder result.
|
|
SDIVREM, UDIVREM,
|
|
|
|
// CARRY_FALSE - This node is used when folding other nodes,
|
|
// like ADDC/SUBC, which indicate the carry result is always false.
|
|
CARRY_FALSE,
|
|
|
|
// Carry-setting nodes for multiple precision addition and subtraction.
|
|
// These nodes take two operands of the same value type, and produce two
|
|
// results. The first result is the normal add or sub result, the second
|
|
// result is the carry flag result.
|
|
ADDC, SUBC,
|
|
|
|
// Carry-using nodes for multiple precision addition and subtraction. These
|
|
// nodes take three operands: The first two are the normal lhs and rhs to
|
|
// the add or sub, and the third is the input carry flag. These nodes
|
|
// produce two results; the normal result of the add or sub, and the output
|
|
// carry flag. These nodes both read and write a carry flag to allow them
|
|
// to them to be chained together for add and sub of arbitrarily large
|
|
// values.
|
|
ADDE, SUBE,
|
|
|
|
// RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
|
|
// These nodes take two operands: the normal LHS and RHS to the add. They
|
|
// produce two results: the normal result of the add, and a boolean that
|
|
// indicates if an overflow occured (*not* a flag, because it may be stored
|
|
// to memory, etc.). If the type of the boolean is not i1 then the high
|
|
// bits conform to getBooleanContents.
|
|
// These nodes are generated from the llvm.[su]add.with.overflow intrinsics.
|
|
SADDO, UADDO,
|
|
|
|
// Same for subtraction
|
|
SSUBO, USUBO,
|
|
|
|
// Same for multiplication
|
|
SMULO, UMULO,
|
|
|
|
// Simple binary floating point operators.
|
|
FADD, FSUB, FMUL, FDIV, FREM,
|
|
|
|
// FCOPYSIGN(X, Y) - Return the value of X with the sign of Y. NOTE: This
|
|
// DAG node does not require that X and Y have the same type, just that they
|
|
// are both floating point. X and the result must have the same type.
|
|
// FCOPYSIGN(f32, f64) is allowed.
|
|
FCOPYSIGN,
|
|
|
|
// INT = FGETSIGN(FP) - Return the sign bit of the specified floating point
|
|
// value as an integer 0/1 value.
|
|
FGETSIGN,
|
|
|
|
/// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector with the
|
|
/// specified, possibly variable, elements. The number of elements is
|
|
/// required to be a power of two. The types of the operands must all be
|
|
/// the same and must match the vector element type, except that integer
|
|
/// types are allowed to be larger than the element type, in which case
|
|
/// the operands are implicitly truncated.
|
|
BUILD_VECTOR,
|
|
|
|
/// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element
|
|
/// at IDX replaced with VAL. If the type of VAL is larger than the vector
|
|
/// element type then VAL is truncated before replacement.
|
|
INSERT_VECTOR_ELT,
|
|
|
|
/// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
|
|
/// identified by the (potentially variable) element number IDX.
|
|
EXTRACT_VECTOR_ELT,
|
|
|
|
/// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of
|
|
/// vector type with the same length and element type, this produces a
|
|
/// concatenated vector result value, with length equal to the sum of the
|
|
/// lengths of the input vectors.
|
|
CONCAT_VECTORS,
|
|
|
|
/// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR (an
|
|
/// vector value) starting with the (potentially variable) element number
|
|
/// IDX, which must be a multiple of the result vector length.
|
|
EXTRACT_SUBVECTOR,
|
|
|
|
/// VECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC) - Returns a vector, of the same
|
|
/// type as VEC1/VEC2. SHUFFLEVEC is a BUILD_VECTOR of constant int values
|
|
/// (maybe of an illegal datatype) or undef that indicate which value each
|
|
/// result element will get. The elements of VEC1/VEC2 are enumerated in
|
|
/// order. This is quite similar to the Altivec 'vperm' instruction, except
|
|
/// that the indices must be constants and are in terms of the element size
|
|
/// of VEC1/VEC2, not in terms of bytes.
|
|
VECTOR_SHUFFLE,
|
|
|
|
/// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
|
|
/// scalar value into element 0 of the resultant vector type. The top
|
|
/// elements 1 to N-1 of the N-element vector are undefined. The type
|
|
/// of the operand must match the vector element type, except when they
|
|
/// are integer types. In this case the operand is allowed to be wider
|
|
/// than the vector element type, and is implicitly truncated to it.
|
|
SCALAR_TO_VECTOR,
|
|
|
|
// MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
|
|
// an unsigned/signed value of type i[2*N], then return the top part.
|
|
MULHU, MULHS,
|
|
|
|
// Bitwise operators - logical and, logical or, logical xor, shift left,
|
|
// shift right algebraic (shift in sign bits), shift right logical (shift in
|
|
// zeroes), rotate left, rotate right, and byteswap.
|
|
AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,
|
|
|
|
// Counting operators
|
|
CTTZ, CTLZ, CTPOP,
|
|
|
|
// Select(COND, TRUEVAL, FALSEVAL). If the type of the boolean COND is not
|
|
// i1 then the high bits must conform to getBooleanContents.
|
|
SELECT,
|
|
|
|
// Select with condition operator - This selects between a true value and
|
|
// a false value (ops #2 and #3) based on the boolean result of comparing
|
|
// the lhs and rhs (ops #0 and #1) of a conditional expression with the
|
|
// condition code in op #4, a CondCodeSDNode.
|
|
SELECT_CC,
|
|
|
|
// SetCC operator - This evaluates to a true value iff the condition is
|
|
// true. If the result value type is not i1 then the high bits conform
|
|
// to getBooleanContents. The operands to this are the left and right
|
|
// operands to compare (ops #0, and #1) and the condition code to compare
|
|
// them with (op #2) as a CondCodeSDNode.
|
|
SETCC,
|
|
|
|
// Vector SetCC operator - This evaluates to a vector of integer elements
|
|
// with the high bit in each element set to true if the comparison is true
|
|
// and false if the comparison is false. All other bits in each element
|
|
// are undefined. The operands to this are the left and right operands
|
|
// to compare (ops #0, and #1) and the condition code to compare them with
|
|
// (op #2) as a CondCodeSDNode.
|
|
VSETCC,
|
|
|
|
// SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
|
|
// integer shift operations, just like ADD/SUB_PARTS. The operation
|
|
// ordering is:
|
|
// [Lo,Hi] = op [LoLHS,HiLHS], Amt
|
|
SHL_PARTS, SRA_PARTS, SRL_PARTS,
|
|
|
|
// Conversion operators. These are all single input single output
|
|
// operations. For all of these, the result type must be strictly
|
|
// wider or narrower (depending on the operation) than the source
|
|
// type.
|
|
|
|
// SIGN_EXTEND - Used for integer types, replicating the sign bit
|
|
// into new bits.
|
|
SIGN_EXTEND,
|
|
|
|
// ZERO_EXTEND - Used for integer types, zeroing the new bits.
|
|
ZERO_EXTEND,
|
|
|
|
// ANY_EXTEND - Used for integer types. The high bits are undefined.
|
|
ANY_EXTEND,
|
|
|
|
// TRUNCATE - Completely drop the high bits.
|
|
TRUNCATE,
|
|
|
|
// [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
|
|
// depends on the first letter) to floating point.
|
|
SINT_TO_FP,
|
|
UINT_TO_FP,
|
|
|
|
// SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
|
|
// sign extend a small value in a large integer register (e.g. sign
|
|
// extending the low 8 bits of a 32-bit register to fill the top 24 bits
|
|
// with the 7th bit). The size of the smaller type is indicated by the 1th
|
|
// operand, a ValueType node.
|
|
SIGN_EXTEND_INREG,
|
|
|
|
/// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
|
|
/// integer.
|
|
FP_TO_SINT,
|
|
FP_TO_UINT,
|
|
|
|
/// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type
|
|
/// down to the precision of the destination VT. TRUNC is a flag, which is
|
|
/// always an integer that is zero or one. If TRUNC is 0, this is a
|
|
/// normal rounding, if it is 1, this FP_ROUND is known to not change the
|
|
/// value of Y.
|
|
///
|
|
/// The TRUNC = 1 case is used in cases where we know that the value will
|
|
/// not be modified by the node, because Y is not using any of the extra
|
|
/// precision of source type. This allows certain transformations like
|
|
/// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for
|
|
/// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed.
|
|
FP_ROUND,
|
|
|
|
// FLT_ROUNDS_ - Returns current rounding mode:
|
|
// -1 Undefined
|
|
// 0 Round to 0
|
|
// 1 Round to nearest
|
|
// 2 Round to +inf
|
|
// 3 Round to -inf
|
|
FLT_ROUNDS_,
|
|
|
|
/// X = FP_ROUND_INREG(Y, VT) - This operator takes an FP register, and
|
|
/// rounds it to a floating point value. It then promotes it and returns it
|
|
/// in a register of the same size. This operation effectively just
|
|
/// discards excess precision. The type to round down to is specified by
|
|
/// the VT operand, a VTSDNode.
|
|
FP_ROUND_INREG,
|
|
|
|
/// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
|
|
FP_EXTEND,
|
|
|
|
// BIT_CONVERT - Theis operator converts between integer and FP values, as
|
|
// if one was stored to memory as integer and the other was loaded from the
|
|
// same address (or equivalently for vector format conversions, etc). The
|
|
// source and result are required to have the same bit size (e.g.
|
|
// f32 <-> i32). This can also be used for int-to-int or fp-to-fp
|
|
// conversions, but that is a noop, deleted by getNode().
|
|
BIT_CONVERT,
|
|
|
|
// CONVERT_RNDSAT - This operator is used to support various conversions
|
|
// between various types (float, signed, unsigned and vectors of those
|
|
// types) with rounding and saturation. NOTE: Avoid using this operator as
|
|
// most target don't support it and the operator might be removed in the
|
|
// future. It takes the following arguments:
|
|
// 0) value
|
|
// 1) dest type (type to convert to)
|
|
// 2) src type (type to convert from)
|
|
// 3) rounding imm
|
|
// 4) saturation imm
|
|
// 5) ISD::CvtCode indicating the type of conversion to do
|
|
CONVERT_RNDSAT,
|
|
|
|
// FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
|
|
// FLOG, FLOG2, FLOG10, FEXP, FEXP2,
|
|
// FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR - Perform various unary floating
|
|
// point operations. These are inspired by libm.
|
|
FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
|
|
FLOG, FLOG2, FLOG10, FEXP, FEXP2,
|
|
FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR,
|
|
|
|
// LOAD and STORE have token chains as their first operand, then the same
|
|
// operands as an LLVM load/store instruction, then an offset node that
|
|
// is added / subtracted from the base pointer to form the address (for
|
|
// indexed memory ops).
|
|
LOAD, STORE,
|
|
|
|
// DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
|
|
// to a specified boundary. This node always has two return values: a new
|
|
// stack pointer value and a chain. The first operand is the token chain,
|
|
// the second is the number of bytes to allocate, and the third is the
|
|
// alignment boundary. The size is guaranteed to be a multiple of the stack
|
|
// alignment, and the alignment is guaranteed to be bigger than the stack
|
|
// alignment (if required) or 0 to get standard stack alignment.
|
|
DYNAMIC_STACKALLOC,
|
|
|
|
// Control flow instructions. These all have token chains.
|
|
|
|
// BR - Unconditional branch. The first operand is the chain
|
|
// operand, the second is the MBB to branch to.
|
|
BR,
|
|
|
|
// BRIND - Indirect branch. The first operand is the chain, the second
|
|
// is the value to branch to, which must be of the same type as the target's
|
|
// pointer type.
|
|
BRIND,
|
|
|
|
// BR_JT - Jumptable branch. The first operand is the chain, the second
|
|
// is the jumptable index, the last one is the jumptable entry index.
|
|
BR_JT,
|
|
|
|
// BRCOND - Conditional branch. The first operand is the chain, the
|
|
// second is the condition, the third is the block to branch to if the
|
|
// condition is true. If the type of the condition is not i1, then the
|
|
// high bits must conform to getBooleanContents.
