mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 20:23:11 +01:00
972a573aa5
There is a library layering issue. LLVMAnalysis provides llvm/Analysis/ScopedNoAliasAA.h and depends on LLVMCore. LLVMCore provides llvm/IR/Metadata.cpp and it should not include a header file in LLVMAnalysis
1457 lines
46 KiB
C++
1457 lines
46 KiB
C++
//===- llvm/IR/Metadata.h - Metadata definitions ----------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// @file
|
|
/// This file contains the declarations for metadata subclasses.
|
|
/// They represent the different flavors of metadata that live in LLVM.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_IR_METADATA_H
|
|
#define LLVM_IR_METADATA_H
|
|
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DenseMapInfo.h"
|
|
#include "llvm/ADT/None.h"
|
|
#include "llvm/ADT/PointerUnion.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringMap.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/ilist_node.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/Support/CBindingWrapping.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <iterator>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <type_traits>
|
|
#include <utility>
|
|
|
|
namespace llvm {
|
|
|
|
class Module;
|
|
class ModuleSlotTracker;
|
|
class raw_ostream;
|
|
class Type;
|
|
|
|
enum LLVMConstants : uint32_t {
|
|
DEBUG_METADATA_VERSION = 3 // Current debug info version number.
|
|
};
|
|
|
|
/// Root of the metadata hierarchy.
|
|
///
|
|
/// This is a root class for typeless data in the IR.
|
|
class Metadata {
|
|
friend class ReplaceableMetadataImpl;
|
|
|
|
/// RTTI.
|
|
const unsigned char SubclassID;
|
|
|
|
protected:
|
|
/// Active type of storage.
|
|
enum StorageType { Uniqued, Distinct, Temporary };
|
|
|
|
/// Storage flag for non-uniqued, otherwise unowned, metadata.
|
|
unsigned char Storage : 7;
|
|
// TODO: expose remaining bits to subclasses.
|
|
|
|
unsigned char ImplicitCode : 1;
|
|
|
|
unsigned short SubclassData16 = 0;
|
|
unsigned SubclassData32 = 0;
|
|
|
|
public:
|
|
enum MetadataKind {
|
|
#define HANDLE_METADATA_LEAF(CLASS) CLASS##Kind,
|
|
#include "llvm/IR/Metadata.def"
|
|
};
|
|
|
|
protected:
|
|
Metadata(unsigned ID, StorageType Storage)
|
|
: SubclassID(ID), Storage(Storage), ImplicitCode(false) {
|
|
static_assert(sizeof(*this) == 8, "Metadata fields poorly packed");
|
|
}
|
|
|
|
~Metadata() = default;
|
|
|
|
/// Default handling of a changed operand, which asserts.
|
|
///
|
|
/// If subclasses pass themselves in as owners to a tracking node reference,
|
|
/// they must provide an implementation of this method.
|
|
void handleChangedOperand(void *, Metadata *) {
|
|
llvm_unreachable("Unimplemented in Metadata subclass");
|
|
}
|
|
|
|
public:
|
|
unsigned getMetadataID() const { return SubclassID; }
|
|
|
|
/// User-friendly dump.
|
|
///
|
|
/// If \c M is provided, metadata nodes will be numbered canonically;
|
|
/// otherwise, pointer addresses are substituted.
|
|
///
|
|
/// Note: this uses an explicit overload instead of default arguments so that
|
|
/// the nullptr version is easy to call from a debugger.
|
|
///
|
|
/// @{
|
|
void dump() const;
|
|
void dump(const Module *M) const;
|
|
/// @}
|
|
|
|
/// Print.
|
|
///
|
|
/// Prints definition of \c this.
|
|
///
|
|
/// If \c M is provided, metadata nodes will be numbered canonically;
|
|
/// otherwise, pointer addresses are substituted.
|
|
/// @{
|
|
void print(raw_ostream &OS, const Module *M = nullptr,
|
|
bool IsForDebug = false) const;
|
|
void print(raw_ostream &OS, ModuleSlotTracker &MST, const Module *M = nullptr,
|
|
bool IsForDebug = false) const;
|
|
/// @}
|
|
|
|
/// Print as operand.
|
|
///
|
|
/// Prints reference of \c this.
|
|
///
|
|
/// If \c M is provided, metadata nodes will be numbered canonically;
|
|
/// otherwise, pointer addresses are substituted.
|
|
/// @{
|
|
void printAsOperand(raw_ostream &OS, const Module *M = nullptr) const;
|
|
void printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
|
|
const Module *M = nullptr) const;
|
|
/// @}
|
|
};
|
|
|
|
// Create wrappers for C Binding types (see CBindingWrapping.h).
|
|
DEFINE_ISA_CONVERSION_FUNCTIONS(Metadata, LLVMMetadataRef)
|
|
|
|
// Specialized opaque metadata conversions.
|
|
inline Metadata **unwrap(LLVMMetadataRef *MDs) {
|
|
return reinterpret_cast<Metadata**>(MDs);
|
|
}
|
|
|
|
#define HANDLE_METADATA(CLASS) class CLASS;
|
|
#include "llvm/IR/Metadata.def"
|
|
|
|
// Provide specializations of isa so that we don't need definitions of
|
|
// subclasses to see if the metadata is a subclass.
|
|
#define HANDLE_METADATA_LEAF(CLASS) \
|
|
template <> struct isa_impl<CLASS, Metadata> { \
|
|
static inline bool doit(const Metadata &MD) { \
|
|
return MD.getMetadataID() == Metadata::CLASS##Kind; \
|
|
} \
|
|
};
|
|
#include "llvm/IR/Metadata.def"
|
|
|
|
inline raw_ostream &operator<<(raw_ostream &OS, const Metadata &MD) {
|
|
MD.print(OS);
|
|
return OS;
|
|
}
|
|
|
|
/// Metadata wrapper in the Value hierarchy.
|
|
///
|
|
/// A member of the \a Value hierarchy to represent a reference to metadata.
|
|
/// This allows, e.g., instrinsics to have metadata as operands.
|
|
///
|
|
/// Notably, this is the only thing in either hierarchy that is allowed to
|
|
/// reference \a LocalAsMetadata.
|
|
class MetadataAsValue : public Value {
|
|
friend class ReplaceableMetadataImpl;
|
|
friend class LLVMContextImpl;
|
|
|
|
Metadata *MD;
|
|
|
|
MetadataAsValue(Type *Ty, Metadata *MD);
|
|
|
|
/// Drop use of metadata (during teardown).
|
|
void dropUse() { MD = nullptr; }
|
|
|
|
public:
|
|
~MetadataAsValue();
|
|
|
|
static MetadataAsValue *get(LLVMContext &Context, Metadata *MD);
|
|
static MetadataAsValue *getIfExists(LLVMContext &Context, Metadata *MD);
|
|
|
|
Metadata *getMetadata() const { return MD; }
|
|
|
|
static bool classof(const Value *V) {
|
|
return V->getValueID() == MetadataAsValueVal;
|
|
}
|
|
|
|
private:
|
|
void handleChangedMetadata(Metadata *MD);
|
|
void track();
|
|
void untrack();
|
|
};
|
|
|
|
/// API for tracking metadata references through RAUW and deletion.
|
|
///
|
|
/// Shared API for updating \a Metadata pointers in subclasses that support
|
|
/// RAUW.
|
|
///
|
|
/// This API is not meant to be used directly. See \a TrackingMDRef for a
|
|
/// user-friendly tracking reference.
|
|
class MetadataTracking {
|
|
public:
|
|
/// Track the reference to metadata.
