mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-24 19:52:54 +01:00
f1cc8abdda
patch by Jeffrey Yasskin! llvm-svn: 70083
350 lines
14 KiB
C++
350 lines
14 KiB
C++
//===- ExecutionEngine.h - Abstract Execution Engine Interface --*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the abstract interface that implements execution support
|
|
// for LLVM.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_EXECUTION_ENGINE_H
|
|
#define LLVM_EXECUTION_ENGINE_H
|
|
|
|
#include <vector>
|
|
#include <map>
|
|
#include <string>
|
|
#include "llvm/System/Mutex.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
|
|
namespace llvm {
|
|
|
|
struct GenericValue;
|
|
class Constant;
|
|
class Function;
|
|
class GlobalVariable;
|
|
class GlobalValue;
|
|
class Module;
|
|
class ModuleProvider;
|
|
class TargetData;
|
|
class Type;
|
|
class MutexGuard;
|
|
class JITMemoryManager;
|
|
|
|
class ExecutionEngineState {
|
|
private:
|
|
/// GlobalAddressMap - A mapping between LLVM global values and their
|
|
/// actualized version...
|
|
std::map<const GlobalValue*, void *> GlobalAddressMap;
|
|
|
|
/// GlobalAddressReverseMap - This is the reverse mapping of GlobalAddressMap,
|
|
/// used to convert raw addresses into the LLVM global value that is emitted
|
|
/// at the address. This map is not computed unless getGlobalValueAtAddress
|
|
/// is called at some point.
|
|
std::map<void *, const GlobalValue*> GlobalAddressReverseMap;
|
|
|
|
public:
|
|
std::map<const GlobalValue*, void *> &
|
|
getGlobalAddressMap(const MutexGuard &) {
|
|
return GlobalAddressMap;
|
|
}
|
|
|
|
std::map<void*, const GlobalValue*> &
|
|
getGlobalAddressReverseMap(const MutexGuard &) {
|
|
return GlobalAddressReverseMap;
|
|
}
|
|
};
|
|
|
|
|
|
class ExecutionEngine {
|
|
const TargetData *TD;
|
|
ExecutionEngineState state;
|
|
bool LazyCompilationDisabled;
|
|
bool GVCompilationDisabled;
|
|
bool SymbolSearchingDisabled;
|
|
bool DlsymStubsEnabled;
|
|
|
|
protected:
|
|
/// Modules - This is a list of ModuleProvider's that we are JIT'ing from. We
|
|
/// use a smallvector to optimize for the case where there is only one module.
|
|
SmallVector<ModuleProvider*, 1> Modules;
|
|
|
|
void setTargetData(const TargetData *td) {
|
|
TD = td;
|
|
}
|
|
|
|
/// getMemoryforGV - Allocate memory for a global variable.
|
|
virtual char* getMemoryForGV(const GlobalVariable* GV);
|
|
|
|
// To avoid having libexecutionengine depend on the JIT and interpreter
|
|
// libraries, the JIT and Interpreter set these functions to ctor pointers
|
|
// at startup time if they are linked in.
|
|
typedef ExecutionEngine *(*EECtorFn)(ModuleProvider*, std::string*,
|
|
bool Fast);
|
|
static EECtorFn JITCtor, InterpCtor;
|
|
|
|
/// LazyFunctionCreator - If an unknown function is needed, this function
|
|
/// pointer is invoked to create it. If this returns null, the JIT will abort.
|
|
void* (*LazyFunctionCreator)(const std::string &);
|
|
|
|
/// ExceptionTableRegister - If Exception Handling is set, the JIT will
|
|
/// register dwarf tables with this function
|
|
typedef void (*EERegisterFn)(void*);
|
|
static EERegisterFn ExceptionTableRegister;
|
|
|
|
public:
|
|
/// lock - This lock is protects the ExecutionEngine, JIT, JITResolver and
|
|
/// JITEmitter classes. It must be held while changing the internal state of
|
|
/// any of those classes.