|
|
BRCOND,
|
|
|
|
// BR_CC - Conditional branch. The behavior is like that of SELECT_CC, in
|
|
// that the condition is represented as condition code, and two nodes to
|
|
// compare, rather than as a combined SetCC node. The operands in order are
|
|
// chain, cc, lhs, rhs, block to branch to if condition is true.
|
|
BR_CC,
|
|
|
|
// RET - Return from function. The first operand is the chain,
|
|
// and any subsequent operands are pairs of return value and return value
|
|
// attributes (see CALL for description of attributes) for the function.
|
|
// This operation can have variable number of operands.
|
|
RET,
|
|
|
|
// INLINEASM - Represents an inline asm block. This node always has two
|
|
// return values: a chain and a flag result. The inputs are as follows:
|
|
// Operand #0 : Input chain.
|
|
// Operand #1 : a ExternalSymbolSDNode with a pointer to the asm string.
|
|
// Operand #2n+2: A RegisterNode.
|
|
// Operand #2n+3: A TargetConstant, indicating if the reg is a use/def
|
|
// Operand #last: Optional, an incoming flag.
|
|
INLINEASM,
|
|
|
|
// DBG_LABEL, EH_LABEL - Represents a label in mid basic block used to track
|
|
// locations needed for debug and exception handling tables. These nodes
|
|
// take a chain as input and return a chain.
|
|
DBG_LABEL,
|
|
EH_LABEL,
|
|
|
|
// DECLARE - Represents a llvm.dbg.declare intrinsic. It's used to track
|
|
// local variable declarations for debugging information. First operand is
|
|
// a chain, while the next two operands are first two arguments (address
|
|
// and variable) of a llvm.dbg.declare instruction.
|
|
DECLARE,
|
|
|
|
// STACKSAVE - STACKSAVE has one operand, an input chain. It produces a
|
|
// value, the same type as the pointer type for the system, and an output
|
|
// chain.
|
|
STACKSAVE,
|
|
|
|
// STACKRESTORE has two operands, an input chain and a pointer to restore to
|
|
// it returns an output chain.
|
|
STACKRESTORE,
|
|
|
|
// CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
|
|
// a call sequence, and carry arbitrary information that target might want
|
|
// to know. The first operand is a chain, the rest are specified by the
|
|
// target and not touched by the DAG optimizers.
|
|
// CALLSEQ_START..CALLSEQ_END pairs may not be nested.
|
|
CALLSEQ_START, // Beginning of a call sequence
|
|
CALLSEQ_END, // End of a call sequence
|
|
|
|
// VAARG - VAARG has three operands: an input chain, a pointer, and a
|
|
// SRCVALUE. It returns a pair of values: the vaarg value and a new chain.
|
|
VAARG,
|
|
|
|
// VACOPY - VACOPY has five operands: an input chain, a destination pointer,
|
|
// a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
|
|
// source.
|
|
VACOPY,
|
|
|
|
// VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
|
|
// pointer, and a SRCVALUE.
|
|
VAEND, VASTART,
|
|
|
|
// SRCVALUE - This is a node type that holds a Value* that is used to
|
|
// make reference to a value in the LLVM IR.
|
|
SRCVALUE,
|
|
|
|
// MEMOPERAND - This is a node that contains a MachineMemOperand which
|
|
// records information about a memory reference. This is used to make
|
|
// AliasAnalysis queries from the backend.
|
|
MEMOPERAND,
|
|
|
|
// PCMARKER - This corresponds to the pcmarker intrinsic.
|
|
PCMARKER,
|
|
|
|
// READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
|
|
// The only operand is a chain and a value and a chain are produced. The
|
|
// value is the contents of the architecture specific cycle counter like
|
|
// register (or other high accuracy low latency clock source)
|
|
READCYCLECOUNTER,
|
|
|
|
// HANDLENODE node - Used as a handle for various purposes.
|
|
HANDLENODE,
|
|
|
|
// DBG_STOPPOINT - This node is used to represent a source location for
|
|
// debug info. It takes token chain as input, and carries a line number,
|
|
// column number, and a pointer to a CompileUnit object identifying
|
|
// the containing compilation unit. It produces a token chain as output.
|
|
DBG_STOPPOINT,
|
|
|
|
// DEBUG_LOC - This node is used to represent source line information
|
|
// embedded in the code. It takes a token chain as input, then a line
|
|
// number, then a column then a file id (provided by MachineModuleInfo.) It
|
|
// produces a token chain as output.
|
|
DEBUG_LOC,
|
|
|
|
// TRAMPOLINE - This corresponds to the init_trampoline intrinsic.
|
|
// It takes as input a token chain, the pointer to the trampoline,
|
|
// the pointer to the nested function, the pointer to pass for the
|
|
// 'nest' parameter, a SRCVALUE for the trampoline and another for
|
|
// the nested function (allowing targets to access the original
|
|
// Function*). It produces the result of the intrinsic and a token
|
|
// chain as output.
|
|
TRAMPOLINE,
|
|
|
|
// TRAP - Trapping instruction
|
|
TRAP,
|
|
|
|
// PREFETCH - This corresponds to a prefetch intrinsic. It takes chains are
|
|
// their first operand. The other operands are the address to prefetch,
|
|
// read / write specifier, and locality specifier.
|
|
PREFETCH,
|
|
|
|
// OUTCHAIN = MEMBARRIER(INCHAIN, load-load, load-store, store-load,
|
|
// store-store, device)
|
|
// This corresponds to the memory.barrier intrinsic.
|
|
// it takes an input chain, 4 operands to specify the type of barrier, an
|
|
// operand specifying if the barrier applies to device and uncached memory
|
|
// and produces an output chain.
|
|
MEMBARRIER,
|
|
|
|
// Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
|
|
// this corresponds to the atomic.lcs intrinsic.
|
|
// cmp is compared to *ptr, and if equal, swap is stored in *ptr.
|
|
// the return is always the original value in *ptr
|
|
ATOMIC_CMP_SWAP,
|
|
|
|
// Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt)
|
|
// this corresponds to the atomic.swap intrinsic.
|
|
// amt is stored to *ptr atomically.
|
|
// the return is always the original value in *ptr
|
|
ATOMIC_SWAP,
|
|
|
|
// Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amt)
|
|
// this corresponds to the atomic.load.[OpName] intrinsic.
|
|
// op(*ptr, amt) is stored to *ptr atomically.
|
|
// the return is always the original value in *ptr
|
|
ATOMIC_LOAD_ADD,
|
|
ATOMIC_LOAD_SUB,
|
|
ATOMIC_LOAD_AND,
|
|
ATOMIC_LOAD_OR,
|
|
ATOMIC_LOAD_XOR,
|
|
ATOMIC_LOAD_NAND,
|
|
ATOMIC_LOAD_MIN,
|
|
ATOMIC_LOAD_MAX,
|
|
ATOMIC_LOAD_UMIN,
|
|
ATOMIC_LOAD_UMAX,
|
|
|
|
// BUILTIN_OP_END - This must be the last enum value in this list.
|
|
BUILTIN_OP_END
|
|
};
|
|
|
|
/// Node predicates
|
|
|
|
/// isBuildVectorAllOnes - Return true if the specified node is a
|
|
/// BUILD_VECTOR where all of the elements are ~0 or undef.
|
|
bool isBuildVectorAllOnes(const SDNode *N);
|
|
|
|
/// isBuildVectorAllZeros - Return true if the specified node is a
|
|
/// BUILD_VECTOR where all of the elements are 0 or undef.
|
|
bool isBuildVectorAllZeros(const SDNode *N);
|
|
|
|
/// isScalarToVector - Return true if the specified node is a
|
|
/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
|
|
/// element is not an undef.
|
|
bool isScalarToVector(const SDNode *N);
|
|
|
|
/// isDebugLabel - Return true if the specified node represents a debug
|
|
/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
|
|
bool isDebugLabel(const SDNode *N);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
/// MemIndexedMode enum - This enum defines the load / store indexed
|
|
/// addressing modes.
|
|
///
|
|
/// UNINDEXED "Normal" load / store. The effective address is already
|
|
/// computed and is available in the base pointer. The offset
|
|
/// operand is always undefined. In addition to producing a
|
|
/// chain, an unindexed load produces one value (result of the
|
|
/// load); an unindexed store does not produce a value.
|
|
///
|
|
/// PRE_INC Similar to the unindexed mode where the effective address is
|
|
/// PRE_DEC the value of the base pointer add / subtract the offset.
|
|
/// It considers the computation as being folded into the load /
|
|
/// store operation (i.e. the load / store does the address
|
|
/// computation as well as performing the memory transaction).
|
|
/// The base operand is always undefined. In addition to
|
|
/// producing a chain, pre-indexed load produces two values
|
|
/// (result of the load and the result of the address
|
|
/// computation); a pre-indexed store produces one value (result
|
|
/// of the address computation).
|
|
///
|
|
/// POST_INC The effective address is the value of the base pointer. The
|
|
/// POST_DEC value of the offset operand is then added to / subtracted
|
|
/// from the base after memory transaction. In addition to
|
|
/// producing a chain, post-indexed load produces two values
|
|
/// (the result of the load and the result of the base +/- offset
|
|
/// computation); a post-indexed store produces one value (the
|
|
/// the result of the base +/- offset computation).
|
|
///
|
|
enum MemIndexedMode {
|
|
UNINDEXED = 0,
|
|
PRE_INC,
|
|
PRE_DEC,
|
|
POST_INC,
|
|
POST_DEC,
|
|
LAST_INDEXED_MODE
|
|
};
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
/// LoadExtType enum - This enum defines the three variants of LOADEXT
|
|
/// (load with extension).
|
|
///
|
|
/// SEXTLOAD loads the integer operand and sign extends it to a larger
|
|
/// integer result type.
|
|
/// ZEXTLOAD loads the integer operand and zero extends it to a larger
|
|
/// integer result type.
|
|
/// EXTLOAD is used for three things: floating point extending loads,
|
|
/// integer extending loads [the top bits are undefined], and vector
|
|
/// extending loads [load into low elt].
|
|
///
|
|
enum LoadExtType {
|
|
NON_EXTLOAD = 0,
|
|
EXTLOAD,
|
|
SEXTLOAD,
|
|
ZEXTLOAD,
|
|
LAST_LOADEXT_TYPE
|
|
};
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
/// ISD::CondCode enum - These are ordered carefully to make the bitfields
|
|
/// below work out, when considering SETFALSE (something that never exists
|
|
/// dynamically) as 0. "U" -> Unsigned (for integer operands) or Unordered
|
|
/// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
|
|
/// to. If the "N" column is 1, the result of the comparison is undefined if
|
|
/// the input is a NAN.
|
|
///
|
|
/// All of these (except for the 'always folded ops') should be handled for
|
|
/// floating point. For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
|
|
/// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
|
|
///
|
|
/// Note that these are laid out in a specific order to allow bit-twiddling
|
|
/// to transform conditions.
|
|
enum CondCode {
|
|
// Opcode N U L G E Intuitive operation
|
|
SETFALSE, // 0 0 0 0 Always false (always folded)
|
|
SETOEQ, // 0 0 0 1 True if ordered and equal
|
|
SETOGT, // 0 0 1 0 True if ordered and greater than
|
|
SETOGE, // 0 0 1 1 True if ordered and greater than or equal
|
|
SETOLT, // 0 1 0 0 True if ordered and less than
|
|
SETOLE, // 0 1 0 1 True if ordered and less than or equal
|
|
SETONE, // 0 1 1 0 True if ordered and operands are unequal
|
|
SETO, // 0 1 1 1 True if ordered (no nans)
|
|
SETUO, // 1 0 0 0 True if unordered: isnan(X) | isnan(Y)
|
|
SETUEQ, // 1 0 0 1 True if unordered or equal
|
|
SETUGT, // 1 0 1 0 True if unordered or greater than
|
|
SETUGE, // 1 0 1 1 True if unordered, greater than, or equal
|
|
SETULT, // 1 1 0 0 True if unordered or less than
|
|
SETULE, // 1 1 0 1 True if unordered, less than, or equal
|
|
SETUNE, // 1 1 1 0 True if unordered or not equal
|
|
SETTRUE, // 1 1 1 1 Always true (always folded)
|
|
// Don't care operations: undefined if the input is a nan.