|
|
///
|
|
/// Register \c MD with \c *MD, if the subclass supports tracking. If \c *MD
|
|
/// gets RAUW'ed, \c MD will be updated to the new address. If \c *MD gets
|
|
/// deleted, \c MD will be set to \c nullptr.
|
|
///
|
|
/// If tracking isn't supported, \c *MD will not change.
|
|
///
|
|
/// \return true iff tracking is supported by \c MD.
|
|
static bool track(Metadata *&MD) {
|
|
return track(&MD, *MD, static_cast<Metadata *>(nullptr));
|
|
}
|
|
|
|
/// Track the reference to metadata for \a Metadata.
|
|
///
|
|
/// As \a track(Metadata*&), but with support for calling back to \c Owner to
|
|
/// tell it that its operand changed. This could trigger \c Owner being
|
|
/// re-uniqued.
|
|
static bool track(void *Ref, Metadata &MD, Metadata &Owner) {
|
|
return track(Ref, MD, &Owner);
|
|
}
|
|
|
|
/// Track the reference to metadata for \a MetadataAsValue.
|
|
///
|
|
/// As \a track(Metadata*&), but with support for calling back to \c Owner to
|
|
/// tell it that its operand changed. This could trigger \c Owner being
|
|
/// re-uniqued.
|
|
static bool track(void *Ref, Metadata &MD, MetadataAsValue &Owner) {
|
|
return track(Ref, MD, &Owner);
|
|
}
|
|
|
|
/// Stop tracking a reference to metadata.
|
|
///
|
|
/// Stops \c *MD from tracking \c MD.
|
|
static void untrack(Metadata *&MD) { untrack(&MD, *MD); }
|
|
static void untrack(void *Ref, Metadata &MD);
|
|
|
|
/// Move tracking from one reference to another.
|
|
///
|
|
/// Semantically equivalent to \c untrack(MD) followed by \c track(New),
|
|
/// except that ownership callbacks are maintained.
|
|
///
|
|
/// Note: it is an error if \c *MD does not equal \c New.
|
|
///
|
|
/// \return true iff tracking is supported by \c MD.
|
|
static bool retrack(Metadata *&MD, Metadata *&New) {
|
|
return retrack(&MD, *MD, &New);
|
|
}
|
|
static bool retrack(void *Ref, Metadata &MD, void *New);
|
|
|
|
/// Check whether metadata is replaceable.
|
|
static bool isReplaceable(const Metadata &MD);
|
|
|
|
using OwnerTy = PointerUnion<MetadataAsValue *, Metadata *>;
|
|
|
|
private:
|
|
/// Track a reference to metadata for an owner.
|
|
///
|
|
/// Generalized version of tracking.
|
|
static bool track(void *Ref, Metadata &MD, OwnerTy Owner);
|
|
};
|
|
|
|
/// Shared implementation of use-lists for replaceable metadata.
|
|
///
|
|
/// Most metadata cannot be RAUW'ed. This is a shared implementation of
|
|
/// use-lists and associated API for the two that support it (\a ValueAsMetadata
|
|
/// and \a TempMDNode).
|
|
class ReplaceableMetadataImpl {
|
|
friend class MetadataTracking;
|
|
|
|
public:
|
|
using OwnerTy = MetadataTracking::OwnerTy;
|
|
|
|
private:
|
|
LLVMContext &Context;
|
|
uint64_t NextIndex = 0;
|
|
SmallDenseMap<void *, std::pair<OwnerTy, uint64_t>, 4> UseMap;
|
|
|
|
public:
|
|
ReplaceableMetadataImpl(LLVMContext &Context) : Context(Context) {}
|
|
|
|
~ReplaceableMetadataImpl() {
|
|
assert(UseMap.empty() && "Cannot destroy in-use replaceable metadata");
|
|
}
|
|
|
|
LLVMContext &getContext() const { return Context; }
|
|
|
|
/// Replace all uses of this with MD.
|
|
///
|
|
/// Replace all uses of this with \c MD, which is allowed to be null.
|
|
void replaceAllUsesWith(Metadata *MD);
|
|
|
|
/// Resolve all uses of this.
|
|
///
|
|
/// Resolve all uses of this, turning off RAUW permanently. If \c
|
|
/// ResolveUsers, call \a MDNode::resolve() on any users whose last operand
|
|
/// is resolved.
|
|
void resolveAllUses(bool ResolveUsers = true);
|
|
|
|
private:
|
|
void addRef(void *Ref, OwnerTy Owner);
|
|
void dropRef(void *Ref);
|
|
void moveRef(void *Ref, void *New, const Metadata &MD);
|
|
|
|
/// Lazily construct RAUW support on MD.
|
|
///
|
|
/// If this is an unresolved MDNode, RAUW support will be created on-demand.
|
|
/// ValueAsMetadata always has RAUW support.
|
|
static ReplaceableMetadataImpl *getOrCreate(Metadata &MD);
|
|
|
|
/// Get RAUW support on MD, if it exists.
|
|
static ReplaceableMetadataImpl *getIfExists(Metadata &MD);
|
|
|
|
/// Check whether this node will support RAUW.
|
|
///
|
|
/// Returns \c true unless getOrCreate() would return null.
|
|
static bool isReplaceable(const Metadata &MD);
|
|
};
|
|
|
|
/// Value wrapper in the Metadata hierarchy.
|
|
///
|
|
/// This is a custom value handle that allows other metadata to refer to
|
|
/// classes in the Value hierarchy.
|
|
///
|
|
/// Because of full uniquing support, each value is only wrapped by a single \a
|
|
/// ValueAsMetadata object, so the lookup maps are far more efficient than
|
|
/// those using ValueHandleBase.
|
|
class ValueAsMetadata : public Metadata, ReplaceableMetadataImpl {
|
|
friend class ReplaceableMetadataImpl;
|
|
friend class LLVMContextImpl;
|
|
|
|
Value *V;
|
|
|
|
/// Drop users without RAUW (during teardown).
|
|
void dropUsers() {
|
|
ReplaceableMetadataImpl::resolveAllUses(/* ResolveUsers */ false);
|
|
}
|
|
|
|
protected:
|
|
ValueAsMetadata(unsigned ID, Value *V)
|
|
: Metadata(ID, Uniqued), ReplaceableMetadataImpl(V->getContext()), V(V) {
|
|
assert(V && "Expected valid value");
|
|
}
|
|
|
|
~ValueAsMetadata() = default;
|
|
|
|
public:
|
|
static ValueAsMetadata *get(Value *V);
|
|
|
|
static ConstantAsMetadata *getConstant(Value *C) {
|
|
return cast<ConstantAsMetadata>(get(C));
|
|
}
|
|
|
|
static LocalAsMetadata *getLocal(Value *Local) {
|
|
return cast<LocalAsMetadata>(get(Local));
|
|
}
|
|
|
|
static ValueAsMetadata *getIfExists(Value *V);
|
|
|
|
static ConstantAsMetadata *getConstantIfExists(Value *C) {
|
|
return cast_or_null<ConstantAsMetadata>(getIfExists(C));
|
|
}
|
|
|
|
static LocalAsMetadata *getLocalIfExists(Value *Local) {
|
|
return cast_or_null<LocalAsMetadata>(getIfExists(Local));
|
|
}
|
|
|
|
Value *getValue() const { return V; }
|
|
Type *getType() const { return V->getType(); }
|
|
LLVMContext &getContext() const { return V->getContext(); }
|
|
|
|
static void handleDeletion(Value *V);
|
|
static void handleRAUW(Value *From, Value *To);
|
|
|
|
protected:
|
|
/// Handle collisions after \a Value::replaceAllUsesWith().