|
|
sys::Mutex lock; // Used to make this class and subclasses thread-safe
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// ExecutionEngine Startup
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
virtual ~ExecutionEngine();
|
|
|
|
/// create - This is the factory method for creating an execution engine which
|
|
/// is appropriate for the current machine. This takes ownership of the
|
|
/// module provider.
|
|
static ExecutionEngine *create(ModuleProvider *MP,
|
|
bool ForceInterpreter = false,
|
|
std::string *ErrorStr = 0,
|
|
bool Fast = false);
|
|
|
|
/// create - This is the factory method for creating an execution engine which
|
|
/// is appropriate for the current machine. This takes ownership of the
|
|
/// module.
|
|
static ExecutionEngine *create(Module *M);
|
|
|
|
/// createJIT - This is the factory method for creating a JIT for the current
|
|
/// machine, it does not fall back to the interpreter. This takes ownership
|
|
/// of the ModuleProvider and JITMemoryManager if successful.
|
|
static ExecutionEngine *createJIT(ModuleProvider *MP,
|
|
std::string *ErrorStr = 0,
|
|
JITMemoryManager *JMM = 0,
|
|
bool Fast = false);
|
|
|
|
|
|
|
|
/// addModuleProvider - Add a ModuleProvider to the list of modules that we
|
|
/// can JIT from. Note that this takes ownership of the ModuleProvider: when
|
|
/// the ExecutionEngine is destroyed, it destroys the MP as well.
|
|
virtual void addModuleProvider(ModuleProvider *P) {
|
|
Modules.push_back(P);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
const TargetData *getTargetData() const { return TD; }
|
|
|
|
|
|
/// removeModuleProvider - Remove a ModuleProvider from the list of modules.
|
|
/// Relases the Module from the ModuleProvider, materializing it in the
|
|
/// process, and returns the materialized Module.
|
|
virtual Module* removeModuleProvider(ModuleProvider *P,
|
|
std::string *ErrInfo = 0);
|
|
|
|
/// deleteModuleProvider - Remove a ModuleProvider from the list of modules,
|
|
/// and deletes the ModuleProvider and owned Module. Avoids materializing
|
|
/// the underlying module.
|
|
virtual void deleteModuleProvider(ModuleProvider *P,std::string *ErrInfo = 0);
|
|
|
|
/// FindFunctionNamed - Search all of the active modules to find the one that
|
|
/// defines FnName. This is very slow operation and shouldn't be used for
|
|
/// general code.
|
|
Function *FindFunctionNamed(const char *FnName);
|
|
|
|
/// runFunction - Execute the specified function with the specified arguments,
|
|
/// and return the result.
|
|
///
|
|
virtual GenericValue runFunction(Function *F,
|
|
const std::vector<GenericValue> &ArgValues) = 0;
|
|
|
|
/// runStaticConstructorsDestructors - This method is used to execute all of
|
|
/// the static constructors or destructors for a program, depending on the
|
|
/// value of isDtors.
|
|
void runStaticConstructorsDestructors(bool isDtors);
|
|
/// runStaticConstructorsDestructors - This method is used to execute all of
|
|
/// the static constructors or destructors for a module, depending on the
|
|
/// value of isDtors.
|
|
void runStaticConstructorsDestructors(Module *module, bool isDtors);
|
|
|
|
|
|
/// runFunctionAsMain - This is a helper function which wraps runFunction to
|
|
/// handle the common task of starting up main with the specified argc, argv,
|
|
/// and envp parameters.
|
|
int runFunctionAsMain(Function *Fn, const std::vector<std::string> &argv,
|
|
const char * const * envp);
|
|
|
|
|
|
/// addGlobalMapping - Tell the execution engine that the specified global is
|
|
/// at the specified location. This is used internally as functions are JIT'd
|
|
/// and as global variables are laid out in memory. It can and should also be
|
|
/// used by clients of the EE that want to have an LLVM global overlay
|
|
/// existing data in memory. After adding a mapping for GV, you must not
|
|
/// destroy it until you've removed the mapping.