|
|
SETFALSE2, // 1 X 0 0 0 Always false (always folded)
|
|
SETEQ, // 1 X 0 0 1 True if equal
|
|
SETGT, // 1 X 0 1 0 True if greater than
|
|
SETGE, // 1 X 0 1 1 True if greater than or equal
|
|
SETLT, // 1 X 1 0 0 True if less than
|
|
SETLE, // 1 X 1 0 1 True if less than or equal
|
|
SETNE, // 1 X 1 1 0 True if not equal
|
|
SETTRUE2, // 1 X 1 1 1 Always true (always folded)
|
|
|
|
SETCC_INVALID // Marker value.
|
|
};
|
|
|
|
/// isSignedIntSetCC - Return true if this is a setcc instruction that
|
|
/// performs a signed comparison when used with integer operands.
|
|
inline bool isSignedIntSetCC(CondCode Code) {
|
|
return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
|
|
}
|
|
|
|
/// isUnsignedIntSetCC - Return true if this is a setcc instruction that
|
|
/// performs an unsigned comparison when used with integer operands.
|
|
inline bool isUnsignedIntSetCC(CondCode Code) {
|
|
return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
|
|
}
|
|
|
|
/// isTrueWhenEqual - Return true if the specified condition returns true if
|
|
/// the two operands to the condition are equal. Note that if one of the two
|
|
/// operands is a NaN, this value is meaningless.
|
|
inline bool isTrueWhenEqual(CondCode Cond) {
|
|
return ((int)Cond & 1) != 0;
|
|
}
|
|
|
|
/// getUnorderedFlavor - This function returns 0 if the condition is always
|
|
/// false if an operand is a NaN, 1 if the condition is always true if the
|
|
/// operand is a NaN, and 2 if the condition is undefined if the operand is a
|
|
/// NaN.
|
|
inline unsigned getUnorderedFlavor(CondCode Cond) {
|
|
return ((int)Cond >> 3) & 3;
|
|
}
|
|
|
|
/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
|
|
/// 'op' is a valid SetCC operation.
|
|
CondCode getSetCCInverse(CondCode Operation, bool isInteger);
|
|
|
|
/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
|
|
/// when given the operation for (X op Y).
|
|
CondCode getSetCCSwappedOperands(CondCode Operation);
|
|
|
|
/// getSetCCOrOperation - Return the result of a logical OR between different
|
|
/// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This
|
|
/// function returns SETCC_INVALID if it is not possible to represent the
|
|
/// resultant comparison.
|
|
CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
|
|
|
|
/// getSetCCAndOperation - Return the result of a logical AND between
|
|
/// different comparisons of identical values: ((X op1 Y) & (X op2 Y)). This
|
|
/// function returns SETCC_INVALID if it is not possible to represent the
|
|
/// resultant comparison.
|
|
CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
/// CvtCode enum - This enum defines the various converts CONVERT_RNDSAT
|
|
/// supports.
|
|
enum CvtCode {
|
|
CVT_FF, // Float from Float
|
|
CVT_FS, // Float from Signed
|
|
CVT_FU, // Float from Unsigned
|
|
CVT_SF, // Signed from Float
|
|
CVT_UF, // Unsigned from Float
|
|
CVT_SS, // Signed from Signed
|
|
CVT_SU, // Signed from Unsigned
|
|
CVT_US, // Unsigned from Signed
|
|
CVT_UU, // Unsigned from Unsigned
|
|
CVT_INVALID // Marker - Invalid opcode
|
|
};
|
|
} // end llvm::ISD namespace
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// SDValue - Unlike LLVM values, Selection DAG nodes may return multiple
|
|
/// values as the result of a computation. Many nodes return multiple values,
|
|
/// from loads (which define a token and a return value) to ADDC (which returns
|
|
/// a result and a carry value), to calls (which may return an arbitrary number
|
|
/// of values).
|
|
///
|
|
/// As such, each use of a SelectionDAG computation must indicate the node that
|
|
/// computes it as well as which return value to use from that node. This pair
|
|
/// of information is represented with the SDValue value type.
|
|
///
|
|
class SDValue {
|
|
SDNode *Node; // The node defining the value we are using.
|
|
unsigned ResNo; // Which return value of the node we are using.
|
|
public:
|
|
SDValue() : Node(0), ResNo(0) {}
|
|
SDValue(SDNode *node, unsigned resno) : Node(node), ResNo(resno) {}
|
|
|
|
/// get the index which selects a specific result in the SDNode
|
|
unsigned getResNo() const { return ResNo; }
|
|
|
|
/// get the SDNode which holds the desired result
|
|
SDNode *getNode() const { return Node; }
|
|
|
|
/// set the SDNode
|
|
void setNode(SDNode *N) { Node = N; }
|
|
|
|
bool operator==(const SDValue &O) const {
|
|
return Node == O.Node && ResNo == O.ResNo;
|
|
}
|
|
bool operator!=(const SDValue &O) const {
|
|
return !operator==(O);
|
|
}
|
|
bool operator<(const SDValue &O) const {
|
|
return Node < O.Node || (Node == O.Node && ResNo < O.ResNo);
|
|
}
|
|
|
|
SDValue getValue(unsigned R) const {
|
|
return SDValue(Node, R);
|
|
}
|
|
|
|
// isOperandOf - Return true if this node is an operand of N.
|
|
bool isOperandOf(SDNode *N) const;
|
|
|
|
/// getValueType - Return the ValueType of the referenced return value.
|
|
///
|
|
inline MVT getValueType() const;
|
|
|
|
/// getValueSizeInBits - Returns the size of the value in bits.
|
|
///
|
|
unsigned getValueSizeInBits() const {
|
|
return getValueType().getSizeInBits();
|
|
}
|
|
|
|
// Forwarding methods - These forward to the corresponding methods in SDNode.
|
|
inline unsigned getOpcode() const;
|
|
inline unsigned getNumOperands() const;
|
|
inline const SDValue &getOperand(unsigned i) const;
|
|
inline uint64_t getConstantOperandVal(unsigned i) const;
|
|
inline bool isTargetOpcode() const;
|
|
inline bool isMachineOpcode() const;
|
|
inline unsigned getMachineOpcode() const;
|
|
inline const DebugLoc getDebugLoc() const;
|
|
|
|
|
|
/// reachesChainWithoutSideEffects - Return true if this operand (which must
|
|
/// be a chain) reaches the specified operand without crossing any
|
|
/// side-effecting instructions. In practice, this looks through token
|
|
/// factors and non-volatile loads. In order to remain efficient, this only
|
|
/// looks a couple of nodes in, it does not do an exhaustive search.
|
|
bool reachesChainWithoutSideEffects(SDValue Dest,
|
|
unsigned Depth = 2) const;
|
|
|
|
/// use_empty - Return true if there are no nodes using value ResNo
|
|
/// of Node.
|
|
///
|
|
inline bool use_empty() const;
|
|
|
|
/// hasOneUse - Return true if there is exactly one node using value
|
|
/// ResNo of Node.
|
|
///
|
|
inline bool hasOneUse() const;
|
|
};
|
|
|
|
|
|
template<> struct DenseMapInfo<SDValue> {
|
|
static inline SDValue getEmptyKey() {
|
|
return SDValue((SDNode*)-1, -1U);
|
|
}
|
|
static inline SDValue getTombstoneKey() {
|
|
return SDValue((SDNode*)-1, 0);
|
|
}
|
|
static unsigned getHashValue(const SDValue &Val) {
|
|
return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
|
|
(unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
|
|
}
|
|
static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
|
|
return LHS == RHS;
|
|
}
|
|
static bool isPod() { return true; }
|
|
};
|
|
|
|
/// simplify_type specializations - Allow casting operators to work directly on
|
|
/// SDValues as if they were SDNode*'s.
|
|
template<> struct simplify_type<SDValue> {
|
|
typedef SDNode* SimpleType;
|
|
static SimpleType getSimplifiedValue(const SDValue &Val) {
|
|
return static_cast<SimpleType>(Val.getNode());
|
|
}
|
|
};
|
|
template<> struct simplify_type<const SDValue> {
|
|
typedef SDNode* SimpleType;
|
|
static SimpleType getSimplifiedValue(const SDValue &Val) {
|
|
return static_cast<SimpleType>(Val.getNode());
|
|
}
|
|
};
|
|
|
|
/// SDUse - Represents a use of a SDNode. This class holds an SDValue,
|
|
/// which records the SDNode being used and the result number, a
|
|
/// pointer to the SDNode using the value, and Next and Prev pointers,
|
|
/// which link together all the uses of an SDNode.
|
|
///
|
|
class SDUse {
|
|
/// Val - The value being used.
|
|
SDValue Val;
|
|
/// User - The user of this value.
|
|
SDNode *User;
|
|
/// Prev, Next - Pointers to the uses list of the SDNode referred by
|
|
/// this operand.
|
|
SDUse **Prev, *Next;
|
|
|
|
SDUse(const SDUse &U); // Do not implement
|
|
void operator=(const SDUse &U); // Do not implement
|
|
|
|
public:
|
|
SDUse() : Val(), User(NULL), Prev(NULL), Next(NULL) {}
|
|
|
|
/// Normally SDUse will just implicitly convert to an SDValue that it holds.
|
|
operator const SDValue&() const { return Val; }
|
|
|
|
/// If implicit conversion to SDValue doesn't work, the get() method returns
|
|
/// the SDValue.
|
|
const SDValue &get() const { return Val; }
|
|
|
|
/// getUser - This returns the SDNode that contains this Use.
|
|
SDNode *getUser() { return User; }
|
|
|
|
/// getNext - Get the next SDUse in the use list.
|
|
SDUse *getNext() const { return Next; }
|
|
|
|
/// getNode - Convenience function for get().getNode().
|
|
SDNode *getNode() const { return Val.getNode(); }
|
|
/// getResNo - Convenience function for get().getResNo().
|
|
unsigned getResNo() const { return Val.getResNo(); }
|
|
/// getValueType - Convenience function for get().getValueType().
|
|
MVT getValueType() const { return Val.getValueType(); }
|
|
|
|
/// operator== - Convenience function for get().operator==
|
|
bool operator==(const SDValue &V) const {
|
|
return Val == V;
|
|
}
|
|
|
|
/// operator!= - Convenience function for get().operator!=
|
|
bool operator!=(const SDValue &V) const {
|
|
return Val != V;
|
|
}
|
|
|
|
/// operator< - Convenience function for get().operator<
|
|
bool operator<(const SDValue &V) const {
|
|
return Val < V;
|
|
}
|
|
|
|
private:
|
|
friend class SelectionDAG;
|
|
friend class SDNode;
|
|
|
|
void setUser(SDNode *p) { User = p; }
|
|
|
|
/// set - Remove this use from its existing use list, assign it the
|
|
/// given value, and add it to the new value's node's use list.
|
|
inline void set(const SDValue &V);
|
|
/// setInitial - like set, but only supports initializing a newly-allocated
|
|
/// SDUse with a non-null value.
|
|
inline void setInitial(const SDValue &V);
|
|
/// setNode - like set, but only sets the Node portion of the value,
|
|
/// leaving the ResNo portion unmodified.
|
|
inline void setNode(SDNode *N);
|
|
|
|
void addToList(SDUse **List) {
|
|
Next = *List;
|
|
if (Next) Next->Prev = &Next;
|
|
Prev = List;
|
|
*List = this;
|
|
}
|
|
|
|
void removeFromList() {
|
|
*Prev = Next;
|
|
if (Next) Next->Prev = Prev;
|
|
}
|
|
};
|
|
|
|
/// simplify_type specializations - Allow casting operators to work directly on
|
|
/// SDValues as if they were SDNode*'s.
|
|
template<> struct simplify_type<SDUse> {
|
|
typedef SDNode* SimpleType;
|
|
static SimpleType getSimplifiedValue(const SDUse &Val) {
|
|
return static_cast<SimpleType>(Val.getNode());
|
|
}
|
|
};
|
|
template<> struct simplify_type<const SDUse> {
|
|
typedef SDNode* SimpleType;
|
|
static SimpleType getSimplifiedValue(const SDUse &Val) {
|
|
return static_cast<SimpleType>(Val.getNode());
|
|
}
|
|
};
|
|
|
|
|
|
/// SDNode - Represents one node in the SelectionDAG.