|
|
///
|
|
/// RAUW isn't supported directly for \a ValueAsMetadata, but if the wrapped
|
|
/// \a Value gets RAUW'ed and the target already exists, this is used to
|
|
/// merge the two metadata nodes.
|
|
void replaceAllUsesWith(Metadata *MD) {
|
|
ReplaceableMetadataImpl::replaceAllUsesWith(MD);
|
|
}
|
|
|
|
public:
|
|
static bool classof(const Metadata *MD) {
|
|
return MD->getMetadataID() == LocalAsMetadataKind ||
|
|
MD->getMetadataID() == ConstantAsMetadataKind;
|
|
}
|
|
};
|
|
|
|
class ConstantAsMetadata : public ValueAsMetadata {
|
|
friend class ValueAsMetadata;
|
|
|
|
ConstantAsMetadata(Constant *C)
|
|
: ValueAsMetadata(ConstantAsMetadataKind, C) {}
|
|
|
|
public:
|
|
static ConstantAsMetadata *get(Constant *C) {
|
|
return ValueAsMetadata::getConstant(C);
|
|
}
|
|
|
|
static ConstantAsMetadata *getIfExists(Constant *C) {
|
|
return ValueAsMetadata::getConstantIfExists(C);
|
|
}
|
|
|
|
Constant *getValue() const {
|
|
return cast<Constant>(ValueAsMetadata::getValue());
|
|
}
|
|
|
|
static bool classof(const Metadata *MD) {
|
|
return MD->getMetadataID() == ConstantAsMetadataKind;
|
|
}
|
|
};
|
|
|
|
class LocalAsMetadata : public ValueAsMetadata {
|
|
friend class ValueAsMetadata;
|
|
|
|
LocalAsMetadata(Value *Local)
|
|
: ValueAsMetadata(LocalAsMetadataKind, Local) {
|
|
assert(!isa<Constant>(Local) && "Expected local value");
|
|
}
|
|
|
|
public:
|
|
static LocalAsMetadata *get(Value *Local) {
|
|
return ValueAsMetadata::getLocal(Local);
|
|
}
|
|
|
|
static LocalAsMetadata *getIfExists(Value *Local) {
|
|
return ValueAsMetadata::getLocalIfExists(Local);
|
|
}
|
|
|
|
static bool classof(const Metadata *MD) {
|
|
return MD->getMetadataID() == LocalAsMetadataKind;
|
|
}
|
|
};
|
|
|
|
/// Transitional API for extracting constants from Metadata.
|
|
///
|
|
/// This namespace contains transitional functions for metadata that points to
|
|
/// \a Constants.
|
|
///
|
|
/// In prehistory -- when metadata was a subclass of \a Value -- \a MDNode
|
|
/// operands could refer to any \a Value. There's was a lot of code like this:
|
|
///
|
|
/// \code
|
|
/// MDNode *N = ...;
|
|
/// auto *CI = dyn_cast<ConstantInt>(N->getOperand(2));
|
|
/// \endcode
|
|
///
|
|
/// Now that \a Value and \a Metadata are in separate hierarchies, maintaining
|
|
/// the semantics for \a isa(), \a cast(), \a dyn_cast() (etc.) requires three
|
|
/// steps: cast in the \a Metadata hierarchy, extraction of the \a Value, and
|
|
/// cast in the \a Value hierarchy. Besides creating boiler-plate, this
|
|
/// requires subtle control flow changes.
|
|
///
|
|
/// The end-goal is to create a new type of metadata, called (e.g.) \a MDInt,
|
|
/// so that metadata can refer to numbers without traversing a bridge to the \a
|
|
/// Value hierarchy. In this final state, the code above would look like this:
|
|
///
|
|
/// \code
|
|
/// MDNode *N = ...;
|
|
/// auto *MI = dyn_cast<MDInt>(N->getOperand(2));
|
|
/// \endcode
|
|
///
|
|
/// The API in this namespace supports the transition. \a MDInt doesn't exist
|
|
/// yet, and even once it does, changing each metadata schema to use it is its
|
|
/// own mini-project. In the meantime this API prevents us from introducing
|
|
/// complex and bug-prone control flow that will disappear in the end. In
|
|
/// particular, the above code looks like this:
|
|
///
|
|
/// \code
|
|
/// MDNode *N = ...;
|
|
/// auto *CI = mdconst::dyn_extract<ConstantInt>(N->getOperand(2));
|
|
/// \endcode
|
|
///
|
|
/// The full set of provided functions includes:
|
|
///
|
|
/// mdconst::hasa <=> isa
|
|
/// mdconst::extract <=> cast
|
|
/// mdconst::extract_or_null <=> cast_or_null
|
|
/// mdconst::dyn_extract <=> dyn_cast
|
|
/// mdconst::dyn_extract_or_null <=> dyn_cast_or_null
|
|
///
|
|
/// The target of the cast must be a subclass of \a Constant.
|
|
namespace mdconst {
|
|
|
|
namespace detail {
|
|
|
|
template <class T> T &make();
|
|
template <class T, class Result> struct HasDereference {
|
|
using Yes = char[1];
|
|
using No = char[2];
|
|
template <size_t N> struct SFINAE {};
|
|
|
|
template <class U, class V>
|
|
static Yes &hasDereference(SFINAE<sizeof(static_cast<V>(*make<U>()))> * = 0);
|
|
template <class U, class V> static No &hasDereference(...);
|
|
|
|
static const bool value =
|
|
sizeof(hasDereference<T, Result>(nullptr)) == sizeof(Yes);
|
|
};
|
|
template <class V, class M> struct IsValidPointer {
|
|
static const bool value = std::is_base_of<Constant, V>::value &&
|
|
HasDereference<M, const Metadata &>::value;
|
|
};
|
|
template <class V, class M> struct IsValidReference {
|
|
static const bool value = std::is_base_of<Constant, V>::value &&
|
|
std::is_convertible<M, const Metadata &>::value;
|
|
};
|
|
|
|
} // end namespace detail
|
|
|
|
/// Check whether Metadata has a Value.
|
|
///
|
|
/// As an analogue to \a isa(), check whether \c MD has an \a Value inside of
|
|
/// type \c X.
|
|
template <class X, class Y>
|
|
inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, bool>
|
|
hasa(Y &&MD) {
|
|
assert(MD && "Null pointer sent into hasa");
|
|
if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
|
|
return isa<X>(V->getValue());
|
|
return false;
|
|
}
|
|
template <class X, class Y>
|
|
inline std::enable_if_t<detail::IsValidReference<X, Y &>::value, bool>
|
|
hasa(Y &MD) {
|
|
return hasa(&MD);
|
|
}
|
|
|
|
/// Extract a Value from Metadata.
|
|
///
|
|
/// As an analogue to \a cast(), extract the \a Value subclass \c X from \c MD.
|
|
template <class X, class Y>
|
|
inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
|
|
extract(Y &&MD) {
|
|
return cast<X>(cast<ConstantAsMetadata>(MD)->getValue());
|
|
}
|
|
template <class X, class Y>
|
|
inline std::enable_if_t<detail::IsValidReference<X, Y &>::value, X *>
|
|
extract(Y &MD) {
|
|
return extract(&MD);
|
|
}
|
|
|
|
/// Extract a Value from Metadata, allowing null.