|
|
void addGlobalMapping(const GlobalValue *GV, void *Addr);
|
|
|
|
/// clearAllGlobalMappings - Clear all global mappings and start over again
|
|
/// use in dynamic compilation scenarios when you want to move globals
|
|
void clearAllGlobalMappings();
|
|
|
|
/// clearGlobalMappingsFromModule - Clear all global mappings that came from a
|
|
/// particular module, because it has been removed from the JIT.
|
|
void clearGlobalMappingsFromModule(Module *M);
|
|
|
|
/// updateGlobalMapping - Replace an existing mapping for GV with a new
|
|
/// address. This updates both maps as required. If "Addr" is null, the
|
|
/// entry for the global is removed from the mappings. This returns the old
|
|
/// value of the pointer, or null if it was not in the map.
|
|
void *updateGlobalMapping(const GlobalValue *GV, void *Addr);
|
|
|
|
/// getPointerToGlobalIfAvailable - This returns the address of the specified
|
|
/// global value if it is has already been codegen'd, otherwise it returns
|
|
/// null.
|
|
///
|
|
void *getPointerToGlobalIfAvailable(const GlobalValue *GV);
|
|
|
|
/// getPointerToGlobal - This returns the address of the specified global
|
|
/// value. This may involve code generation if it's a function. After
|
|
/// getting a pointer to GV, it and all globals it transitively refers to have
|
|
/// been passed to addGlobalMapping. You must clear the mapping for each
|
|
/// referred-to global before destroying it. If a referred-to global RTG is a
|
|
/// function and this ExecutionEngine is a JIT compiler, calling
|
|
/// updateGlobalMapping(RTG, 0) will leak the function's machine code, so you
|
|
/// should call freeMachineCodeForFunction(RTG) instead. Note that
|
|
/// optimizations can move and delete non-external GlobalValues without
|
|
/// notifying the ExecutionEngine.
|
|
///
|
|
void *getPointerToGlobal(const GlobalValue *GV);
|
|
|
|
/// getPointerToFunction - The different EE's represent function bodies in
|
|
/// different ways. They should each implement this to say what a function
|
|
/// pointer should look like. See getPointerToGlobal for the requirements on
|
|
/// destroying F and any GlobalValues it refers to.
|
|
///
|
|
virtual void *getPointerToFunction(Function *F) = 0;
|
|
|
|
/// getPointerToFunctionOrStub - If the specified function has been
|
|
/// code-gen'd, return a pointer to the function. If not, compile it, or use
|
|
/// a stub to implement lazy compilation if available. See getPointerToGlobal
|
|
/// for the requirements on destroying F and any GlobalValues it refers to.
|
|
///
|
|
virtual void *getPointerToFunctionOrStub(Function *F) {
|
|
// Default implementation, just codegen the function.
|
|
return getPointerToFunction(F);
|
|
}
|
|
|
|
/// getGlobalValueAtAddress - Return the LLVM global value object that starts
|
|
/// at the specified address.
|
|
///
|
|
const GlobalValue *getGlobalValueAtAddress(void *Addr);
|
|
|
|
|
|
void StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr,
|
|
const Type *Ty);
|
|
void InitializeMemory(const Constant *Init, void *Addr);
|
|
|
|
/// recompileAndRelinkFunction - This method is used to force a function
|
|
/// which has already been compiled to be compiled again, possibly
|
|
/// after it has been modified. Then the entry to the old copy is overwritten
|
|
/// with a branch to the new copy. If there was no old copy, this acts
|
|
/// just like VM::getPointerToFunction().
|
|
///
|
|
virtual void *recompileAndRelinkFunction(Function *F) = 0;
|
|
|
|
/// freeMachineCodeForFunction - Release memory in the ExecutionEngine
|
|
/// corresponding to the machine code emitted to execute this function, useful
|
|
/// for garbage-collecting generated code.