|
|
///
|
|
class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
|
|
private:
|
|
/// NodeType - The operation that this node performs.
|
|
///
|
|
short NodeType;
|
|
|
|
/// OperandsNeedDelete - This is true if OperandList was new[]'d. If true,
|
|
/// then they will be delete[]'d when the node is destroyed.
|
|
unsigned short OperandsNeedDelete : 1;
|
|
|
|
protected:
|
|
/// SubclassData - This member is defined by this class, but is not used for
|
|
/// anything. Subclasses can use it to hold whatever state they find useful.
|
|
/// This field is initialized to zero by the ctor.
|
|
unsigned short SubclassData : 15;
|
|
|
|
private:
|
|
/// NodeId - Unique id per SDNode in the DAG.
|
|
int NodeId;
|
|
|
|
/// OperandList - The values that are used by this operation.
|
|
///
|
|
SDUse *OperandList;
|
|
|
|
/// ValueList - The types of the values this node defines. SDNode's may
|
|
/// define multiple values simultaneously.
|
|
const MVT *ValueList;
|
|
|
|
/// UseList - List of uses for this SDNode.
|
|
SDUse *UseList;
|
|
|
|
/// NumOperands/NumValues - The number of entries in the Operand/Value list.
|
|
unsigned short NumOperands, NumValues;
|
|
|
|
/// debugLoc - source line information.
|
|
DebugLoc debugLoc;
|
|
|
|
/// getValueTypeList - Return a pointer to the specified value type.
|
|
static const MVT *getValueTypeList(MVT VT);
|
|
|
|
friend class SelectionDAG;
|
|
friend struct ilist_traits<SDNode>;
|
|
|
|
public:
|
|
//===--------------------------------------------------------------------===//
|
|
// Accessors
|
|
//
|
|
|
|
/// getOpcode - Return the SelectionDAG opcode value for this node. For
|
|
/// pre-isel nodes (those for which isMachineOpcode returns false), these
|
|
/// are the opcode values in the ISD and <target>ISD namespaces. For
|
|
/// post-isel opcodes, see getMachineOpcode.
|
|
unsigned getOpcode() const { return (unsigned short)NodeType; }
|
|
|
|
/// isTargetOpcode - Test if this node has a target-specific opcode (in the
|
|
/// \<target\>ISD namespace).
|
|
bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
|
|
|
|
/// isMachineOpcode - Test if this node has a post-isel opcode, directly
|
|
/// corresponding to a MachineInstr opcode.
|
|
bool isMachineOpcode() const { return NodeType < 0; }
|
|
|
|
/// getMachineOpcode - This may only be called if isMachineOpcode returns
|
|
/// true. It returns the MachineInstr opcode value that the node's opcode
|
|
/// corresponds to.
|
|
unsigned getMachineOpcode() const {
|
|
assert(isMachineOpcode() && "Not a MachineInstr opcode!");
|
|
return ~NodeType;
|
|
}
|
|
|
|
/// use_empty - Return true if there are no uses of this node.
|
|
///
|
|
bool use_empty() const { return UseList == NULL; }
|
|
|
|
/// hasOneUse - Return true if there is exactly one use of this node.
|
|
///
|
|
bool hasOneUse() const {
|
|
return !use_empty() && next(use_begin()) == use_end();
|
|
}
|
|
|
|
/// use_size - Return the number of uses of this node. This method takes
|
|
/// time proportional to the number of uses.
|
|
///
|
|
size_t use_size() const { return std::distance(use_begin(), use_end()); }
|
|
|
|
/// getNodeId - Return the unique node id.
|
|
///
|
|
int getNodeId() const { return NodeId; }
|
|
|
|
/// setNodeId - Set unique node id.
|
|
void setNodeId(int Id) { NodeId = Id; }
|
|
|
|
/// getDebugLoc - Return the source location info.
|
|
const DebugLoc getDebugLoc() const { return debugLoc; }
|
|
|
|
/// setDebugLoc - Set source location info. Try to avoid this, putting
|
|
/// it in the constructor is preferable.
|
|
void setDebugLoc(const DebugLoc dl) { debugLoc = dl; }
|
|
|
|
/// use_iterator - This class provides iterator support for SDUse
|
|
/// operands that use a specific SDNode.
|
|
class use_iterator
|
|
: public forward_iterator<SDUse, ptrdiff_t> {
|
|
SDUse *Op;
|
|
explicit use_iterator(SDUse *op) : Op(op) {
|
|
}
|
|
friend class SDNode;
|
|
public:
|
|
typedef forward_iterator<SDUse, ptrdiff_t>::reference reference;
|
|
typedef forward_iterator<SDUse, ptrdiff_t>::pointer pointer;
|
|
|
|
use_iterator(const use_iterator &I) : Op(I.Op) {}
|
|
use_iterator() : Op(0) {}
|
|
|
|
bool operator==(const use_iterator &x) const {
|
|
return Op == x.Op;
|
|
}
|
|
bool operator!=(const use_iterator &x) const {
|
|
return !operator==(x);
|
|
}
|
|
|
|
/// atEnd - return true if this iterator is at the end of uses list.
|
|
bool atEnd() const { return Op == 0; }
|
|
|
|
// Iterator traversal: forward iteration only.
|
|
use_iterator &operator++() { // Preincrement
|
|
assert(Op && "Cannot increment end iterator!");
|
|
Op = Op->getNext();
|
|
return *this;
|
|
}
|
|
|
|
use_iterator operator++(int) { // Postincrement
|
|
use_iterator tmp = *this; ++*this; return tmp;
|
|
}
|
|
|
|
/// Retrieve a pointer to the current user node.
|
|
SDNode *operator*() const {
|
|
assert(Op && "Cannot dereference end iterator!");
|
|
return Op->getUser();
|
|
}
|
|
|
|
SDNode *operator->() const { return operator*(); }
|
|
|
|
SDUse &getUse() const { return *Op; }
|
|
|
|
/// getOperandNo - Retrieve the operand # of this use in its user.
|
|
///
|
|
unsigned getOperandNo() const {
|
|
assert(Op && "Cannot dereference end iterator!");
|
|
return (unsigned)(Op - Op->getUser()->OperandList);
|
|
}
|
|
};
|
|
|
|
/// use_begin/use_end - Provide iteration support to walk over all uses
|
|
/// of an SDNode.
|
|
|
|
use_iterator use_begin() const {
|
|
return use_iterator(UseList);
|
|
}
|
|
|
|
static use_iterator use_end() { return use_iterator(0); }
|
|
|
|
|
|
/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
|
|
/// indicated value. This method ignores uses of other values defined by this
|
|
/// operation.
|
|
bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
|
|
|
|
/// hasAnyUseOfValue - Return true if there are any use of the indicated
|
|
/// value. This method ignores uses of other values defined by this operation.
|
|
bool hasAnyUseOfValue(unsigned Value) const;
|
|
|
|
/// isOnlyUserOf - Return true if this node is the only use of N.
|
|
///
|
|
bool isOnlyUserOf(SDNode *N) const;
|
|
|
|
/// isOperandOf - Return true if this node is an operand of N.
|
|
///
|
|
bool isOperandOf(SDNode *N) const;
|
|
|
|
/// isPredecessorOf - Return true if this node is a predecessor of N. This
|
|
/// node is either an operand of N or it can be reached by recursively
|
|
/// traversing up the operands.
|
|
/// NOTE: this is an expensive method. Use it carefully.
|
|
bool isPredecessorOf(SDNode *N) const;
|
|
|
|
/// getNumOperands - Return the number of values used by this operation.
|
|
///
|
|
unsigned getNumOperands() const { return NumOperands; }
|
|
|
|
/// getConstantOperandVal - Helper method returns the integer value of a
|
|
/// ConstantSDNode operand.
|
|
uint64_t getConstantOperandVal(unsigned Num) const;
|
|
|
|
const SDValue &getOperand(unsigned Num) const {
|
|
assert(Num < NumOperands && "Invalid child # of SDNode!");
|
|
return OperandList[Num];
|
|
}
|
|
|
|
typedef SDUse* op_iterator;
|
|
op_iterator op_begin() const { return OperandList; }
|
|
op_iterator op_end() const { return OperandList+NumOperands; }
|
|
|
|
SDVTList getVTList() const {
|
|
SDVTList X = { ValueList, NumValues };
|
|
return X;
|
|
};
|
|
|
|
/// getFlaggedNode - If this node has a flag operand, return the node
|
|
/// to which the flag operand points. Otherwise return NULL.
|
|
SDNode *getFlaggedNode() const {
|
|
if (getNumOperands() != 0 &&
|
|
getOperand(getNumOperands()-1).getValueType() == MVT::Flag)
|
|
return getOperand(getNumOperands()-1).getNode();
|
|
return 0;
|
|
}
|
|
|
|
// If this is a pseudo op, like copyfromreg, look to see if there is a
|
|
// real target node flagged to it. If so, return the target node.
|
|
const SDNode *getFlaggedMachineNode() const {
|
|
const SDNode *FoundNode = this;
|
|
|
|
// Climb up flag edges until a machine-opcode node is found, or the
|
|
// end of the chain is reached.
|
|
while (!FoundNode->isMachineOpcode()) {
|
|
const SDNode *N = FoundNode->getFlaggedNode();
|
|
if (!N) break;
|
|
FoundNode = N;
|
|
}
|
|
|
|
return FoundNode;
|
|
}
|
|
|
|
/// getNumValues - Return the number of values defined/returned by this
|
|
/// operator.
|
|
///
|
|
unsigned getNumValues() const { return NumValues; }
|
|
|
|
/// getValueType - Return the type of a specified result.
|
|
///
|
|
MVT getValueType(unsigned ResNo) const {
|
|
assert(ResNo < NumValues && "Illegal result number!");
|
|
return ValueList[ResNo];
|
|
}
|
|
|
|
/// getValueSizeInBits - Returns MVT::getSizeInBits(getValueType(ResNo)).
|
|
///
|
|
unsigned getValueSizeInBits(unsigned ResNo) const {
|
|
return getValueType(ResNo).getSizeInBits();
|
|
}
|
|
|
|
typedef const MVT* value_iterator;
|
|
value_iterator value_begin() const { return ValueList; }
|
|
value_iterator value_end() const { return ValueList+NumValues; }
|
|
|
|
/// getOperationName - Return the opcode of this operation for printing.
|
|
///
|
|
std::string getOperationName(const SelectionDAG *G = 0) const;
|
|
static const char* getIndexedModeName(ISD::MemIndexedMode AM);
|
|
void print_types(raw_ostream &OS, const SelectionDAG *G) const;
|
|
void print_details(raw_ostream &OS, const SelectionDAG *G) const;
|
|
void print(raw_ostream &OS, const SelectionDAG *G = 0) const;
|
|
void printr(raw_ostream &OS, const SelectionDAG *G = 0) const;
|
|
void dump() const;
|
|
void dumpr() const;
|
|
void dump(const SelectionDAG *G) const;
|
|
|
|
static bool classof(const SDNode *) { return true; }
|
|
|
|
/// Profile - Gather unique data for the node.
|
|
///
|
|
void Profile(FoldingSetNodeID &ID) const;
|
|
|
|
/// addUse - This method should only be used by the SDUse class.
|
|
///
|
|
void addUse(SDUse &U) { U.addToList(&UseList); }
|
|
|
|
protected:
|
|
static SDVTList getSDVTList(MVT VT) {
|
|
SDVTList Ret = { getValueTypeList(VT), 1 };
|
|
return Ret;
|
|
}
|
|
|
|
SDNode(unsigned Opc, const DebugLoc dl, SDVTList VTs, const SDValue *Ops,
|
|
unsigned NumOps)
|
|
: NodeType(Opc), OperandsNeedDelete(true), SubclassData(0),
|
|
NodeId(-1),
|
|
OperandList(NumOps ? new SDUse[NumOps] : 0),
|
|
ValueList(VTs.VTs), UseList(NULL),
|
|
NumOperands(NumOps), NumValues(VTs.NumVTs),
|
|
debugLoc(dl) {
|
|
for (unsigned i = 0; i != NumOps; ++i) {
|
|
OperandList[i].setUser(this);
|
|
OperandList[i].setInitial(Ops[i]);
|
|
}
|
|
}
|
|
|
|
/// This constructor adds no operands itself; operands can be
|
|
/// set later with InitOperands.