|
|
///
|
|
/// As an analogue to \a cast_or_null(), extract the \a Value subclass \c X
|
|
/// from \c MD, allowing \c MD to be null.
|
|
template <class X, class Y>
|
|
inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
|
|
extract_or_null(Y &&MD) {
|
|
if (auto *V = cast_or_null<ConstantAsMetadata>(MD))
|
|
return cast<X>(V->getValue());
|
|
return nullptr;
|
|
}
|
|
|
|
/// Extract a Value from Metadata, if any.
|
|
///
|
|
/// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
|
|
/// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
|
|
/// Value it does contain is of the wrong subclass.
|
|
template <class X, class Y>
|
|
inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
|
|
dyn_extract(Y &&MD) {
|
|
if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
|
|
return dyn_cast<X>(V->getValue());
|
|
return nullptr;
|
|
}
|
|
|
|
/// Extract a Value from Metadata, if any, allowing null.
|
|
///
|
|
/// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
|
|
/// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
|
|
/// Value it does contain is of the wrong subclass, allowing \c MD to be null.
|
|
template <class X, class Y>
|
|
inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
|
|
dyn_extract_or_null(Y &&MD) {
|
|
if (auto *V = dyn_cast_or_null<ConstantAsMetadata>(MD))
|
|
return dyn_cast<X>(V->getValue());
|
|
return nullptr;
|
|
}
|
|
|
|
} // end namespace mdconst
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// A single uniqued string.
|
|
///
|
|
/// These are used to efficiently contain a byte sequence for metadata.
|
|
/// MDString is always unnamed.
|
|
class MDString : public Metadata {
|
|
friend class StringMapEntryStorage<MDString>;
|
|
|
|
StringMapEntry<MDString> *Entry = nullptr;
|
|
|
|
MDString() : Metadata(MDStringKind, Uniqued) {}
|
|
|
|
public:
|
|
MDString(const MDString &) = delete;
|
|
MDString &operator=(MDString &&) = delete;
|
|
MDString &operator=(const MDString &) = delete;
|
|
|
|
static MDString *get(LLVMContext &Context, StringRef Str);
|
|
static MDString *get(LLVMContext &Context, const char *Str) {
|
|
return get(Context, Str ? StringRef(Str) : StringRef());
|
|
}
|
|
|
|
StringRef getString() const;
|
|
|
|
unsigned getLength() const { return (unsigned)getString().size(); }
|
|
|
|
using iterator = StringRef::iterator;
|
|
|
|
/// Pointer to the first byte of the string.
|
|
iterator begin() const { return getString().begin(); }
|
|
|
|
/// Pointer to one byte past the end of the string.
|
|
iterator end() const { return getString().end(); }
|
|
|
|
const unsigned char *bytes_begin() const { return getString().bytes_begin(); }
|
|
const unsigned char *bytes_end() const { return getString().bytes_end(); }
|
|
|
|
/// Methods for support type inquiry through isa, cast, and dyn_cast.
|
|
static bool classof(const Metadata *MD) {
|
|
return MD->getMetadataID() == MDStringKind;
|
|
}
|
|
};
|
|
|
|
/// A collection of metadata nodes that might be associated with a
|
|
/// memory access used by the alias-analysis infrastructure.
|
|
struct AAMDNodes {
|
|
explicit AAMDNodes() = default;
|
|
explicit AAMDNodes(MDNode *T, MDNode *TS, MDNode *S, MDNode *N)
|
|
: TBAA(T), TBAAStruct(TS), Scope(S), NoAlias(N) {}
|
|
|
|
bool operator==(const AAMDNodes &A) const {
|
|
return TBAA == A.TBAA && TBAAStruct == A.TBAAStruct && Scope == A.Scope &&
|
|
NoAlias == A.NoAlias;
|
|
}
|
|
|
|
bool operator!=(const AAMDNodes &A) const { return !(*this == A); }
|
|
|
|
explicit operator bool() const {
|
|
return TBAA || TBAAStruct || Scope || NoAlias;
|
|
}
|
|
|
|
/// The tag for type-based alias analysis.
|
|
MDNode *TBAA = nullptr;
|
|
|
|
/// The tag for type-based alias analysis (tbaa struct).
|
|
MDNode *TBAAStruct = nullptr;
|
|
|
|
/// The tag for alias scope specification (used with noalias).
|
|
MDNode *Scope = nullptr;
|
|
|
|
/// The tag specifying the noalias scope.
|
|
MDNode *NoAlias = nullptr;
|
|
|
|
/// Given two sets of AAMDNodes that apply to the same pointer,
|
|
/// give the best AAMDNodes that are compatible with both (i.e. a set of
|
|
/// nodes whose allowable aliasing conclusions are a subset of those
|
|
/// allowable by both of the inputs). However, for efficiency
|
|
/// reasons, do not create any new MDNodes.
|
|
AAMDNodes intersect(const AAMDNodes &Other) {
|
|
AAMDNodes Result;
|
|
Result.TBAA = Other.TBAA == TBAA ? TBAA : nullptr;
|
|
Result.TBAAStruct = Other.TBAAStruct == TBAAStruct ? TBAAStruct : nullptr;
|
|
Result.Scope = Other.Scope == Scope ? Scope : nullptr;
|
|
Result.NoAlias = Other.NoAlias == NoAlias ? NoAlias : nullptr;
|
|
return Result;
|
|
}
|
|
};
|
|
|
|
// Specialize DenseMapInfo for AAMDNodes.
|
|
template<>
|
|
struct DenseMapInfo<AAMDNodes> {
|
|
static inline AAMDNodes getEmptyKey() {
|
|
return AAMDNodes(DenseMapInfo<MDNode *>::getEmptyKey(),
|
|
nullptr, nullptr, nullptr);
|
|
}
|
|
|
|
static inline AAMDNodes getTombstoneKey() {
|
|
return AAMDNodes(DenseMapInfo<MDNode *>::getTombstoneKey(),
|
|
nullptr, nullptr, nullptr);
|
|
}
|
|
|
|
static unsigned getHashValue(const AAMDNodes &Val) {
|
|
return DenseMapInfo<MDNode *>::getHashValue(Val.TBAA) ^
|
|
DenseMapInfo<MDNode *>::getHashValue(Val.TBAAStruct) ^
|
|
DenseMapInfo<MDNode *>::getHashValue(Val.Scope) ^
|
|
DenseMapInfo<MDNode *>::getHashValue(Val.NoAlias);
|
|
}
|
|
|
|
static bool isEqual(const AAMDNodes &LHS, const AAMDNodes &RHS) {
|
|
return LHS == RHS;
|
|
}
|
|
};
|
|
|
|
/// Tracking metadata reference owned by Metadata.
|
|
///
|
|
/// Similar to \a TrackingMDRef, but it's expected to be owned by an instance
|
|
/// of \a Metadata, which has the option of registering itself for callbacks to
|
|
/// re-unique itself.
|
|
///
|
|
/// In particular, this is used by \a MDNode.