|
|
///
|
|
virtual void freeMachineCodeForFunction(Function *F) = 0;
|
|
|
|
/// getOrEmitGlobalVariable - Return the address of the specified global
|
|
/// variable, possibly emitting it to memory if needed. This is used by the
|
|
/// Emitter. See getPointerToGlobal for the requirements on destroying GV and
|
|
/// any GlobalValues it refers to.
|
|
virtual void *getOrEmitGlobalVariable(const GlobalVariable *GV) {
|
|
return getPointerToGlobal((GlobalValue*)GV);
|
|
}
|
|
|
|
/// DisableLazyCompilation - If called, the JIT will abort if lazy compilation
|
|
/// is ever attempted.
|
|
void DisableLazyCompilation(bool Disabled = true) {
|
|
LazyCompilationDisabled = Disabled;
|
|
}
|
|
bool isLazyCompilationDisabled() const {
|
|
return LazyCompilationDisabled;
|
|
}
|
|
|
|
/// DisableGVCompilation - If called, the JIT will abort if it's asked to
|
|
/// allocate space and populate a GlobalVariable that is not internal to
|
|
/// the module.
|
|
void DisableGVCompilation(bool Disabled = true) {
|
|
GVCompilationDisabled = Disabled;
|
|
}
|
|
bool isGVCompilationDisabled() const {
|
|
return GVCompilationDisabled;
|
|
}
|
|
|
|
/// DisableSymbolSearching - If called, the JIT will not try to lookup unknown
|
|
/// symbols with dlsym. A client can still use InstallLazyFunctionCreator to
|
|
/// resolve symbols in a custom way.
|
|
void DisableSymbolSearching(bool Disabled = true) {
|
|
SymbolSearchingDisabled = Disabled;
|
|
}
|
|
bool isSymbolSearchingDisabled() const {
|
|
return SymbolSearchingDisabled;
|
|
}
|
|
|
|
/// EnableDlsymStubs -
|
|
void EnableDlsymStubs(bool Enabled = true) {
|
|
DlsymStubsEnabled = Enabled;
|
|
}
|
|
bool areDlsymStubsEnabled() const {
|
|
return DlsymStubsEnabled;
|
|
}
|
|
|
|
/// InstallLazyFunctionCreator - If an unknown function is needed, the
|
|
/// specified function pointer is invoked to create it. If it returns null,
|
|
/// the JIT will abort.
|
|
void InstallLazyFunctionCreator(void* (*P)(const std::string &)) {
|
|
LazyFunctionCreator = P;
|
|
}
|
|
|
|
/// InstallExceptionTableRegister - The JIT will use the given function
|
|
/// to register the exception tables it generates.
|
|
static void InstallExceptionTableRegister(void (*F)(void*)) {
|
|
ExceptionTableRegister = F;
|
|
}
|
|
|
|
/// RegisterTable - Registers the given pointer as an exception table. It uses
|
|
/// the ExceptionTableRegister function.
|
|
static void RegisterTable(void* res) {
|
|
if (ExceptionTableRegister)
|
|
ExceptionTableRegister(res);
|
|
}
|
|
|
|
protected:
|
|
explicit ExecutionEngine(ModuleProvider *P);
|
|
|
|
void emitGlobals();
|
|
|
|
// EmitGlobalVariable - This method emits the specified global variable to the
|
|
// address specified in GlobalAddresses, or allocates new memory if it's not
|
|
// already in the map.
|
|
void EmitGlobalVariable(const GlobalVariable *GV);
|
|
|
|
GenericValue getConstantValue(const Constant *C);
|
|
void LoadValueFromMemory(GenericValue &Result, GenericValue *Ptr,
|
|
const Type *Ty);
|
|
};
|
|
|
|
} // End llvm namespace
|
|
|
|
#endif
|