|
|
SDNode(unsigned Opc, const DebugLoc dl, SDVTList VTs)
|
|
: NodeType(Opc), OperandsNeedDelete(false), SubclassData(0),
|
|
NodeId(-1), OperandList(0), ValueList(VTs.VTs), UseList(NULL),
|
|
NumOperands(0), NumValues(VTs.NumVTs),
|
|
debugLoc(dl) {}
|
|
|
|
/// InitOperands - Initialize the operands list of this with 1 operand.
|
|
void InitOperands(SDUse *Ops, const SDValue &Op0) {
|
|
Ops[0].setUser(this);
|
|
Ops[0].setInitial(Op0);
|
|
NumOperands = 1;
|
|
OperandList = Ops;
|
|
}
|
|
|
|
/// InitOperands - Initialize the operands list of this with 2 operands.
|
|
void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1) {
|
|
Ops[0].setUser(this);
|
|
Ops[0].setInitial(Op0);
|
|
Ops[1].setUser(this);
|
|
Ops[1].setInitial(Op1);
|
|
NumOperands = 2;
|
|
OperandList = Ops;
|
|
}
|
|
|
|
/// InitOperands - Initialize the operands list of this with 3 operands.
|
|
void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1,
|
|
const SDValue &Op2) {
|
|
Ops[0].setUser(this);
|
|
Ops[0].setInitial(Op0);
|
|
Ops[1].setUser(this);
|
|
Ops[1].setInitial(Op1);
|
|
Ops[2].setUser(this);
|
|
Ops[2].setInitial(Op2);
|
|
NumOperands = 3;
|
|
OperandList = Ops;
|
|
}
|
|
|
|
/// InitOperands - Initialize the operands list of this with 4 operands.
|
|
void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1,
|
|
const SDValue &Op2, const SDValue &Op3) {
|
|
Ops[0].setUser(this);
|
|
Ops[0].setInitial(Op0);
|
|
Ops[1].setUser(this);
|
|
Ops[1].setInitial(Op1);
|
|
Ops[2].setUser(this);
|
|
Ops[2].setInitial(Op2);
|
|
Ops[3].setUser(this);
|
|
Ops[3].setInitial(Op3);
|
|
NumOperands = 4;
|
|
OperandList = Ops;
|
|
}
|
|
|
|
/// InitOperands - Initialize the operands list of this with N operands.
|
|
void InitOperands(SDUse *Ops, const SDValue *Vals, unsigned N) {
|
|
for (unsigned i = 0; i != N; ++i) {
|
|
Ops[i].setUser(this);
|
|
Ops[i].setInitial(Vals[i]);
|
|
}
|
|
NumOperands = N;
|
|
OperandList = Ops;
|
|
}
|
|
|
|
/// DropOperands - Release the operands and set this node to have
|
|
/// zero operands.
|
|
void DropOperands();
|
|
};
|
|
|
|
|
|
// Define inline functions from the SDValue class.
|
|
|
|
inline unsigned SDValue::getOpcode() const {
|
|
return Node->getOpcode();
|
|
}
|
|
inline MVT SDValue::getValueType() const {
|
|
return Node->getValueType(ResNo);
|
|
}
|
|
inline unsigned SDValue::getNumOperands() const {
|
|
return Node->getNumOperands();
|
|
}
|
|
inline const SDValue &SDValue::getOperand(unsigned i) const {
|
|
return Node->getOperand(i);
|
|
}
|
|
inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
|
|
return Node->getConstantOperandVal(i);
|
|
}
|
|
inline bool SDValue::isTargetOpcode() const {
|
|
return Node->isTargetOpcode();
|
|
}
|
|
inline bool SDValue::isMachineOpcode() const {
|
|
return Node->isMachineOpcode();
|
|
}
|
|
inline unsigned SDValue::getMachineOpcode() const {
|
|
return Node->getMachineOpcode();
|
|
}
|
|
inline bool SDValue::use_empty() const {
|
|
return !Node->hasAnyUseOfValue(ResNo);
|
|
}
|
|
inline bool SDValue::hasOneUse() const {
|
|
return Node->hasNUsesOfValue(1, ResNo);
|
|
}
|
|
inline const DebugLoc SDValue::getDebugLoc() const {
|
|
return Node->getDebugLoc();
|
|
}
|
|
|
|
// Define inline functions from the SDUse class.
|
|
|
|
inline void SDUse::set(const SDValue &V) {
|
|
if (Val.getNode()) removeFromList();
|
|
Val = V;
|
|
if (V.getNode()) V.getNode()->addUse(*this);
|
|
}
|
|
|
|
inline void SDUse::setInitial(const SDValue &V) {
|
|
Val = V;
|
|
V.getNode()->addUse(*this);
|
|
}
|
|
|
|
inline void SDUse::setNode(SDNode *N) {
|
|
if (Val.getNode()) removeFromList();
|
|
Val.setNode(N);
|
|
if (N) N->addUse(*this);
|
|
}
|
|
|
|
/// UnarySDNode - This class is used for single-operand SDNodes. This is solely
|
|
/// to allow co-allocation of node operands with the node itself.
|
|
class UnarySDNode : public SDNode {
|
|
SDUse Op;
|
|
public:
|
|
UnarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X)
|
|
: SDNode(Opc, dl, VTs) {
|
|
InitOperands(&Op, X);
|
|
}
|
|
};
|
|
|
|
/// BinarySDNode - This class is used for two-operand SDNodes. This is solely
|
|
/// to allow co-allocation of node operands with the node itself.
|
|
class BinarySDNode : public SDNode {
|
|
SDUse Ops[2];
|
|
public:
|
|
BinarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X, SDValue Y)
|
|
: SDNode(Opc, dl, VTs) {
|
|
InitOperands(Ops, X, Y);
|
|
}
|
|
};
|
|
|
|
/// TernarySDNode - This class is used for three-operand SDNodes. This is solely
|
|
/// to allow co-allocation of node operands with the node itself.
|
|
class TernarySDNode : public SDNode {
|
|
SDUse Ops[3];
|
|
public:
|
|
TernarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X, SDValue Y,
|
|
SDValue Z)
|
|
: SDNode(Opc, dl, VTs) {
|
|
InitOperands(Ops, X, Y, Z);
|
|
}
|
|
};
|
|
|
|
|
|
/// HandleSDNode - This class is used to form a handle around another node that
|
|
/// is persistant and is updated across invocations of replaceAllUsesWith on its
|
|
/// operand. This node should be directly created by end-users and not added to
|
|
/// the AllNodes list.
|
|
class HandleSDNode : public SDNode {
|
|
SDUse Op;
|
|
public:
|
|
// FIXME: Remove the "noinline" attribute once <rdar://problem/5852746> is
|
|
// fixed.
|
|
#ifdef __GNUC__
|
|
explicit __attribute__((__noinline__)) HandleSDNode(SDValue X)
|
|
#else
|
|
explicit HandleSDNode(SDValue X)
|
|
#endif
|
|
: SDNode(ISD::HANDLENODE, DebugLoc::getUnknownLoc(),
|
|
getSDVTList(MVT::Other)) {
|
|
InitOperands(&Op, X);
|
|
}
|
|
~HandleSDNode();
|
|
const SDValue &getValue() const { return Op; }
|
|
};
|
|
|
|
/// Abstact virtual class for operations for memory operations
|
|
class MemSDNode : public SDNode {
|
|
private:
|
|
// MemoryVT - VT of in-memory value.
|
|
MVT MemoryVT;
|
|
|
|
//! SrcValue - Memory location for alias analysis.
|
|
const Value *SrcValue;
|
|
|
|
//! SVOffset - Memory location offset. Note that base is defined in MemSDNode
|
|
int SVOffset;
|
|
|
|
public:
|
|
MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, MVT MemoryVT,
|
|
const Value *srcValue, int SVOff,
|
|
unsigned alignment, bool isvolatile);
|
|
|
|
MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, const SDValue *Ops,
|
|
unsigned NumOps, MVT MemoryVT, const Value *srcValue, int SVOff,
|
|
unsigned alignment, bool isvolatile);
|
|
|
|
/// Returns alignment and volatility of the memory access
|
|
unsigned getAlignment() const { return (1u << (SubclassData >> 6)) >> 1; }
|
|
bool isVolatile() const { return (SubclassData >> 5) & 1; }
|
|
|
|
/// getRawSubclassData - Return the SubclassData value, which contains an
|
|
/// encoding of the alignment and volatile information, as well as bits
|
|
/// used by subclasses. This function should only be used to compute a
|
|
/// FoldingSetNodeID value.
|
|
unsigned getRawSubclassData() const {
|
|
return SubclassData;
|
|
}
|
|
|
|
/// Returns the SrcValue and offset that describes the location of the access
|
|
const Value *getSrcValue() const { return SrcValue; }
|
|
int getSrcValueOffset() const { return SVOffset; }
|
|
|
|
/// getMemoryVT - Return the type of the in-memory value.
|
|
MVT getMemoryVT() const { return MemoryVT; }
|
|
|
|
/// getMemOperand - Return a MachineMemOperand object describing the memory
|
|
/// reference performed by operation.
|
|
MachineMemOperand getMemOperand() const;
|
|
|
|
const SDValue &getChain() const { return getOperand(0); }
|
|
const SDValue &getBasePtr() const {
|
|
return getOperand(getOpcode() == ISD::STORE ? 2 : 1);
|
|
}
|
|
|
|
// Methods to support isa and dyn_cast
|
|
static bool classof(const MemSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
// For some targets, we lower some target intrinsics to a MemIntrinsicNode
|
|
// with either an intrinsic or a target opcode.
|
|
return N->getOpcode() == ISD::LOAD ||
|
|
N->getOpcode() == ISD::STORE ||
|
|
N->getOpcode() == ISD::ATOMIC_CMP_SWAP ||
|
|
N->getOpcode() == ISD::ATOMIC_SWAP ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_ADD ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_SUB ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_AND ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_OR ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_XOR ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_NAND ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_MIN ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_MAX ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_UMIN ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_UMAX ||
|
|
N->getOpcode() == ISD::INTRINSIC_W_CHAIN ||
|
|
N->getOpcode() == ISD::INTRINSIC_VOID ||
|
|
N->isTargetOpcode();
|
|
}
|
|
};
|
|
|
|
/// AtomicSDNode - A SDNode reprenting atomic operations.
|
|
///
|
|
class AtomicSDNode : public MemSDNode {
|
|
SDUse Ops[4];
|
|
|
|
public:
|
|
// Opc: opcode for atomic
|
|
// VTL: value type list
|
|
// Chain: memory chain for operaand
|
|
// Ptr: address to update as a SDValue
|
|
// Cmp: compare value
|
|
// Swp: swap value
|
|
// SrcVal: address to update as a Value (used for MemOperand)
|
|
// Align: alignment of memory
|
|
AtomicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTL, MVT MemVT,
|
|
SDValue Chain, SDValue Ptr,
|
|
SDValue Cmp, SDValue Swp, const Value* SrcVal,
|
|
unsigned Align=0)
|
|
: MemSDNode(Opc, dl, VTL, MemVT, SrcVal, /*SVOffset=*/0,
|
|
Align, /*isVolatile=*/true) {
|
|
InitOperands(Ops, Chain, Ptr, Cmp, Swp);
|
|
}
|
|
AtomicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTL, MVT MemVT,
|
|
SDValue Chain, SDValue Ptr,
|
|
SDValue Val, const Value* SrcVal, unsigned Align=0)
|
|
: MemSDNode(Opc, dl, VTL, MemVT, SrcVal, /*SVOffset=*/0,
|
|
Align, /*isVolatile=*/true) {
|
|
InitOperands(Ops, Chain, Ptr, Val);
|
|
}
|
|
|
|
const SDValue &getBasePtr() const { return getOperand(1); }
|
|
const SDValue &getVal() const { return getOperand(2); }
|
|
|
|
bool isCompareAndSwap() const {
|
|
unsigned Op = getOpcode();
|
|
return Op == ISD::ATOMIC_CMP_SWAP;
|
|
}
|
|
|
|
// Methods to support isa and dyn_cast
|
|
static bool classof(const AtomicSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::ATOMIC_CMP_SWAP ||
|
|
N->getOpcode() == ISD::ATOMIC_SWAP ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_ADD ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_SUB ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_AND ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_OR ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_XOR ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_NAND ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_MIN ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_MAX ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_UMIN ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_UMAX;
|
|
}
|
|
};
|
|
|
|
/// MemIntrinsicSDNode - This SDNode is used for target intrinsic that touches
|
|
/// memory and need an associated memory operand.