|
|
class MDOperand {
|
|
Metadata *MD = nullptr;
|
|
|
|
public:
|
|
MDOperand() = default;
|
|
MDOperand(MDOperand &&) = delete;
|
|
MDOperand(const MDOperand &) = delete;
|
|
MDOperand &operator=(MDOperand &&) = delete;
|
|
MDOperand &operator=(const MDOperand &) = delete;
|
|
~MDOperand() { untrack(); }
|
|
|
|
Metadata *get() const { return MD; }
|
|
operator Metadata *() const { return get(); }
|
|
Metadata *operator->() const { return get(); }
|
|
Metadata &operator*() const { return *get(); }
|
|
|
|
void reset() {
|
|
untrack();
|
|
MD = nullptr;
|
|
}
|
|
void reset(Metadata *MD, Metadata *Owner) {
|
|
untrack();
|
|
this->MD = MD;
|
|
track(Owner);
|
|
}
|
|
|
|
private:
|
|
void track(Metadata *Owner) {
|
|
if (MD) {
|
|
if (Owner)
|
|
MetadataTracking::track(this, *MD, *Owner);
|
|
else
|
|
MetadataTracking::track(MD);
|
|
}
|
|
}
|
|
|
|
void untrack() {
|
|
assert(static_cast<void *>(this) == &MD && "Expected same address");
|
|
if (MD)
|
|
MetadataTracking::untrack(MD);
|
|
}
|
|
};
|
|
|
|
template <> struct simplify_type<MDOperand> {
|
|
using SimpleType = Metadata *;
|
|
|
|
static SimpleType getSimplifiedValue(MDOperand &MD) { return MD.get(); }
|
|
};
|
|
|
|
template <> struct simplify_type<const MDOperand> {
|
|
using SimpleType = Metadata *;
|
|
|
|
static SimpleType getSimplifiedValue(const MDOperand &MD) { return MD.get(); }
|
|
};
|
|
|
|
/// Pointer to the context, with optional RAUW support.
|
|
///
|
|
/// Either a raw (non-null) pointer to the \a LLVMContext, or an owned pointer
|
|
/// to \a ReplaceableMetadataImpl (which has a reference to \a LLVMContext).
|
|
class ContextAndReplaceableUses {
|
|
PointerUnion<LLVMContext *, ReplaceableMetadataImpl *> Ptr;
|
|
|
|
public:
|
|
ContextAndReplaceableUses(LLVMContext &Context) : Ptr(&Context) {}
|
|
ContextAndReplaceableUses(
|
|
std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses)
|
|
: Ptr(ReplaceableUses.release()) {
|
|
assert(getReplaceableUses() && "Expected non-null replaceable uses");
|
|
}
|
|
ContextAndReplaceableUses() = delete;
|
|
ContextAndReplaceableUses(ContextAndReplaceableUses &&) = delete;
|
|
ContextAndReplaceableUses(const ContextAndReplaceableUses &) = delete;
|
|
ContextAndReplaceableUses &operator=(ContextAndReplaceableUses &&) = delete;
|
|
ContextAndReplaceableUses &
|
|
operator=(const ContextAndReplaceableUses &) = delete;
|
|
~ContextAndReplaceableUses() { delete getReplaceableUses(); }
|
|
|
|
operator LLVMContext &() { return getContext(); }
|
|
|
|
/// Whether this contains RAUW support.
|
|
bool hasReplaceableUses() const {
|
|
return Ptr.is<ReplaceableMetadataImpl *>();
|
|
}
|
|
|
|
LLVMContext &getContext() const {
|
|
if (hasReplaceableUses())
|
|
return getReplaceableUses()->getContext();
|
|
return *Ptr.get<LLVMContext *>();
|
|
}
|
|
|
|
ReplaceableMetadataImpl *getReplaceableUses() const {
|
|
if (hasReplaceableUses())
|
|
return Ptr.get<ReplaceableMetadataImpl *>();
|
|
return nullptr;
|
|
}
|
|
|
|
/// Ensure that this has RAUW support, and then return it.
|
|
ReplaceableMetadataImpl *getOrCreateReplaceableUses() {
|
|
if (!hasReplaceableUses())
|
|
makeReplaceable(std::make_unique<ReplaceableMetadataImpl>(getContext()));
|
|
return getReplaceableUses();
|
|
}
|
|
|
|
/// Assign RAUW support to this.
|
|
///
|
|
/// Make this replaceable, taking ownership of \c ReplaceableUses (which must
|
|
/// not be null).
|
|
void
|
|
makeReplaceable(std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses) {
|
|
assert(ReplaceableUses && "Expected non-null replaceable uses");
|
|
assert(&ReplaceableUses->getContext() == &getContext() &&
|
|
"Expected same context");
|
|
delete getReplaceableUses();
|
|
Ptr = ReplaceableUses.release();
|
|
}
|
|
|
|
/// Drop RAUW support.
|
|
///
|
|
/// Cede ownership of RAUW support, returning it.
|
|
std::unique_ptr<ReplaceableMetadataImpl> takeReplaceableUses() {
|
|
assert(hasReplaceableUses() && "Expected to own replaceable uses");
|
|
std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses(
|
|
getReplaceableUses());
|
|
Ptr = &ReplaceableUses->getContext();
|
|
return ReplaceableUses;
|
|
}
|
|
};
|
|
|
|
struct TempMDNodeDeleter {
|
|
inline void operator()(MDNode *Node) const;
|
|
};
|
|
|
|
#define HANDLE_MDNODE_LEAF(CLASS) \
|
|
using Temp##CLASS = std::unique_ptr<CLASS, TempMDNodeDeleter>;
|
|
#define HANDLE_MDNODE_BRANCH(CLASS) HANDLE_MDNODE_LEAF(CLASS)
|
|
#include "llvm/IR/Metadata.def"
|
|
|
|
/// Metadata node.
|
|
///
|
|
/// Metadata nodes can be uniqued, like constants, or distinct. Temporary
|
|
/// metadata nodes (with full support for RAUW) can be used to delay uniquing
|
|
/// until forward references are known. The basic metadata node is an \a
|
|
/// MDTuple.
|
|
///
|
|
/// There is limited support for RAUW at construction time. At construction
|
|
/// time, if any operand is a temporary node (or an unresolved uniqued node,
|
|
/// which indicates a transitive temporary operand), the node itself will be
|
|
/// unresolved. As soon as all operands become resolved, it will drop RAUW
|
|
/// support permanently.
|
|
///
|
|
/// If an unresolved node is part of a cycle, \a resolveCycles() needs
|
|
/// to be called on some member of the cycle once all temporary nodes have been
|
|
/// replaced.
|
|
class MDNode : public Metadata {
|
|
friend class ReplaceableMetadataImpl;
|
|
friend class LLVMContextImpl;
|
|
|
|
unsigned NumOperands;
|
|
unsigned NumUnresolved;
|
|
|
|
ContextAndReplaceableUses Context;
|
|
|
|
protected:
|
|
MDNode(LLVMContext &Context, unsigned ID, StorageType Storage,
|
|
ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2 = None);
|
|
~MDNode() = default;
|
|
|
|
void *operator new(size_t Size, unsigned NumOps);
|
|
void operator delete(void *Mem);
|
|
|
|
/// Required by std, but never called.
|
|
void operator delete(void *, unsigned) {
|
|
llvm_unreachable("Constructor throws?");
|
|
}
|
|
|
|
/// Required by std, but never called.
|
|
void operator delete(void *, unsigned, bool) {
|
|
llvm_unreachable("Constructor throws?");
|
|
}
|
|
|
|
void dropAllReferences();
|
|
|
|
MDOperand *mutable_begin() { return mutable_end() - NumOperands; }
|
|
MDOperand *mutable_end() { return reinterpret_cast<MDOperand *>(this); }
|
|
|
|
using mutable_op_range = iterator_range<MDOperand *>;
|
|
|
|
mutable_op_range mutable_operands() {
|
|
return mutable_op_range(mutable_begin(), mutable_end());
|
|
}
|
|
|
|
public:
|
|
MDNode(const MDNode &) = delete;
|
|
void operator=(const MDNode &) = delete;
|
|
void *operator new(size_t) = delete;
|
|
|
|
static inline MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs);
|
|
static inline MDTuple *getIfExists(LLVMContext &Context,
|
|
ArrayRef<Metadata *> MDs);
|
|
static inline MDTuple *getDistinct(LLVMContext &Context,
|
|
ArrayRef<Metadata *> MDs);
|
|
static inline TempMDTuple getTemporary(LLVMContext &Context,
|
|
ArrayRef<Metadata *> MDs);
|
|
|
|
/// Create a (temporary) clone of this.