|
|
///
|
|
class MemIntrinsicSDNode : public MemSDNode {
|
|
bool ReadMem; // Intrinsic reads memory
|
|
bool WriteMem; // Intrinsic writes memory
|
|
public:
|
|
MemIntrinsicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
|
|
const SDValue *Ops, unsigned NumOps,
|
|
MVT MemoryVT, const Value *srcValue, int SVO,
|
|
unsigned Align, bool Vol, bool ReadMem, bool WriteMem)
|
|
: MemSDNode(Opc, dl, VTs, Ops, NumOps, MemoryVT, srcValue, SVO, Align, Vol),
|
|
ReadMem(ReadMem), WriteMem(WriteMem) {
|
|
}
|
|
|
|
bool readMem() const { return ReadMem; }
|
|
bool writeMem() const { return WriteMem; }
|
|
|
|
// Methods to support isa and dyn_cast
|
|
static bool classof(const MemIntrinsicSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
// We lower some target intrinsics to their target opcode
|
|
// early a node with a target opcode can be of this class
|
|
return N->getOpcode() == ISD::INTRINSIC_W_CHAIN ||
|
|
N->getOpcode() == ISD::INTRINSIC_VOID ||
|
|
N->isTargetOpcode();
|
|
}
|
|
};
|
|
|
|
class ShuffleVectorSDNode : public SDNode {
|
|
SDUse Ops[2];
|
|
int *Mask;
|
|
protected:
|
|
friend class SelectionDAG;
|
|
ShuffleVectorSDNode(MVT VT, DebugLoc dl, SDValue N1, SDValue N2, int *M)
|
|
: SDNode(ISD::VECTOR_SHUFFLE, dl, getSDVTList(VT)), Mask(M) {
|
|
InitOperands(Ops, N1, N2);
|
|
}
|
|
public:
|
|
|
|
void getMask(SmallVectorImpl<int> &M) const {
|
|
MVT VT = getValueType(0);
|
|
M.clear();
|
|
for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
|
|
M.push_back(Mask[i]);
|
|
}
|
|
int getMaskElt(unsigned Idx) const {
|
|
assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!");
|
|
return Mask[Idx];
|
|
}
|
|
|
|
bool isSplat() const { return isSplatMask(Mask, getValueType(0)); }
|
|
int getSplatIndex() const {
|
|
assert(isSplat() && "Cannot get splat index for non-splat!");
|
|
return Mask[0];
|
|
}
|
|
static bool isSplatMask(const int *Mask, MVT VT);
|
|
|
|
static bool classof(const ShuffleVectorSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::VECTOR_SHUFFLE;
|
|
}
|
|
};
|
|
|
|
class ConstantSDNode : public SDNode {
|
|
const ConstantInt *Value;
|
|
friend class SelectionDAG;
|
|
ConstantSDNode(bool isTarget, const ConstantInt *val, MVT VT)
|
|
: SDNode(isTarget ? ISD::TargetConstant : ISD::Constant,
|
|
DebugLoc::getUnknownLoc(), getSDVTList(VT)), Value(val) {
|
|
}
|
|
public:
|
|
|
|
const ConstantInt *getConstantIntValue() const { return Value; }
|
|
const APInt &getAPIntValue() const { return Value->getValue(); }
|
|
uint64_t getZExtValue() const { return Value->getZExtValue(); }
|
|
int64_t getSExtValue() const { return Value->getSExtValue(); }
|
|
|
|
bool isNullValue() const { return Value->isNullValue(); }
|
|
bool isAllOnesValue() const { return Value->isAllOnesValue(); }
|
|
|
|
static bool classof(const ConstantSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::Constant ||
|
|
N->getOpcode() == ISD::TargetConstant;
|
|
}
|
|
};
|
|
|
|
class ConstantFPSDNode : public SDNode {
|
|
const ConstantFP *Value;
|
|
friend class SelectionDAG;
|
|
ConstantFPSDNode(bool isTarget, const ConstantFP *val, MVT VT)
|
|
: SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP,
|
|
DebugLoc::getUnknownLoc(), getSDVTList(VT)), Value(val) {
|
|
}
|
|
public:
|
|
|
|
const APFloat& getValueAPF() const { return Value->getValueAPF(); }
|
|
const ConstantFP *getConstantFPValue() const { return Value; }
|
|
|
|
/// isExactlyValue - We don't rely on operator== working on double values, as
|
|
/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
|
|
/// As such, this method can be used to do an exact bit-for-bit comparison of
|
|
/// two floating point values.
|
|
|
|
/// We leave the version with the double argument here because it's just so
|
|
/// convenient to write "2.0" and the like. Without this function we'd
|
|
/// have to duplicate its logic everywhere it's called.
|
|
bool isExactlyValue(double V) const {
|
|
bool ignored;
|
|
// convert is not supported on this type
|
|
if (&Value->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
|
|
return false;
|
|
APFloat Tmp(V);
|
|
Tmp.convert(Value->getValueAPF().getSemantics(),
|
|
APFloat::rmNearestTiesToEven, &ignored);
|
|
return isExactlyValue(Tmp);
|
|
}
|
|
bool isExactlyValue(const APFloat& V) const;
|
|
|
|
bool isValueValidForType(MVT VT, const APFloat& Val);
|
|
|
|
static bool classof(const ConstantFPSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::ConstantFP ||
|
|
N->getOpcode() == ISD::TargetConstantFP;
|
|
}
|
|
};
|
|
|
|
class GlobalAddressSDNode : public SDNode {
|
|
GlobalValue *TheGlobal;
|
|
int64_t Offset;
|
|
friend class SelectionDAG;
|
|
GlobalAddressSDNode(bool isTarget, const GlobalValue *GA, MVT VT,
|
|
int64_t o = 0);
|
|
public:
|
|
|
|
GlobalValue *getGlobal() const { return TheGlobal; }
|
|
int64_t getOffset() const { return Offset; }
|
|
|
|
static bool classof(const GlobalAddressSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::GlobalAddress ||
|
|
N->getOpcode() == ISD::TargetGlobalAddress ||
|
|
N->getOpcode() == ISD::GlobalTLSAddress ||
|
|
N->getOpcode() == ISD::TargetGlobalTLSAddress;
|
|
}
|
|
};
|
|
|
|
class FrameIndexSDNode : public SDNode {
|
|
int FI;
|
|
friend class SelectionDAG;
|
|
FrameIndexSDNode(int fi, MVT VT, bool isTarg)
|
|
: SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex,
|
|
DebugLoc::getUnknownLoc(), getSDVTList(VT)), FI(fi) {
|
|
}
|
|
public:
|
|
|
|
int getIndex() const { return FI; }
|
|
|
|
static bool classof(const FrameIndexSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::FrameIndex ||
|
|
N->getOpcode() == ISD::TargetFrameIndex;
|
|
}
|
|
};
|
|
|
|
class JumpTableSDNode : public SDNode {
|
|
int JTI;
|
|
friend class SelectionDAG;
|
|
JumpTableSDNode(int jti, MVT VT, bool isTarg)
|
|
: SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable,
|
|
DebugLoc::getUnknownLoc(), getSDVTList(VT)), JTI(jti) {
|
|
}
|
|
public:
|
|
|
|
int getIndex() const { return JTI; }
|
|
|
|
static bool classof(const JumpTableSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::JumpTable ||
|
|
N->getOpcode() == ISD::TargetJumpTable;
|
|
}
|
|
};
|
|
|
|
class ConstantPoolSDNode : public SDNode {
|
|
union {
|
|
Constant *ConstVal;
|
|
MachineConstantPoolValue *MachineCPVal;
|
|
} Val;
|
|
int Offset; // It's a MachineConstantPoolValue if top bit is set.
|
|
unsigned Alignment; // Minimum alignment requirement of CP (not log2 value).
|
|
friend class SelectionDAG;
|
|
ConstantPoolSDNode(bool isTarget, Constant *c, MVT VT, int o=0)
|
|
: SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
|
|
DebugLoc::getUnknownLoc(),
|
|
getSDVTList(VT)), Offset(o), Alignment(0) {
|
|
assert((int)Offset >= 0 && "Offset is too large");
|
|
Val.ConstVal = c;
|
|
}
|
|
ConstantPoolSDNode(bool isTarget, Constant *c, MVT VT, int o, unsigned Align)
|
|
: SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
|
|
DebugLoc::getUnknownLoc(),
|
|
getSDVTList(VT)), Offset(o), Alignment(Align) {
|
|
assert((int)Offset >= 0 && "Offset is too large");
|
|
Val.ConstVal = c;
|
|
}
|
|
ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
|
|
MVT VT, int o=0)
|
|
: SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
|
|
DebugLoc::getUnknownLoc(),
|
|
getSDVTList(VT)), Offset(o), Alignment(0) {
|
|
assert((int)Offset >= 0 && "Offset is too large");
|
|
Val.MachineCPVal = v;
|
|
Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1);
|
|
}
|
|
ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
|
|
MVT VT, int o, unsigned Align)
|
|
: SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
|
|
DebugLoc::getUnknownLoc(),
|
|
getSDVTList(VT)), Offset(o), Alignment(Align) {
|
|
assert((int)Offset >= 0 && "Offset is too large");
|
|
Val.MachineCPVal = v;
|
|
Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1);
|
|
}
|
|
public:
|
|
|
|
bool isMachineConstantPoolEntry() const {
|
|
return (int)Offset < 0;
|
|
}
|
|
|
|
Constant *getConstVal() const {
|
|
assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
|
|
return Val.ConstVal;
|
|
}
|
|
|
|
MachineConstantPoolValue *getMachineCPVal() const {
|
|
assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
|
|
return Val.MachineCPVal;
|
|
}
|
|
|
|
int getOffset() const {
|
|
return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT-1));
|
|
}
|
|
|
|
// Return the alignment of this constant pool object, which is either 0 (for
|
|
// default alignment) or the desired value.
|
|
unsigned getAlignment() const { return Alignment; }
|
|
|
|
const Type *getType() const;
|
|
|
|
static bool classof(const ConstantPoolSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::ConstantPool ||
|
|
N->getOpcode() == ISD::TargetConstantPool;
|
|
}
|
|
};
|
|
|
|
class BasicBlockSDNode : public SDNode {
|
|
MachineBasicBlock *MBB;
|
|
friend class SelectionDAG;
|
|
/// Debug info is meaningful and potentially useful here, but we create
|
|
/// blocks out of order when they're jumped to, which makes it a bit
|
|
/// harder. Let's see if we need it first.
|
|
explicit BasicBlockSDNode(MachineBasicBlock *mbb)
|
|
: SDNode(ISD::BasicBlock, DebugLoc::getUnknownLoc(),
|
|
getSDVTList(MVT::Other)), MBB(mbb) {
|
|
}
|
|
public:
|
|
|
|
MachineBasicBlock *getBasicBlock() const { return MBB; }
|
|
|
|
static bool classof(const BasicBlockSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::BasicBlock;
|
|
}
|
|
};
|
|
|
|
/// BuildVectorSDNode - A "pseudo-class" with methods for operating on
|
|
/// BUILD_VECTORs.
|
|
class BuildVectorSDNode : public SDNode {
|
|
// These are constructed as SDNodes and then cast to BuildVectorSDNodes.
|
|
explicit BuildVectorSDNode(); // Do not implement
|
|
public:
|
|
/// isConstantSplat - Check if this is a constant splat, and if so, find the
|
|
/// smallest element size that splats the vector. If MinSplatBits is
|
|
/// nonzero, the element size must be at least that large. Note that the
|
|
/// splat element may be the entire vector (i.e., a one element vector).
|
|
/// Returns the splat element value in SplatValue. Any undefined bits in
|
|
/// that value are zero, and the corresponding bits in the SplatUndef mask
|
|
/// are set. The SplatBitSize value is set to the splat element size in
|
|
/// bits. HasAnyUndefs is set to true if any bits in the vector are
|
|
/// undefined.