|
|
TempMDNode clone() const;
|
|
|
|
/// Deallocate a node created by getTemporary.
|
|
///
|
|
/// Calls \c replaceAllUsesWith(nullptr) before deleting, so any remaining
|
|
/// references will be reset.
|
|
static void deleteTemporary(MDNode *N);
|
|
|
|
LLVMContext &getContext() const { return Context.getContext(); }
|
|
|
|
/// Replace a specific operand.
|
|
void replaceOperandWith(unsigned I, Metadata *New);
|
|
|
|
/// Check if node is fully resolved.
|
|
///
|
|
/// If \a isTemporary(), this always returns \c false; if \a isDistinct(),
|
|
/// this always returns \c true.
|
|
///
|
|
/// If \a isUniqued(), returns \c true if this has already dropped RAUW
|
|
/// support (because all operands are resolved).
|
|
///
|
|
/// As forward declarations are resolved, their containers should get
|
|
/// resolved automatically. However, if this (or one of its operands) is
|
|
/// involved in a cycle, \a resolveCycles() needs to be called explicitly.
|
|
bool isResolved() const { return !isTemporary() && !NumUnresolved; }
|
|
|
|
bool isUniqued() const { return Storage == Uniqued; }
|
|
bool isDistinct() const { return Storage == Distinct; }
|
|
bool isTemporary() const { return Storage == Temporary; }
|
|
|
|
/// RAUW a temporary.
|
|
///
|
|
/// \pre \a isTemporary() must be \c true.
|
|
void replaceAllUsesWith(Metadata *MD) {
|
|
assert(isTemporary() && "Expected temporary node");
|
|
if (Context.hasReplaceableUses())
|
|
Context.getReplaceableUses()->replaceAllUsesWith(MD);
|
|
}
|
|
|
|
/// Resolve cycles.
|
|
///
|
|
/// Once all forward declarations have been resolved, force cycles to be
|
|
/// resolved.
|
|
///
|
|
/// \pre No operands (or operands' operands, etc.) have \a isTemporary().
|
|
void resolveCycles();
|
|
|
|
/// Resolve a unique, unresolved node.
|
|
void resolve();
|
|
|
|
/// Replace a temporary node with a permanent one.
|
|
///
|
|
/// Try to create a uniqued version of \c N -- in place, if possible -- and
|
|
/// return it. If \c N cannot be uniqued, return a distinct node instead.
|
|
template <class T>
|
|
static std::enable_if_t<std::is_base_of<MDNode, T>::value, T *>
|
|
replaceWithPermanent(std::unique_ptr<T, TempMDNodeDeleter> N) {
|
|
return cast<T>(N.release()->replaceWithPermanentImpl());
|
|
}
|
|
|
|
/// Replace a temporary node with a uniqued one.
|
|
///
|
|
/// Create a uniqued version of \c N -- in place, if possible -- and return
|
|
/// it. Takes ownership of the temporary node.
|
|
///
|
|
/// \pre N does not self-reference.
|
|
template <class T>
|
|
static std::enable_if_t<std::is_base_of<MDNode, T>::value, T *>
|
|
replaceWithUniqued(std::unique_ptr<T, TempMDNodeDeleter> N) {
|
|
return cast<T>(N.release()->replaceWithUniquedImpl());
|
|
}
|
|
|
|
/// Replace a temporary node with a distinct one.
|
|
///
|
|
/// Create a distinct version of \c N -- in place, if possible -- and return
|
|
/// it. Takes ownership of the temporary node.
|
|
template <class T>
|
|
static std::enable_if_t<std::is_base_of<MDNode, T>::value, T *>
|
|
replaceWithDistinct(std::unique_ptr<T, TempMDNodeDeleter> N) {
|
|
return cast<T>(N.release()->replaceWithDistinctImpl());
|
|
}
|
|
|
|
private:
|
|
MDNode *replaceWithPermanentImpl();
|
|
MDNode *replaceWithUniquedImpl();
|
|
MDNode *replaceWithDistinctImpl();
|
|
|
|
protected:
|
|
/// Set an operand.
|
|
///
|
|
/// Sets the operand directly, without worrying about uniquing.
|
|
void setOperand(unsigned I, Metadata *New);
|
|
|
|
void storeDistinctInContext();
|
|
template <class T, class StoreT>
|
|
static T *storeImpl(T *N, StorageType Storage, StoreT &Store);
|
|
template <class T> static T *storeImpl(T *N, StorageType Storage);
|
|
|
|
private:
|
|
void handleChangedOperand(void *Ref, Metadata *New);
|
|
|
|
/// Drop RAUW support, if any.
|
|
void dropReplaceableUses();
|
|
|
|
void resolveAfterOperandChange(Metadata *Old, Metadata *New);
|
|
void decrementUnresolvedOperandCount();
|
|
void countUnresolvedOperands();
|
|
|
|
/// Mutate this to be "uniqued".
|
|
///
|
|
/// Mutate this so that \a isUniqued().
|
|
/// \pre \a isTemporary().
|
|
/// \pre already added to uniquing set.
|
|
void makeUniqued();
|
|
|
|
/// Mutate this to be "distinct".
|
|
///
|
|
/// Mutate this so that \a isDistinct().
|
|
/// \pre \a isTemporary().
|
|
void makeDistinct();
|
|
|
|
void deleteAsSubclass();
|
|
MDNode *uniquify();
|
|
void eraseFromStore();
|
|
|
|
template <class NodeTy> struct HasCachedHash;
|
|
template <class NodeTy>
|
|
static void dispatchRecalculateHash(NodeTy *N, std::true_type) {
|
|
N->recalculateHash();
|
|
}
|
|
template <class NodeTy>
|
|
static void dispatchRecalculateHash(NodeTy *, std::false_type) {}
|
|
template <class NodeTy>
|
|
static void dispatchResetHash(NodeTy *N, std::true_type) {
|
|
N->setHash(0);
|
|
}
|
|
template <class NodeTy>
|
|
static void dispatchResetHash(NodeTy *, std::false_type) {}
|
|
|
|
public:
|
|
using op_iterator = const MDOperand *;
|
|
using op_range = iterator_range<op_iterator>;
|
|
|
|
op_iterator op_begin() const {
|
|
return const_cast<MDNode *>(this)->mutable_begin();
|
|
}
|
|
|
|
op_iterator op_end() const {
|
|
return const_cast<MDNode *>(this)->mutable_end();
|
|
}
|
|
|
|
op_range operands() const { return op_range(op_begin(), op_end()); }
|
|
|
|
const MDOperand &getOperand(unsigned I) const {
|
|
assert(I < NumOperands && "Out of range");
|
|
return op_begin()[I];
|
|
}
|
|
|
|
/// Return number of MDNode operands.
|
|
unsigned getNumOperands() const { return NumOperands; }
|
|
|
|
/// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Metadata *MD) {
|
|
switch (MD->getMetadataID()) {
|
|
default:
|
|
return false;
|
|
#define HANDLE_MDNODE_LEAF(CLASS) \
|
|
case CLASS##Kind: \
|
|
return true;
|
|
#include "llvm/IR/Metadata.def"
|
|
}
|
|
}
|
|
|
|
/// Check whether MDNode is a vtable access.