|
|
bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
|
|
unsigned &SplatBitSize, bool &HasAnyUndefs,
|
|
unsigned MinSplatBits = 0);
|
|
|
|
static inline bool classof(const BuildVectorSDNode *) { return true; }
|
|
static inline bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::BUILD_VECTOR;
|
|
}
|
|
};
|
|
|
|
/// SrcValueSDNode - An SDNode that holds an arbitrary LLVM IR Value. This is
|
|
/// used when the SelectionDAG needs to make a simple reference to something
|
|
/// in the LLVM IR representation.
|
|
///
|
|
/// Note that this is not used for carrying alias information; that is done
|
|
/// with MemOperandSDNode, which includes a Value which is required to be a
|
|
/// pointer, and several other fields specific to memory references.
|
|
///
|
|
class SrcValueSDNode : public SDNode {
|
|
const Value *V;
|
|
friend class SelectionDAG;
|
|
/// Create a SrcValue for a general value.
|
|
explicit SrcValueSDNode(const Value *v)
|
|
: SDNode(ISD::SRCVALUE, DebugLoc::getUnknownLoc(),
|
|
getSDVTList(MVT::Other)), V(v) {}
|
|
|
|
public:
|
|
/// getValue - return the contained Value.
|
|
const Value *getValue() const { return V; }
|
|
|
|
static bool classof(const SrcValueSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::SRCVALUE;
|
|
}
|
|
};
|
|
|
|
|
|
/// MemOperandSDNode - An SDNode that holds a MachineMemOperand. This is
|
|
/// used to represent a reference to memory after ISD::LOAD
|
|
/// and ISD::STORE have been lowered.
|
|
///
|
|
class MemOperandSDNode : public SDNode {
|
|
friend class SelectionDAG;
|
|
/// Create a MachineMemOperand node
|
|
explicit MemOperandSDNode(const MachineMemOperand &mo)
|
|
: SDNode(ISD::MEMOPERAND, DebugLoc::getUnknownLoc(),
|
|
getSDVTList(MVT::Other)), MO(mo) {}
|
|
|
|
public:
|
|
/// MO - The contained MachineMemOperand.
|
|
const MachineMemOperand MO;
|
|
|
|
static bool classof(const MemOperandSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::MEMOPERAND;
|
|
}
|
|
};
|
|
|
|
|
|
class RegisterSDNode : public SDNode {
|
|
unsigned Reg;
|
|
friend class SelectionDAG;
|
|
RegisterSDNode(unsigned reg, MVT VT)
|
|
: SDNode(ISD::Register, DebugLoc::getUnknownLoc(),
|
|
getSDVTList(VT)), Reg(reg) {
|
|
}
|
|
public:
|
|
|
|
unsigned getReg() const { return Reg; }
|
|
|
|
static bool classof(const RegisterSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::Register;
|
|
}
|
|
};
|
|
|
|
class DbgStopPointSDNode : public SDNode {
|
|
SDUse Chain;
|
|
unsigned Line;
|
|
unsigned Column;
|
|
Value *CU;
|
|
friend class SelectionDAG;
|
|
DbgStopPointSDNode(SDValue ch, unsigned l, unsigned c,
|
|
Value *cu)
|
|
: SDNode(ISD::DBG_STOPPOINT, DebugLoc::getUnknownLoc(),
|
|
getSDVTList(MVT::Other)), Line(l), Column(c), CU(cu) {
|
|
InitOperands(&Chain, ch);
|
|
}
|
|
public:
|
|
unsigned getLine() const { return Line; }
|
|
unsigned getColumn() const { return Column; }
|
|
Value *getCompileUnit() const { return CU; }
|
|
|
|
static bool classof(const DbgStopPointSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::DBG_STOPPOINT;
|
|
}
|
|
};
|
|
|
|
class LabelSDNode : public SDNode {
|
|
SDUse Chain;
|
|
unsigned LabelID;
|
|
friend class SelectionDAG;
|
|
LabelSDNode(unsigned NodeTy, DebugLoc dl, SDValue ch, unsigned id)
|
|
: SDNode(NodeTy, dl, getSDVTList(MVT::Other)), LabelID(id) {
|
|
InitOperands(&Chain, ch);
|
|
}
|
|
public:
|
|
unsigned getLabelID() const { return LabelID; }
|
|
|
|
static bool classof(const LabelSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::DBG_LABEL ||
|
|
N->getOpcode() == ISD::EH_LABEL;
|
|
}
|
|
};
|
|
|
|
class ExternalSymbolSDNode : public SDNode {
|
|
const char *Symbol;
|
|
friend class SelectionDAG;
|
|
ExternalSymbolSDNode(bool isTarget, const char *Sym, MVT VT)
|
|
: SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol,
|
|
DebugLoc::getUnknownLoc(),
|
|
getSDVTList(VT)), Symbol(Sym) {
|
|
}
|
|
public:
|
|
|
|
const char *getSymbol() const { return Symbol; }
|
|
|
|
static bool classof(const ExternalSymbolSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::ExternalSymbol ||
|
|
N->getOpcode() == ISD::TargetExternalSymbol;
|
|
}
|
|
};
|
|
|
|
class CondCodeSDNode : public SDNode {
|
|
ISD::CondCode Condition;
|
|
friend class SelectionDAG;
|
|
explicit CondCodeSDNode(ISD::CondCode Cond)
|
|
: SDNode(ISD::CONDCODE, DebugLoc::getUnknownLoc(),
|
|
getSDVTList(MVT::Other)), Condition(Cond) {
|
|
}
|
|
public:
|
|
|
|
ISD::CondCode get() const { return Condition; }
|
|
|
|
static bool classof(const CondCodeSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::CONDCODE;
|
|
}
|
|
};
|
|
|
|
/// CvtRndSatSDNode - NOTE: avoid using this node as this may disappear in the
|
|
/// future and most targets don't support it.
|
|
class CvtRndSatSDNode : public SDNode {
|
|
ISD::CvtCode CvtCode;
|
|
friend class SelectionDAG;
|
|
explicit CvtRndSatSDNode(MVT VT, DebugLoc dl, const SDValue *Ops,
|
|
unsigned NumOps, ISD::CvtCode Code)
|
|
: SDNode(ISD::CONVERT_RNDSAT, dl, getSDVTList(VT), Ops, NumOps),
|
|
CvtCode(Code) {
|
|
assert(NumOps == 5 && "wrong number of operations");
|
|
}
|
|
public:
|
|
ISD::CvtCode getCvtCode() const { return CvtCode; }
|
|
|
|
static bool classof(const CvtRndSatSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::CONVERT_RNDSAT;
|
|
}
|
|
};
|
|
|
|
namespace ISD {
|
|
struct ArgFlagsTy {
|
|
private:
|
|
static const uint64_t NoFlagSet = 0ULL;
|
|
static const uint64_t ZExt = 1ULL<<0; ///< Zero extended
|
|
static const uint64_t ZExtOffs = 0;
|
|
static const uint64_t SExt = 1ULL<<1; ///< Sign extended
|
|
static const uint64_t SExtOffs = 1;
|
|
static const uint64_t InReg = 1ULL<<2; ///< Passed in register
|
|
static const uint64_t InRegOffs = 2;
|
|
static const uint64_t SRet = 1ULL<<3; ///< Hidden struct-ret ptr
|
|
static const uint64_t SRetOffs = 3;
|
|
static const uint64_t ByVal = 1ULL<<4; ///< Struct passed by value
|
|
static const uint64_t ByValOffs = 4;
|
|
static const uint64_t Nest = 1ULL<<5; ///< Nested fn static chain
|
|
static const uint64_t NestOffs = 5;
|
|
static const uint64_t ByValAlign = 0xFULL << 6; //< Struct alignment
|
|
static const uint64_t ByValAlignOffs = 6;
|
|
static const uint64_t Split = 1ULL << 10;
|
|
static const uint64_t SplitOffs = 10;
|
|
static const uint64_t OrigAlign = 0x1FULL<<27;
|
|
static const uint64_t OrigAlignOffs = 27;
|
|
static const uint64_t ByValSize = 0xffffffffULL << 32; //< Struct size
|
|
static const uint64_t ByValSizeOffs = 32;
|
|
|
|
static const uint64_t One = 1ULL; //< 1 of this type, for shifts
|
|
|
|
uint64_t Flags;
|
|
public:
|
|
ArgFlagsTy() : Flags(0) { }
|
|
|
|
bool isZExt() const { return Flags & ZExt; }
|
|
void setZExt() { Flags |= One << ZExtOffs; }
|
|
|
|
bool isSExt() const { return Flags & SExt; }
|
|
void setSExt() { Flags |= One << SExtOffs; }
|
|
|
|
bool isInReg() const { return Flags & InReg; }
|
|
void setInReg() { Flags |= One << InRegOffs; }
|
|
|
|
bool isSRet() const { return Flags & SRet; }
|
|
void setSRet() { Flags |= One << SRetOffs; }
|
|
|
|
bool isByVal() const { return Flags & ByVal; }
|
|
void setByVal() { Flags |= One << ByValOffs; }
|
|
|
|
bool isNest() const { return Flags & Nest; }
|
|
void setNest() { Flags |= One << NestOffs; }
|
|
|
|
unsigned getByValAlign() const {
|
|
return (unsigned)
|
|
((One << ((Flags & ByValAlign) >> ByValAlignOffs)) / 2);
|
|
}
|
|
void setByValAlign(unsigned A) {
|
|
Flags = (Flags & ~ByValAlign) |
|
|
(uint64_t(Log2_32(A) + 1) << ByValAlignOffs);
|
|
}
|
|
|
|
bool isSplit() const { return Flags & Split; }
|
|
void setSplit() { Flags |= One << SplitOffs; }
|
|
|
|
unsigned getOrigAlign() const {
|
|
return (unsigned)
|
|
((One << ((Flags & OrigAlign) >> OrigAlignOffs)) / 2);
|
|
}
|
|
void setOrigAlign(unsigned A) {
|
|
Flags = (Flags & ~OrigAlign) |
|
|
(uint64_t(Log2_32(A) + 1) << OrigAlignOffs);
|
|
}
|
|
|
|
unsigned getByValSize() const {
|
|
return (unsigned)((Flags & ByValSize) >> ByValSizeOffs);
|
|
}
|
|
void setByValSize(unsigned S) {
|
|
Flags = (Flags & ~ByValSize) | (uint64_t(S) << ByValSizeOffs);
|
|
}
|
|
|
|
/// getArgFlagsString - Returns the flags as a string, eg: "zext align:4".
|
|
std::string getArgFlagsString();
|
|
|
|
/// getRawBits - Represent the flags as a bunch of bits.
|
|
uint64_t getRawBits() const { return Flags; }
|
|
};
|
|
}
|
|
|
|
/// ARG_FLAGSSDNode - Leaf node holding parameter flags.
|
|
class ARG_FLAGSSDNode : public SDNode {
|
|
ISD::ArgFlagsTy TheFlags;
|
|
friend class SelectionDAG;
|
|
explicit ARG_FLAGSSDNode(ISD::ArgFlagsTy Flags)
|
|
: SDNode(ISD::ARG_FLAGS, DebugLoc::getUnknownLoc(),
|
|
getSDVTList(MVT::Other)), TheFlags(Flags) {
|
|
}
|
|
public:
|
|
ISD::ArgFlagsTy getArgFlags() const { return TheFlags; }
|
|
|
|
static bool classof(const ARG_FLAGSSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::ARG_FLAGS;
|
|
}
|
|
};
|
|
|
|
/// CallSDNode - Node for calls -- ISD::CALL.
|
|
class CallSDNode : public SDNode {
|
|
unsigned CallingConv;
|
|
bool IsVarArg;
|
|
bool IsTailCall;
|
|
// We might eventually want a full-blown Attributes for the result; that
|
|
// will expand the size of the representation. At the moment we only
|
|
// need Inreg.
|
|
bool Inreg;
|
|
friend class SelectionDAG;
|
|
CallSDNode(unsigned cc, DebugLoc dl, bool isvararg, bool istailcall,
|
|
bool isinreg, SDVTList VTs, const SDValue *Operands,
|
|
unsigned numOperands)
|
|
: SDNode(ISD::CALL, dl, VTs, Operands, numOperands),
|
|
CallingConv(cc), IsVarArg(isvararg), IsTailCall(istailcall),
|
|
Inreg(isinreg) {}
|
|
public:
|
|
unsigned getCallingConv() const { return CallingConv; }
|
|
unsigned isVarArg() const { return IsVarArg; }
|
|
unsigned isTailCall() const { return IsTailCall; }
|
|
unsigned isInreg() const { return Inreg; }
|
|
|
|
/// Set this call to not be marked as a tail call. Normally setter
|
|
/// methods in SDNodes are unsafe because it breaks the CSE map,
|
|
/// but we don't include the tail call flag for calls so it's ok
|
|
/// in this case.
|
|
void setNotTailCall() { IsTailCall = false; }
|
|
|
|
SDValue getChain() const { return getOperand(0); }
|
|
SDValue getCallee() const { return getOperand(1); }
|
|
|
|
unsigned getNumArgs() const { return (getNumOperands() - 2) / 2; }
|
|
SDValue getArg(unsigned i) const { return getOperand(2+2*i); }
|
|
SDValue getArgFlagsVal(unsigned i) const {
|
|
return getOperand(3+2*i);
|
|
}
|
|
ISD::ArgFlagsTy getArgFlags(unsigned i) const {
|
|
return cast<ARG_FLAGSSDNode>(getArgFlagsVal(i).getNode())->getArgFlags();
|
|
}
|
|
|
|
unsigned getNumRetVals() const { return getNumValues() - 1; }
|
|
MVT getRetValType(unsigned i) const { return getValueType(i); }
|
|
|
|
static bool classof(const CallSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::CALL;
|
|
}
|
|
};
|
|
|
|
/// VTSDNode - This class is used to represent MVT's, which are used
|
|
/// to parameterize some operations.
|
|
class VTSDNode : public SDNode {
|
|
MVT ValueType;
|
|
friend class SelectionDAG;
|
|
explicit VTSDNode(MVT VT)
|
|
: SDNode(ISD::VALUETYPE, DebugLoc::getUnknownLoc(),
|
|
getSDVTList(MVT::Other)), ValueType(VT) {
|
|
}
|
|
public:
|
|
|
|
MVT getVT() const { return ValueType; }
|
|
|
|
static bool classof(const VTSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::VALUETYPE;
|
|
}
|
|
};
|
|
|
|
/// LSBaseSDNode - Base class for LoadSDNode and StoreSDNode
|
|
///
|
|
class LSBaseSDNode : public MemSDNode {
|
|
//! Operand array for load and store
|
|
/*!
|
|
\note Moving this array to the base class captures more
|
|
common functionality shared between LoadSDNode and
|
|
StoreSDNode
|
|
*/
|
|
SDUse Ops[4];
|
|
public:
|
|
LSBaseSDNode(ISD::NodeType NodeTy, DebugLoc dl, SDValue *Operands,
|
|
unsigned numOperands, SDVTList VTs, ISD::MemIndexedMode AM,
|
|
MVT VT, const Value *SV, int SVO, unsigned Align, bool Vol)
|
|
: MemSDNode(NodeTy, dl, VTs, VT, SV, SVO, Align, Vol) {
|
|
assert(Align != 0 && "Loads and stores should have non-zero aligment");
|
|
SubclassData |= AM << 2;
|
|
assert(getAddressingMode() == AM && "MemIndexedMode encoding error!");
|
|
InitOperands(Ops, Operands, numOperands);
|
|
assert((getOffset().getOpcode() == ISD::UNDEF || isIndexed()) &&
|
|
"Only indexed loads and stores have a non-undef offset operand");
|
|
}
|
|
|
|
const SDValue &getOffset() const {
|
|
return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
|
|
}
|
|
|
|
/// getAddressingMode - Return the addressing mode for this load or store:
|
|
/// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
|
|
ISD::MemIndexedMode getAddressingMode() const {
|
|
return ISD::MemIndexedMode((SubclassData >> 2) & 7);
|
|
}
|
|
|
|
/// isIndexed - Return true if this is a pre/post inc/dec load/store.
|
|
bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
|
|
|
|
/// isUnindexed - Return true if this is NOT a pre/post inc/dec load/store.
|
|
bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
|
|
|
|
static bool classof(const LSBaseSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::LOAD ||
|
|
N->getOpcode() == ISD::STORE;
|
|
}
|
|
};
|
|
|
|
/// LoadSDNode - This class is used to represent ISD::LOAD nodes.
|
|
///
|
|
class LoadSDNode : public LSBaseSDNode {
|
|
friend class SelectionDAG;
|
|
LoadSDNode(SDValue *ChainPtrOff, DebugLoc dl, SDVTList VTs,
|
|
ISD::MemIndexedMode AM, ISD::LoadExtType ETy, MVT LVT,
|
|
const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
|
|
: LSBaseSDNode(ISD::LOAD, dl, ChainPtrOff, 3,
|
|
VTs, AM, LVT, SV, O, Align, Vol) {
|
|
SubclassData |= (unsigned short)ETy;
|
|
assert(getExtensionType() == ETy && "LoadExtType encoding error!");
|
|
}
|
|
public:
|
|
|
|
/// getExtensionType - Return whether this is a plain node,
|
|
/// or one of the varieties of value-extending loads.
|
|
ISD::LoadExtType getExtensionType() const {
|
|
return ISD::LoadExtType(SubclassData & 3);
|
|
}
|
|
|
|
const SDValue &getBasePtr() const { return getOperand(1); }
|
|
const SDValue &getOffset() const { return getOperand(2); }
|
|
|
|
static bool classof(const LoadSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::LOAD;
|
|
}
|
|
};
|
|
|
|
/// StoreSDNode - This class is used to represent ISD::STORE nodes.
|
|
///
|
|
class StoreSDNode : public LSBaseSDNode {
|
|
friend class SelectionDAG;
|
|
StoreSDNode(SDValue *ChainValuePtrOff, DebugLoc dl, SDVTList VTs,
|
|
ISD::MemIndexedMode AM, bool isTrunc, MVT SVT,
|
|
const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
|
|
: LSBaseSDNode(ISD::STORE, dl, ChainValuePtrOff, 4,
|
|
VTs, AM, SVT, SV, O, Align, Vol) {
|
|
SubclassData |= (unsigned short)isTrunc;
|
|
assert(isTruncatingStore() == isTrunc && "isTrunc encoding error!");
|
|
}
|
|
public:
|
|
|
|
/// isTruncatingStore - Return true if the op does a truncation before store.
|
|
/// For integers this is the same as doing a TRUNCATE and storing the result.
|
|
/// For floats, it is the same as doing an FP_ROUND and storing the result.
|
|
bool isTruncatingStore() const { return SubclassData & 1; }
|
|
|
|
const SDValue &getValue() const { return getOperand(1); }
|
|
const SDValue &getBasePtr() const { return getOperand(2); }
|
|
const SDValue &getOffset() const { return getOperand(3); }
|
|
|
|
static bool classof(const StoreSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::STORE;
|
|
}
|
|
};
|
|
|
|
|
|
class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> {
|
|
SDNode *Node;
|
|
unsigned Operand;
|
|
|
|
SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
|
|
public:
|
|
bool operator==(const SDNodeIterator& x) const {
|
|
return Operand == x.Operand;
|
|
}
|
|
bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
|
|
|
|
const SDNodeIterator &operator=(const SDNodeIterator &I) {
|
|
assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
|
|
Operand = I.Operand;
|
|
return *this;
|
|
}
|
|
|
|
pointer operator*() const {
|
|
return Node->getOperand(Operand).getNode();
|
|
}
|
|
pointer operator->() const { return operator*(); }
|
|
|
|
SDNodeIterator& operator++() { // Preincrement
|
|
++Operand;
|
|
return *this;
|
|
}
|
|
SDNodeIterator operator++(int) { // Postincrement
|
|
SDNodeIterator tmp = *this; ++*this; return tmp;
|
|
}
|
|
|
|
static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
|
|
static SDNodeIterator end (SDNode *N) {
|
|
return SDNodeIterator(N, N->getNumOperands());
|
|
}
|
|
|
|
unsigned getOperand() const { return Operand; }
|
|
const SDNode *getNode() const { return Node; }
|
|
};
|
|
|
|
template <> struct GraphTraits<SDNode*> {
|
|
typedef SDNode NodeType;
|
|
typedef SDNodeIterator ChildIteratorType;
|
|
static inline NodeType *getEntryNode(SDNode *N) { return N; }
|
|
static inline ChildIteratorType child_begin(NodeType *N) {
|
|
return SDNodeIterator::begin(N);
|
|
}
|
|
static inline ChildIteratorType child_end(NodeType *N) {
|
|
return SDNodeIterator::end(N);
|
|
}
|
|
};
|
|
|
|
/// LargestSDNode - The largest SDNode class.
|
|
///
|
|
typedef LoadSDNode LargestSDNode;
|
|
|
|
/// MostAlignedSDNode - The SDNode class with the greatest alignment
|
|
/// requirement.
|
|
///
|
|
typedef ARG_FLAGSSDNode MostAlignedSDNode;
|
|
|
|
namespace ISD {
|
|
/// isNormalLoad - Returns true if the specified node is a non-extending
|
|
/// and unindexed load.
|
|
inline bool isNormalLoad(const SDNode *N) {
|
|
const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
|
|
return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
|
|
Ld->getAddressingMode() == ISD::UNINDEXED;
|
|
}
|
|
|
|
/// isNON_EXTLoad - Returns true if the specified node is a non-extending
|
|
/// load.
|
|
inline bool isNON_EXTLoad(const SDNode *N) {
|
|
return isa<LoadSDNode>(N) &&
|
|
cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
|
|
}
|
|
|
|
/// isEXTLoad - Returns true if the specified node is a EXTLOAD.
|
|
///
|
|
inline bool isEXTLoad(const SDNode *N) {
|
|
return isa<LoadSDNode>(N) &&
|
|
cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
|
|
}
|
|
|
|
/// isSEXTLoad - Returns true if the specified node is a SEXTLOAD.
|
|
///
|
|
inline bool isSEXTLoad(const SDNode *N) {
|
|
return isa<LoadSDNode>(N) &&
|
|
cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
|
|
}
|
|
|
|
/// isZEXTLoad - Returns true if the specified node is a ZEXTLOAD.
|
|
///
|
|
inline bool isZEXTLoad(const SDNode *N) {
|
|
return isa<LoadSDNode>(N) &&
|
|
cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
|
|
}
|
|
|
|
/// isUNINDEXEDLoad - Returns true if the specified node is an unindexed load.
|
|
///
|
|
inline bool isUNINDEXEDLoad(const SDNode *N) {
|
|
return isa<LoadSDNode>(N) &&
|
|
cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
|
|
}
|
|
|
|
/// isNormalStore - Returns true if the specified node is a non-truncating
|
|
/// and unindexed store.
|
|
inline bool isNormalStore(const SDNode *N) {
|
|
const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
|
|
return St && !St->isTruncatingStore() &&
|
|
St->getAddressingMode() == ISD::UNINDEXED;
|
|
}
|
|
|
|
/// isNON_TRUNCStore - Returns true if the specified node is a non-truncating
|
|
/// store.
|
|
inline bool isNON_TRUNCStore(const SDNode *N) {
|
|
return isa<StoreSDNode>(N) && !cast<StoreSDNode>(N)->isTruncatingStore();
|
|
}
|
|
|
|
/// isTRUNCStore - Returns true if the specified node is a truncating
|
|
/// store.
|
|
inline bool isTRUNCStore(const SDNode *N) {
|
|
return isa<StoreSDNode>(N) && cast<StoreSDNode>(N)->isTruncatingStore();
|
|
}
|
|
|
|
/// isUNINDEXEDStore - Returns true if the specified node is an
|
|
/// unindexed store.
|
|
inline bool isUNINDEXEDStore(const SDNode *N) {
|
|
return isa<StoreSDNode>(N) &&
|
|
cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
|
|
}
|
|
}
|
|
|
|
|
|
} // end llvm namespace
|
|
|
|
#endif
|