|
|
bool isTBAAVtableAccess() const;
|
|
|
|
/// Methods for metadata merging.
|
|
static MDNode *concatenate(MDNode *A, MDNode *B);
|
|
static MDNode *intersect(MDNode *A, MDNode *B);
|
|
static MDNode *getMostGenericTBAA(MDNode *A, MDNode *B);
|
|
static MDNode *getMostGenericFPMath(MDNode *A, MDNode *B);
|
|
static MDNode *getMostGenericRange(MDNode *A, MDNode *B);
|
|
static MDNode *getMostGenericAliasScope(MDNode *A, MDNode *B);
|
|
static MDNode *getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B);
|
|
};
|
|
|
|
/// Tuple of metadata.
|
|
///
|
|
/// This is the simple \a MDNode arbitrary tuple. Nodes are uniqued by
|
|
/// default based on their operands.
|
|
class MDTuple : public MDNode {
|
|
friend class LLVMContextImpl;
|
|
friend class MDNode;
|
|
|
|
MDTuple(LLVMContext &C, StorageType Storage, unsigned Hash,
|
|
ArrayRef<Metadata *> Vals)
|
|
: MDNode(C, MDTupleKind, Storage, Vals) {
|
|
setHash(Hash);
|
|
}
|
|
|
|
~MDTuple() { dropAllReferences(); }
|
|
|
|
void setHash(unsigned Hash) { SubclassData32 = Hash; }
|
|
void recalculateHash();
|
|
|
|
static MDTuple *getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs,
|
|
StorageType Storage, bool ShouldCreate = true);
|
|
|
|
TempMDTuple cloneImpl() const {
|
|
return getTemporary(getContext(),
|
|
SmallVector<Metadata *, 4>(op_begin(), op_end()));
|
|
}
|
|
|
|
public:
|
|
/// Get the hash, if any.
|
|
unsigned getHash() const { return SubclassData32; }
|
|
|
|
static MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
|
|
return getImpl(Context, MDs, Uniqued);
|
|
}
|
|
|
|
static MDTuple *getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
|
|
return getImpl(Context, MDs, Uniqued, /* ShouldCreate */ false);
|
|
}
|
|
|
|
/// Return a distinct node.
|
|
///
|
|
/// Return a distinct node -- i.e., a node that is not uniqued.
|
|
static MDTuple *getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
|
|
return getImpl(Context, MDs, Distinct);
|
|
}
|
|
|
|
/// Return a temporary node.
|
|
///
|
|
/// For use in constructing cyclic MDNode structures. A temporary MDNode is
|
|
/// not uniqued, may be RAUW'd, and must be manually deleted with
|
|
/// deleteTemporary.
|
|
static TempMDTuple getTemporary(LLVMContext &Context,
|
|
ArrayRef<Metadata *> MDs) {
|
|
return TempMDTuple(getImpl(Context, MDs, Temporary));
|
|
}
|
|
|
|
/// Return a (temporary) clone of this.
|
|
TempMDTuple clone() const { return cloneImpl(); }
|
|
|
|
static bool classof(const Metadata *MD) {
|
|
return MD->getMetadataID() == MDTupleKind;
|
|
}
|
|
};
|
|
|
|
MDTuple *MDNode::get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
|
|
return MDTuple::get(Context, MDs);
|
|
}
|
|
|
|
MDTuple *MDNode::getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
|
|
return MDTuple::getIfExists(Context, MDs);
|
|
}
|
|
|
|
MDTuple *MDNode::getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
|
|
return MDTuple::getDistinct(Context, MDs);
|
|
}
|
|
|
|
TempMDTuple MDNode::getTemporary(LLVMContext &Context,
|
|
ArrayRef<Metadata *> MDs) {
|
|
return MDTuple::getTemporary(Context, MDs);
|
|
}
|
|
|
|
void TempMDNodeDeleter::operator()(MDNode *Node) const {
|
|
MDNode::deleteTemporary(Node);
|
|
}
|
|
|
|
/// This is a simple wrapper around an MDNode which provides a higher-level
|
|
/// interface by hiding the details of how alias analysis information is encoded
|
|
/// in its operands.
|
|
class AliasScopeNode {
|
|
const MDNode *Node = nullptr;
|
|
|
|
public:
|
|
AliasScopeNode() = default;
|
|
explicit AliasScopeNode(const MDNode *N) : Node(N) {}
|
|
|
|
/// Get the MDNode for this AliasScopeNode.
|
|
const MDNode *getNode() const { return Node; }
|
|
|
|
/// Get the MDNode for this AliasScopeNode's domain.
|
|
const MDNode *getDomain() const {
|
|
if (Node->getNumOperands() < 2)
|
|
return nullptr;
|
|
return dyn_cast_or_null<MDNode>(Node->getOperand(1));
|
|
}
|
|
};
|
|
|
|
/// Typed iterator through MDNode operands.
|
|
///
|
|
/// An iterator that transforms an \a MDNode::iterator into an iterator over a
|
|
/// particular Metadata subclass.
|
|
template <class T>
|
|
class TypedMDOperandIterator
|
|
: public std::iterator<std::input_iterator_tag, T *, std::ptrdiff_t, void,
|
|
T *> {
|
|
MDNode::op_iterator I = nullptr;
|
|
|
|
public:
|
|
TypedMDOperandIterator() = default;
|
|
explicit TypedMDOperandIterator(MDNode::op_iterator I) : I(I) {}
|
|
|
|
T *operator*() const { return cast_or_null<T>(*I); }
|
|
|
|
TypedMDOperandIterator &operator++() {
|
|
++I;
|
|
return *this;
|
|
}
|
|
|
|
TypedMDOperandIterator operator++(int) {
|
|
TypedMDOperandIterator Temp(*this);
|
|
++I;
|
|
return Temp;
|
|
}
|
|
|
|
bool operator==(const TypedMDOperandIterator &X) const { return I == X.I; }
|
|
bool operator!=(const TypedMDOperandIterator &X) const { return I != X.I; }
|
|
};
|
|
|
|
/// Typed, array-like tuple of metadata.
|
|
///
|
|
/// This is a wrapper for \a MDTuple that makes it act like an array holding a
|
|
/// particular type of metadata.
|
|
template <class T> class MDTupleTypedArrayWrapper {
|
|
const MDTuple *N = nullptr;
|
|
|
|
public:
|
|
MDTupleTypedArrayWrapper() = default;
|
|
MDTupleTypedArrayWrapper(const MDTuple *N) : N(N) {}
|
|
|
|
template <class U>
|
|
MDTupleTypedArrayWrapper(
|
|
const MDTupleTypedArrayWrapper<U> &Other,
|
|
std::enable_if_t<std::is_convertible<U *, T *>::value> * = nullptr)
|
|
: N(Other.get()) {}
|
|
|
|
template <class U>
|
|
explicit MDTupleTypedArrayWrapper(
|
|
const MDTupleTypedArrayWrapper<U> &Other,
|
|
std::enable_if_t<!std::is_convertible<U *, T *>::value> * = nullptr)
|
|
: N(Other.get()) {}
|
|
|
|
explicit operator bool() const { return get(); }
|
|
explicit operator MDTuple *() const { return get(); }
|
|
|
|
MDTuple *get() const { return const_cast<MDTuple *>(N); }
|
|
MDTuple *operator->() const { return get(); }
|
|
MDTuple &operator*() const { return *get(); }
|
|
|
|
// FIXME: Fix callers and remove condition on N.
|
|
unsigned size() const { return N ? N->getNumOperands() : 0u; }
|
|
bool empty() const { return N ? N->getNumOperands() == 0 : true; }
|
|
T *operator[](unsigned I) const { return cast_or_null<T>(N->getOperand(I)); }
|
|
|
|
// FIXME: Fix callers and remove condition on N.
|
|
using iterator = TypedMDOperandIterator<T>;
|
|
|
|
iterator begin() const { return N ? iterator(N->op_begin()) : iterator(); }
|
|
iterator end() const { return N ? iterator(N->op_end()) : iterator(); }
|
|
};
|
|
|
|
#define HANDLE_METADATA(CLASS) \
|
|
using CLASS##Array = MDTupleTypedArrayWrapper<CLASS>;
|
|
#include "llvm/IR/Metadata.def"
|
|
|
|
/// Placeholder metadata for operands of distinct MDNodes.
|
|
///
|
|
/// This is a lightweight placeholder for an operand of a distinct node. It's
|
|
/// purpose is to help track forward references when creating a distinct node.
|
|
/// This allows distinct nodes involved in a cycle to be constructed before
|
|
/// their operands without requiring a heavyweight temporary node with
|
|
/// full-blown RAUW support.
|
|
///
|
|
/// Each placeholder supports only a single MDNode user. Clients should pass
|
|
/// an ID, retrieved via \a getID(), to indicate the "real" operand that this
|
|
/// should be replaced with.
|
|
///
|
|
/// While it would be possible to implement move operators, they would be
|
|
/// fairly expensive. Leave them unimplemented to discourage their use
|
|
/// (clients can use std::deque, std::list, BumpPtrAllocator, etc.).
|
|
class DistinctMDOperandPlaceholder : public Metadata {
|
|
friend class MetadataTracking;
|
|
|
|
Metadata **Use = nullptr;
|
|
|
|
public:
|
|
explicit DistinctMDOperandPlaceholder(unsigned ID)
|
|
: Metadata(DistinctMDOperandPlaceholderKind, Distinct) {
|
|
SubclassData32 = ID;
|
|
}
|
|
|
|
DistinctMDOperandPlaceholder() = delete;
|
|
DistinctMDOperandPlaceholder(DistinctMDOperandPlaceholder &&) = delete;
|
|
DistinctMDOperandPlaceholder(const DistinctMDOperandPlaceholder &) = delete;
|
|
|
|
~DistinctMDOperandPlaceholder() {
|
|
if (Use)
|
|
*Use = nullptr;
|
|
}
|
|
|
|
unsigned getID() const { return SubclassData32; }
|
|
|
|
/// Replace the use of this with MD.
|
|
void replaceUseWith(Metadata *MD) {
|
|
if (!Use)
|
|
return;
|
|
*Use = MD;
|
|
|
|
if (*Use)
|
|
MetadataTracking::track(*Use);
|
|
|
|
Metadata *T = cast<Metadata>(this);
|
|
MetadataTracking::untrack(T);
|
|
assert(!Use && "Use is still being tracked despite being untracked!");
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// A tuple of MDNodes.
|
|
///
|
|
/// Despite its name, a NamedMDNode isn't itself an MDNode.
|
|
///
|
|
/// NamedMDNodes are named module-level entities that contain lists of MDNodes.
|
|
///
|
|
/// It is illegal for a NamedMDNode to appear as an operand of an MDNode.
|
|
class NamedMDNode : public ilist_node<NamedMDNode> {
|
|
friend class LLVMContextImpl;
|
|
friend class Module;
|
|
|
|
std::string Name;
|
|
Module *Parent = nullptr;
|
|
void *Operands; // SmallVector<TrackingMDRef, 4>
|
|
|
|
void setParent(Module *M) { Parent = M; }
|
|
|
|
explicit NamedMDNode(const Twine &N);
|
|
|
|
template<class T1, class T2>
|
|
class op_iterator_impl :
|
|
public std::iterator<std::bidirectional_iterator_tag, T2> {
|
|
friend class NamedMDNode;
|
|
|
|
const NamedMDNode *Node = nullptr;
|
|
unsigned Idx = 0;
|
|
|
|
op_iterator_impl(const NamedMDNode *N, unsigned i) : Node(N), Idx(i) {}
|
|
|
|
public:
|
|
op_iterator_impl() = default;
|
|
|
|
bool operator==(const op_iterator_impl &o) const { return Idx == o.Idx; }
|
|
bool operator!=(const op_iterator_impl &o) const { return Idx != o.Idx; }
|
|
|
|
op_iterator_impl &operator++() {
|
|
++Idx;
|
|
return *this;
|
|
}
|
|
|
|
op_iterator_impl operator++(int) {
|
|
op_iterator_impl tmp(*this);
|
|
operator++();
|
|
return tmp;
|
|
}
|
|
|
|
op_iterator_impl &operator--() {
|
|
--Idx;
|
|
return *this;
|
|
}
|
|
|
|
op_iterator_impl operator--(int) {
|
|
op_iterator_impl tmp(*this);
|
|
operator--();
|
|
return tmp;
|
|
}
|
|
|
|
T1 operator*() const { return Node->getOperand(Idx); }
|
|
};
|
|
|
|
public:
|
|
NamedMDNode(const NamedMDNode &) = delete;
|
|
~NamedMDNode();
|
|
|
|
/// Drop all references and remove the node from parent module.
|
|
void eraseFromParent();
|
|
|
|
/// Remove all uses and clear node vector.
|
|
void dropAllReferences() { clearOperands(); }
|
|
/// Drop all references to this node's operands.
|
|
void clearOperands();
|
|
|
|
/// Get the module that holds this named metadata collection.
|
|
inline Module *getParent() { return Parent; }
|
|
inline const Module *getParent() const { return Parent; }
|
|
|
|
MDNode *getOperand(unsigned i) const;
|
|
unsigned getNumOperands() const;
|
|
void addOperand(MDNode *M);
|
|
void setOperand(unsigned I, MDNode *New);
|
|
StringRef getName() const;
|
|
void print(raw_ostream &ROS, bool IsForDebug = false) const;
|
|
void print(raw_ostream &ROS, ModuleSlotTracker &MST,
|
|
bool IsForDebug = false) const;
|
|
void dump() const;
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// Operand Iterator interface...
|
|
//
|
|
using op_iterator = op_iterator_impl<MDNode *, MDNode>;
|
|
|
|
op_iterator op_begin() { return op_iterator(this, 0); }
|
|
op_iterator op_end() { return op_iterator(this, getNumOperands()); }
|
|
|
|
using const_op_iterator = op_iterator_impl<const MDNode *, MDNode>;
|
|
|
|
const_op_iterator op_begin() const { return const_op_iterator(this, 0); }
|
|
const_op_iterator op_end() const { return const_op_iterator(this, getNumOperands()); }
|
|
|
|
inline iterator_range<op_iterator> operands() {
|
|
return make_range(op_begin(), op_end());
|
|
}
|
|
inline iterator_range<const_op_iterator> operands() const {
|
|
return make_range(op_begin(), op_end());
|
|
}
|
|
};
|
|
|
|
// Create wrappers for C Binding types (see CBindingWrapping.h).
|
|
DEFINE_ISA_CONVERSION_FUNCTIONS(NamedMDNode, LLVMNamedMDNodeRef)
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif // LLVM_IR_METADATA_H
|